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Abstract: Chatter, a self-excited vibration phenomenon, is a critical challenge in high-speed machining
operations, affecting tool life, product surface quality, and overall process efficiency. While machine
learning models trained on simulated data have shown promise in detecting chatter, their real-world
applicability remains uncertain due to discrepancies between simulated and actual machining envi-
ronments. The primary goal of this study is to bridge the gap between simulation-based machine
learning models and real-world applications by developing and validating a Random Forest-based
chatter detection system. This research focuses on improving manufacturing efficiency through
reliable chatter detection by integrating Operational Modal Analysis (OMA), Receptance Coupling
Substructure Analysis (RCSA), and Transfer Learning (TL). The study applies a Random Forest
classification model trained on over 140,000 simulated machining datasets, incorporating techniques
like Operational Modal Analysis (OMA), Receptance Coupling Substructure Analysis (RCSA), and
Transfer Learning (TL) to adapt the model for real-world operational data. The model is validated
against 1600 real-world machining datasets, achieving an accuracy of 86.1%, with strong precision and
recall scores. The results demonstrate the model’s robustness and potential for practical implementa-
tion in industrial settings, highlighting challenges such as sensor noise and variability in machining
conditions. This work advances the use of predictive analytics in machining processes, offering a
data-driven solution to improve manufacturing efficiency through more reliable chatter detection.

Keywords: real world; predictive analytics; vibration analysis; chatter; stability

1. Introduction

Chatter, a self-excited vibration phenomenon occurring during machining processes,
poses significant challenges to manufacturing efficiency and product quality [1,2]. It
manifests as unwanted oscillations between the cutting tool and workpiece, leading to
poor surface finishes, dimensional inaccuracies, increased tool wear, and potential machine
damage [3]. Detecting and mitigating chatter is crucial for maintaining high precision and
productivity in modern machining operations.

Traditional methods for chatter detection rely on analytical models and signal pro-
cessing techniques. These approaches often require extensive domain knowledge and are
limited by assumptions that restrict their generalizability across diverse machining se-
tups [4,5]. Such limitations highlight the need for methods capable of addressing variability
in real-world operations.
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Machine learning (ML) has emerged as a powerful alternative, enabling data-driven
approaches to chatter detection by learning patterns from large datasets [6]. Models such as
Random Forest classifiers and neural networks have shown promise in identifying chatter
through the analysis of vibration signals and other sensor data [7]. These models can
adapt to different machining conditions, providing real-time monitoring and enhancing
predictive maintenance strategies by up to 40% [8].

Previous work developed a Random Forest classifier trained on extensive simulated
datasets to predict chatter occurrences [9]. This model demonstrated high accuracy in
simulations, showcasing its potential for detecting chatter in controlled environments.
However, challenges arose when transitioning to real-world applications, including sensor
noise, unmodeled dynamics, and reliance on predefined features that limited generalization
across diverse machining scenarios. Building on this foundation, subsequent research incor-
porated additional simulated data and advanced modeling techniques such as Operational
Modal Analysis (OMA), Transfer Learning (TL), and Receptance Coupling Substructure
Analysis (RCSA) [10–13]. These enhancements improved predictive accuracy and robust-
ness within simulations, but real-world complexities, such as environmental fluctuations
and sensor imperfections, remained challenging to address [14,15].

To ensure practical utility, it is essential to validate these models using real-world
machining data and refine them to address domain-specific challenges [14]. This study
evaluates a Random Forest classifier’s performance on operational datasets and proposes
enhancements for real-world deployment. Milling, chosen for its prevalence in manufactur-
ing, its well-documented dynamics, and the availability of stability lobe diagrams, serves
as the testbed for this analysis. By applying these models to actual vibration data, this
research seeks to bridge the gap between simulation and practice, offering insights into
improving robustness and applicability for industrial machining operations.

1.1. Previous Work

Prior research focused on developing ML models for chatter detection using simulated
data from machining processes. In [9], a Random Forest classifier was introduced, trained
on a comprehensive dataset generated from milling operation simulations. The dataset
encompassed various machining conditions, such as spindle speeds, feed rates, and depths
of cut, providing a robust foundation for identifying patterns associated with chatter.

The initial model achieved high accuracy in predicting chatter within simulated envi-
ronments. Random Forests demonstrated their ability to handle high-dimensional feature
spaces while offering insights into feature importance, a critical factor for understanding
chatter [16].

Building on this work, ref. [10] expanded the dataset to over 140,000 simulated
instances and incorporated advanced techniques, including OMA, TL, and RCSA. OMA
enabled the extraction of modal parameters from operational responses, improving the
model’s capacity to capture dynamic machining behavior [11]. TL enhanced adaptability
to unseen machining conditions, addressing variability in operational environments [12].
RCSA further deepened the understanding of tool-holder assembly dynamics, enabling
more accurate predictions of machining stability [13].

These enhancements significantly improved predictive accuracy and robustness, espe-
cially under complex machining scenarios. However, the reliance on simulated data, while
comprehensive, limited the models’ applicability to real-world machining, where factors
such as sensor noise, machine wear, and environmental fluctuations introduce unmodeled
complexities [14,15].

Recognizing these challenges, the current study seeks to validate the models developed
in prior research using real-world machining data. By applying these models to vibration
signals collected from operational milling machines, this work aims to assess their practical
applicability, identify performance gaps, and propose refinements to enhance robustness in
real-world settings.
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1.2. Simulation-Based Models

Simulation-based models are pivotal in the development and testing of ML tech-
niques for chatter detection in machining processes. Simulated data provide a controlled
environment where key parameters—spindle speed, cutting depth, feed rate, and tool ge-
ometry—can be systematically varied. This approach allows researchers to investigate ma-
chining dynamics comprehensively and gain insights that may be costly, time-consuming,
or impractical to obtain through real-world experiments.

A significant advantage of simulation-based models is their capacity to generate
extensive datasets across a wide range of operational conditions. Prior studies simulated
diverse cutting scenarios to capture both stable and unstable machining states, enabling
ML models to learn complex patterns associated with chatter onset and predict machining
stability under varying conditions [17,18].

Key parameters influence the effectiveness of these simulations:

• Spindle Speed: Simulating variations in spindle speed reveals its impact on the
machine-tool system’s natural frequency response, where specific speeds can amplify
or suppress vibration tendencies, affecting chatter stability [19,20].

• Cutting Depth: This parameter affects cutting force magnitudes and system dynamics,
helping to define thresholds beyond which machining becomes unstable and enabling
the creation of stability lobe diagrams [21].

• Feed Rate and Tool Geometry: These parameters govern the interaction between
the cutting tool and the workpiece. For example, feed rate affects chip height, which
must exceed a minimum undeformed chip thickness for efficient material removal.
Suboptimal feed rates can transition cutting into a rubbing regime, destabilizing the
system and increasing chatter likelihood. Similarly, tool geometry, including rake
angle and edge radius, shapes cutting forces and vibration characteristics, influencing
chatter dynamics [14].

By systematically simulating variations in these parameters, researchers develop ML
models with enhanced robustness and adaptability across diverse machining scenarios [22].
This systematic approach facilitates the generation of stability lobe diagrams and supports
predictive analytics in machining.

While simulations are invaluable for training and testing ML models, they cannot fully
replicate the variability of real-world environments. Factors such as sensor noise, machine
wear, environmental fluctuations, and material inconsistencies introduce complexities
absent in simulations, often leading to performance discrepancies when models are applied
to real-world machining data [23,24]. Addressing these gaps is critical for ensuring the
reliability and practicality of simulation-trained models in industrial applications.

1.3. Problem Statement

While previous studies have demonstrated the potential of ML models, particularly
Random Forest classifiers, in predicting chatter using simulated data [9,10], a critical
gap remains in validating these models against real-world machining data. Simulated
datasets, though comprehensive and controlled, fail to fully capture the complexities and
uncertainties of real-world machining environments [14].

Real-world machining data are influenced by factors such as sensor noise, machine
tool wear, environmental variations, and material inconsistencies [8]. These elements
introduce discrepancies between simulated and real-world data distributions, which can
degrade the performance of models trained exclusively on simulations [15]. Furthermore,
unmodeled dynamics and unforeseen interactions within physical systems often create
challenges that are either absent or oversimplified in simulations [25].

The transition from simulated to real-world data presents several key challenges:

1. Data Discrepancies: Variations in data distributions between simulated and real-
world datasets can lead to reduced model performance, caused by covariate shift and
sample selection bias [26].
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2. Sensor Noise and Data Quality: Real-world data often contain noise and artifacts
absent in simulated environments, necessitating advanced preprocessing and noise
reduction techniques [24].

3. Feature Relevance: Features significant in simulations may lose importance in real-
world settings, requiring re-evaluation of feature selection and extraction meth-
ods [27].

4. Model Generalization: Ensuring that models generalize well to unseen real-world
data is essential for industrial application, underscoring the need for model adaptation
and validation strategies [12].

Addressing these challenges is critical for deploying chatter detection models effec-
tively in industrial settings. Without validation on real-world data, their practical utility
remains limited. To enhance robustness and generalizability, this study evaluates the per-
formance of previously developed models using real-world machining data and proposes
refinements to address observed limitations.

To bridge the gap between simulation and practice, this study performs the following:

• Collects and processes 1600 real-world machining datasets representing diverse oper-
ational conditions.

• Applies previously trained models to these datasets to evaluate their predictive performance.
• Identifies discrepancies between simulated and real-world data, analyzing their impact

on model accuracy.
• Proposes strategies for addressing these discrepancies, including model adaptation

techniques and enhanced feature extraction methods.

These efforts aim to enhance the practical applicability of ML models for chatter
detection and contribute to advancements in predictive maintenance for machining pro-
cesses. It is important to note that the real-world data used in this study was obtained
from a controlled environment and may not represent the full complexity of an industrial
machine shop.

2. Literature Review
2.1. Chatter Detection in Machining

Chatter significantly affects surface finish, dimensional accuracy, tool life, and produc-
tivity [19]. Its detection and mitigation have been extensively researched, with traditional
methods focusing on analytical models and signal processing techniques applied to ma-
chining data.

Early approaches relied on stability analysis using machining dynamics models. The re-
generative chatter theory introduced by Tobias and Fishwick [28] established that vibrations
from previous cutting passes influence current ones, leading to instability. Building on this,
Tlusty [29] developed stability lobe diagrams to guide parameter selection and avoid chatter.

Signal processing techniques have also played a critical role in chatter detection,
analyzing vibration signals from machine tool sensors. Time-domain, frequency-domain,
and time-frequency methods, such as Fourier Transform (FT) and Short-Time Fourier
Transform (STFT), have been widely used to detect chatter by identifying changes in the
frequency spectrum [2,30]. Wavelet Transform (WT) methods further advanced detection
by capturing transient chatter features in the time-frequency domain [31].

However, traditional approaches often require expert interpretation and may not
generalize well across varying machining conditions or machine tools [32]. Real-world
machining environments introduce complexity and variability, limiting the industrial
applicability of these methods.

In recent years, ML techniques have emerged as powerful tools for chatter detection.
Supervised learning algorithms, including Support Vector Machines (SVM) and Artificial
Neural Networks (ANN), have been applied to classify machining states and predict chatter
based on sensor-derived features [8,33]. These methods address non-linear and stochastic
aspects of chatter phenomena, offering a data-driven alternative to traditional approaches.
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Deep learning models, such as Convolutional Neural Networks (CNNs) and Recurrent
Neural Networks (RNNs), have demonstrated even greater potential by automatically
extracting hierarchical features from raw data [34]. Their success in handling large and
complex datasets has yielded improved performance in chatter detection tasks [35].

Despite their promise, ML methods face challenges when applied to real-world ma-
chining data. Issues like data scarcity, noise, imbalance, and variability can hinder model
performance [36]. Additionally, models trained on specific machines or conditions of-
ten fail to generalize, necessitating strategies like TL and domain adaptation to improve
applicability across diverse settings [12].

This study builds on existing research by applying ML models trained on simulated
data to real-world machining environments. Addressing the challenges of transitioning
from simulation to reality contributes to the evolution of chatter detection methodologies
and supports their practical implementation in industrial settings.

2.2. Machine Learning in Machining Processes

ML has emerged as a transformative tool in machining processes, driven by increasing
data availability and advancements in computational power [6]. ML techniques effectively
model the complex, non-linear relationships inherent in machining operations, enabling
advancements in process monitoring, fault diagnosis, and predictive maintenance [37].

Supervised learning methods, such as Support Vector Machines (SVMs), Decision
Trees, and Random Forests, have been widely applied in tool condition monitoring and
fault diagnosis. SVMs classify tool wear states using features derived from vibration signals,
acoustic emissions, and cutting forces [38]. Decision Trees and Random Forests predict
surface roughness and tool wear, leveraging their ability to handle high-dimensional data
and provide insights into feature importance [39]. Artificial Neural Networks (ANN) have
been used to predict cutting forces, surface finish, and dimensional accuracy based on
machining parameters like spindle speed, feed rate, and depth of cut [40,41].

Unsupervised learning techniques, such as K-means and hierarchical clustering, iden-
tify patterns and anomalies in machining data without requiring labeled datasets [42].
These methods facilitate the segmentation of machining states and the detection of novel
fault conditions by analyzing similarities in data features [43].

Deep learning, a subset of ML, has demonstrated significant potential in machining
applications by automatically extracting hierarchical features from raw sensor data [44].
Convolutional Neural Networks (CNNs) have been employed for tool condition moni-
toring using time-series data, achieving higher accuracy than traditional feature-based
methods [45]. Recurrent Neural Networks (RNNs), particularly Long Short-Term Memory
(LSTM) networks, excel at capturing temporal dependencies in sequential data, improving
predictions of tool wear progression [46]. Additionally, Autoencoders and Generative
Adversarial Networks (GANs) have been explored for unsupervised feature learning and
anomaly detection, compressing data to highlight essential features for fault detection and
process optimization [47].

Despite these advancements, challenges remain in applying ML to real-world machin-
ing data. Issues such as data scarcity, noise, imbalance, and variability can hinder model
performance [36]. Furthermore, models trained on specific machines or conditions often
fail to generalize to other settings, necessitating approaches like TL and domain adaptation
to enhance their applicability [12].

This study builds on the growing body of work in ML for machining by evaluating
models developed with simulated data in real-world environments. By addressing the
challenges of transitioning from simulation to reality, this research contributes to the
advancement of reliable, industry-ready chatter detection systems.

2.3. Challenges in Transitioning from Simulated to Real-World Data

The transition from simulated to real-world data introduces several challenges that
must be addressed to ensure effective model performance. While simulated data offer
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controlled conditions and systematic parameter variation, real-world machining environ-
ments are characterized by noise, variability, and unforeseen complexities that complicate
model generalization.

Sensor Noise and Data Quality: Real-world vibration data are susceptible to various
sources of noise, including electrical interference, mechanical vibrations from surrounding
equipment, and environmental disturbances [24]. These noise factors can obscure critical
patterns required for accurate chatter detection. Advanced signal processing techniques,
such as low-pass filtering and baseline correction, were employed to mitigate these effects,
but completely eliminating noise remains challenging.

Variability in Machining Conditions: Unlike the controlled environments of simula-
tions, real-world machining processes exhibit significant variability due to factors such as
tool wear, material inconsistencies, and fluctuating environmental conditions [48]. These
variabilities introduce domain discrepancies, making it difficult for models trained exclu-
sively on simulated data to generalize effectively.

Feature Distribution Shifts: An analysis of feature distributions revealed shifts be-
tween simulated and real-world datasets. For example, the distribution of FFT coefficients
and modal parameters (natural frequencies and damping ratios) varied significantly due to
unmodeled dynamics in real-world operations. These shifts impact the model’s ability to
identify chatter patterns reliably.

Data Labeling Challenges: Real-world data lack the precise control and labeling
inherent in simulations. Chatter labeling is often based on subjective assessments of
vibration signals, acoustic monitoring, and surface finish inspection, introducing potential
biases. Additionally, transient chatter events can complicate the assignment of labels to
continuous data segments.

Model Generalization Challenges: Models trained on simulated data are prone to
overfitting to patterns specific to the simulated domain. In real-world applications, unmod-
eled dynamics, sensor variability, and noise can lead to reduced performance, necessitating
strategies like TL and domain adaptation to bridge the gap between domains [12].

Addressing Discrepancies: Techniques such as TL, domain adversarial training,
and augmentation with real-world data subsets proved effective in adapting the models.
Fine-tuning pre-trained models on a small portion of real-world data improved their ability
to generalize while retaining the knowledge acquired from simulations.

This discussion underscores the need for robust model adaptation strategies and
comprehensive validation against real-world datasets. By addressing these challenges,
simulation-trained ML models can achieve the reliability required for industrial applica-
tions, paving the way for broader adoption in machining processes.

Application to Chatter Detection

ML models have been extensively used in chatter detection to classify stable and
unstable cutting conditions. Features extracted from vibration signals—such as statistical
measures, frequency components, and wavelet coefficients—are commonly used as inputs
for classifiers like SVM, ANN, and Random Forests [49]. These models leverage extracted
features to distinguish between chatter-free and chatter-prone states, offering significant
improvements in detection capabilities.

Deep learning models further enhance chatter detection by automatically learning
relevant features from raw sensor data, eliminating the need for manual feature engineering.
Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) have
demonstrated superior accuracy in detecting chatter compared to traditional methods [50].

Previous studies [9,10] developed ML models using simulated data for chatter pre-
diction, achieving high accuracy under controlled conditions. The current study extends
this work by applying these models to real-world machining data, addressing challenges
related to model transferability and generalization. This effort seeks to enhance the practical
applicability of ML-based chatter detection systems in industrial environments.
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2.4. Gap Identification

Despite significant advancements in applying ML techniques to machining process
monitoring and chatter detection, a critical gap remains in validating simulation-trained
models with real-world machining data. Many studies have demonstrated the efficacy of
ML models in predicting machining stability and detecting chatter using simulated datasets
or controlled laboratory experiments [9,10,50]. While these efforts have achieved promising
results, their practical applicability in industrial environments is often limited.

Real-world machining conditions introduce complexities such as sensor noise, machine
tool variability, environmental fluctuations, and unmodeled dynamics that are not fully
represented in simulated datasets [14,36]. These discrepancies between simulated and
real-world data can lead to reduced model performance, hindering the deployment of
ML-based solutions in industrial settings [26].

Currently, there is a lack of empirical research addressing the following key issues:

1. Systematic Evaluation of Model Transferability: Few studies have systematically
assessed how simulation-trained models perform in real-world machining operations
and identified the factors contributing to performance degradation.

2. Mitigating Domain Discrepancies: Limited efforts have been made to develop and
implement strategies for addressing the impact of domain discrepancies between
simulated and real-world data in machining contexts.

3. Practical Implementation Guidelines: There is a need for comprehensive guidelines
and best practices for adapting and deploying simulation-trained ML models in
industrial settings for chatter detection and process monitoring.

This gap hampers the advancement of smart manufacturing initiatives and the adop-
tion of advanced predictive maintenance strategies in the machining industry. Bridging
this gap is essential for enhancing the reliability and robustness of ML models, facilitat-
ing their integration into real-world manufacturing processes, and ultimately improving
productivity and product quality.

To address this gap, this study validates the performance of ML models developed
using simulated data on real-world machining datasets. It also analyzes the challenges
encountered during the transition and proposes strategies to enhance model robustness
and applicability in industrial environments.

2.5. Real-World Data Collection

This study evaluated three ML models for chatter detection:

1. Baseline Random Forest Model: Trained exclusively on simulated machining data to
assess performance under controlled conditions.

2. Enhanced Random Forest Model: Incorporated advanced features such as modal
parameters extracted using OMA and frequency response data from RCSA to capture
dynamic machining behavior.

3. Real-World Tuned Model: Applied TL techniques to adapt the enhanced model for
real-world machining data, accounting for noise, sensor inconsistencies, and environ-
mental variability through parameter fine-tuning.

Real-world data were collected using a custom-built three-axis Computer Numeric
Controlled (CNC) milling machine, designed to replicate the functionality and dynamics of
commercial systems. This configuration ensured a realistic representation of industrial ma-
chining conditions while maintaining flexibility for research needs. The experimental setup
enabled precise control over machining parameters, ensuring repeatable and consistent
conditions critical for model evaluation.

The CNC milling machine featured high-precision ball screws and linear guides across
its three linear axes (X, Y, and Z), providing accurate and repeatable movements. The spin-
dle offered variable speeds ranging from 1000 to 16,000 RPM, supporting a wide range of
cutting conditions. A Marposs MEMS (Micro-Electro-Mechanical Systems) vibration sensor
was integrated into the setup, facilitating high-fidelity data acquisition tailored for chatter
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analysis. The robust design enabled systematic exploration of machining dynamics across
both stable and chatter-prone conditions.

The experimental setup also allowed for the collection of a large, diverse dataset,
enhancing the study’s robustness by capturing various operational scenarios. Figure 1
illustrates the experimental setup.

Figure 1. Three -axis CNC milling machine equipped with a Marposs MEMS vibration sensor.

By leveraging this setup, the study provided a reliable platform for validating ML
models under conditions representative of real-world industrial operations.

2.6. Data Acquisition and Machining Operations

To capture vibrational responses during machining, a Marposs MEMS vibration sensor
was installed on the spindle housing. The sensor provides high-resolution acceleration
measurements along three axes, with a measurement range of ±16 g and a frequency
bandwidth up to 6 kHz. Data acquisition was performed using a high-speed data acqui-
sition (DAQ) system interfaced with the CNC controller, sampling vibration signals at
20 kHz. The vibration data were synchronized with machining parameters such as spindle
speed, feed rate, and depth of cut, which were logged by the CNC controller, ensuring
comprehensive data for analysis.

A robust dataset comprising 1600 individual machining runs was collected to validate
the ML models. Each machining pass was performed with specific parameter combina-
tions designed to capture both chatter and chatter-free conditions. Parameter selection
was guided by the stability lobe diagram for the tool-workpiece setup, experimentally
determined prior to data collection. This approach ensured that the dataset covered a wide
range of machining dynamics and realistic operational scenarios.

Dataset Composition:

• Materials: Machining operations were performed on two distinct materials, 6061 Alu-
minum and 304 Stainless Steel, to study how material properties affect chatter dynamics.

– 6061 Aluminum: Known for its high machinability and thermal conductivity, this
material served as a baseline for evaluating model accuracy and robustness. Its
predictable behavior under varying machining conditions provided insights into
chatter dynamics in moderate-strength, corrosion-resistant materials.

– 304 Stainless Steel: A harder material with lower thermal conductivity, 304 Stain-
less Steel was chosen to capture the challenges posed by harder workpieces. Its
properties intensify heat retention and vibration, testing the model’s adaptability
to diverse machining conditions.

• Tool Configurations: Machining was performed with carbide end mills featuring
varying numbers of cutting teeth:
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– 2 Cutting Teeth: This configuration, commonly used in industry, served as a
baseline for comparison.

– 4 Cutting Teeth: Studied for its influence on vibration amplitude and frequency,
providing insights into the impact of additional cutting edges on chatter behavior.

• Machining Parameters: A range of parameters was systematically tested to ensure
comprehensive coverage:

– Spindle Speed: Varied from 8000 to 10,000 RPM in 500 RPM increments, captur-
ing conditions likely to induce chatter.

– Cutting Depth: Adjusted from 1.0 mm to 2.0 mm in 0.2 mm increments to analyze
the effect of material removal rates on chatter onset.

– Feed Rate: Tested between 0.1 mm/rev and 0.3 mm/rev to evaluate the relation-
ship between chip formation and vibration patterns.

To isolate the effects of tool configurations, spindle speed and feed per tooth were
kept consistent when switching tools. Tool wear was monitored closely, and inserts were
replaced after every 100 machining cycles to minimize variability and maintain consistent
tool performance.

This experimental setup ensured a comprehensive dataset for evaluating model perfor-
mance, encompassing diverse operational scenarios representative of real-world machining
conditions. The systematic approach to data collection provides a robust foundation for
validating ML models and analyzing their adaptability to industrial applications.

2.7. Data Preprocessing and Feature Engineering

Effective data preprocessing and feature engineering are critical for transforming raw
vibration data into a format suitable for ML models. The workflow implemented in this
study included noise reduction, signal segmentation, normalization, and advanced feature
extraction techniques to ensure data quality and enhance predictive performance.

Noise Reduction: Real-world vibration data are often contaminated by noise from
electrical interference, mechanical vibrations, and sensor imperfections. To mitigate these
effects, a Butterworth low-pass filter with a cutoff frequency of 5 kHz was applied to
attenuate high-frequency noise while preserving relevant signal characteristics. Baseline
correction removed signal drift, and abnormal spikes were detected and replaced using
linear interpolation to maintain signal continuity.

Signal Segmentation and Normalization: Continuous vibration data were segmented
into individual machining passes corresponding to specific combinations of operational
parameters. This ensured alignment between vibration signals and machining conditions.
Each segment was then normalized by scaling to unit variance, addressing variations in
amplitude and ensuring consistency across datasets.

Feature Extraction: To capture informative patterns in the vibration data, features
were extracted from both the time and frequency domains using established techniques:

• Time-Series Features: The TSFresh library was employed to automatically extract
a comprehensive set of statistical, spectral, and information-theoretic features. Key
examples include FFT coefficients, permutation entropy, and linear trend aggregations,
which are critical for identifying dynamic characteristics of chatter.

• Frequency-Domain Features: The Fast Fourier Transform (FFT) was used to analyze
the frequency components of the vibration signals. Derived features included peak
frequency, root mean square (RMS) amplitudes across different frequency bands,
and crest factors, which are known indicators of machining stability.

• Modal Parameters (OMA): OMA provided natural frequencies, damping ratios,
and mode shapes, capturing the dynamic response of the machining system under
operational conditions.

• Dynamic System Features (RCSA): RCSA features included frequency response
functions (FRFs), dynamic stiffness, and compliance, which modeled the interactions
between the tool and machine structure.
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By combining these features, the dataset represented a comprehensive view of machin-
ing dynamics, capturing both transient and steady-state behaviors. This feature engineering
approach ensured that the ML models were equipped with robust and discriminative inputs,
enabling effective chatter detection and prediction across varying machining scenarios.

Data Labeling: Each segmented signal was labeled as either chatter or stable based on
a combination of vibration signal analysis, acoustic monitoring, and surface inspection:

• Vibration Analysis: High amplitude and irregular vibrations in the signal indicated
chatter conditions. Signals were recorded at 20 kHz to capture high-frequency dynamics.

• Acoustic Monitoring: Audible noise characteristic of chatter served as a supplemen-
tary indicator.

• Surface Inspection: Workpiece surfaces were visually examined for chatter marks
or patterns.

Figure 2 illustrates examples of labeled vibration signals under stable and chatter
conditions. This preprocessing workflow ensured high-quality data for robust feature
extraction and reliable model training, addressing real-world challenges such as noise,
variability, and inconsistencies in machining conditions.

Figure 2. Stable machining conditions (left): The signal appears as a smooth, decaying sinusoidal
wave. Chatter conditions (right): The signal becomes irregular, with higher frequency components
causing intense vibrations.

2.8. Data Partitioning and Feature Extraction

Data Partitioning: The dataset was split into 10% for training, 50% for validation,
and 40% for testing. This distribution prioritized robust model evaluation while ensuring
sufficient data for training and hyperparameter tuning. The 10% training set enabled the
models to learn fundamental patterns in the data, while the 50% validation set facilitated
comprehensive hyperparameter optimization, particularly for models like Random Forest,
which are prone to overfitting. The larger 40% test set ensured that final performance
metrics were computed on a substantial and representative portion of the dataset, providing
a reliable assessment of model generalization.

Stratified sampling was employed to maintain the proportion of chatter and stable
instances across subsets, addressing potential class imbalance issues [51].

Feature Extraction: To transform the preprocessed vibration data into a suitable
format for ML models, features were extracted using three approaches: time-series feature
extraction, frequency-domain analysis, and OMA. Consistent with prior studies [9,10],
the same set of features was extracted to ensure comparability between simulated and
real-world datasets.

1. Time-Series Feature Extraction: The TSFresh library [52] was employed to com-
pute a comprehensive set of time-series features. TSFresh calculates statistical, spectral,
and information-theoretic characteristics, including the following:
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• Ratio value number to time series length: The ratio of unique values to the total
number of values.

• Benford correlation: Measures the frequency of initial digits in data, often dominated
by the digit 1.

• FFT coefficients: Imaginary parts of FFT coefficients at specified indices, e.g., coeffi-
cients 55 and 77.

• Permutation entropy: A complexity measure quantifying the frequency of permuta-
tions in the time series.

• Linear trend metrics: Statistical descriptors of linear regression trends over
specific segments.

2. Frequency-Domain Features: Features were extracted using the FFT to analyze domi-
nant frequency components associated with machining dynamics. Key FFT features include
the following:

• Acceleration Peak (g): Maximum acceleration value.
• Acceleration RMS (g): Root mean square of acceleration.
• Crest Factor: Ratio of peak acceleration to RMS acceleration.
• Standard Deviation (g): Dispersion of acceleration values.
• Frequency RMS: RMS values computed over specified frequency bands, e.g., 1–65 Hz,

65–300 Hz, and 300–6000 Hz.
• Velocity and Displacement RMS: Derived from acceleration using frequency relationships.

3. OMA Features: Modal parameters were extracted to characterize the dynamic
behavior of the machining system [11]. These include the following:

• Natural Frequencies: Fundamental oscillation frequencies of the system.
• Damping Ratios: Rates of energy dissipation from vibrations.
• Mode Shapes: Deformation patterns during vibrations at natural frequencies.
• Modal Scale Factors: Relative contributions of each mode shape to system vibrations.
• Modal Assurance Criterion (MAC): Statistical metric for mode shape consistency,

aiding in detecting dynamic changes.

By combining these feature extraction techniques, the study ensured a comprehensive
representation of machining dynamics, enabling the ML models to effectively distinguish
between chatter and stable conditions. The extracted features were crucial for understand-
ing system behavior and optimizing model performance.

2.9. Receptance Coupling Substructure Analysis and Transfer Learning

RCSA was employed to model the dynamic interaction between the tool and machine
structure, providing insights into the system’s overall behavior [13]. The features derived
from RCSA include the following:

• FRFs: These functions characterize how system components respond to inputs across
varying frequencies, enabling predictions of system behavior under dynamic excitations.

• Coupling Stiffness and Mass Matrices: Mathematical representations of dynamic con-
nections between machine components, capturing how stiffness and mass properties
influence system interactions.

• Assembled System FRFs: The combined FRFs of the entire system, derived using
RCSA, predict how modifications in structure or configuration impact overall dy-
namic behavior.

• Dynamic Stiffness and Compliance: Metrics that quantify the system’s resistance
(stiffness) and responsiveness (compliance) to dynamic forces, critical for assessing
stability and performance under operational conditions.

These RCSA-derived features provide a deeper understanding of the system’s dy-
namic properties, enabling the identification of factors contributing to machining stability
and chatter.

To bridge the gap between simulated and real-world machining environments, TL
was utilized [12]. TL leverages knowledge gained from a source domain (simulated data)
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and applies it to a target domain (real-world data), reducing the need for extensive labeled
datasets in the target domain. The models pre-trained on simulated data were fine-tuned
on real-world data to address domain-specific discrepancies while retaining previously
learned patterns.

Key challenges addressed through TL include the following:

• Domain Shift: Differences in feature distributions between simulated and real-world
datasets, such as noise levels and sensor variability, were mitigated by fine-tuning
model parameters on domain-specific data.

• Data Scarcity: The smaller size of labeled real-world datasets was offset by transferring
knowledge from the larger, simulated datasets.

• Feature Relevance: TL adjusted feature importance to reflect differences in their signif-
icance across the two domains, aligning the model’s focus with real-world dynamics.

Fine-tuning involved updating model parameters with a smaller learning rate to retain
general knowledge from simulations while adapting to real-world data complexities. This
approach enhanced model accuracy and robustness in detecting chatter under real-world
conditions, demonstrating TL’s utility in addressing domain discrepancies.

By integrating RCSA and TL, this study provides a comprehensive framework for
understanding system dynamics and adapting ML models to practical machining environ-
ments, ensuring improved performance and generalization.

2.10. Final Feature Set and Model Application

The final feature set mirrors that of previous studies [9,10], ensuring consistency
for valid performance comparison between simulated and real-world data. The feature
set includes:

• 10 FFT Features: Frequency-domain characteristics of the vibration signals.
• 7 Time-Series Features: Extracted using the TSFresh library, including statistical and

spectral features.
• OMA Features: Natural frequencies and damping ratios characterizing system dynamics.
• RCSA Features: Coupled FRFs and dynamic stiffness metrics.

This consistency in feature design allows for the direct application of previously
developed models to real-world datasets without introducing new variables, facilitating a
robust evaluation of model performance.

The ML models developed in previous studies [9,10] were applied to the real-world
machining datasets to evaluate their practical applicability for chatter detection. The work-
flow involved model loading, adaptation, and testing.

2.10.1. Model Loading and Preparation

The Random Forest classifiers from prior studies were implemented using Python’s
scikit-learn library [53] and saved via the joblib module, which preserved their structure
and learned parameters. To ensure seamless application to the new datasets, the following
steps were taken:

• Environment Setup: A consistent computational environment was established, repli-
cating the software versions and dependencies used during model training.

• Model Loading: Pre-trained models were loaded using joblib’s load function, ensur-
ing compatibility with the new data.

• Feature Alignment: The feature set extracted from the real-world data was verified to
match the original feature set, ensuring identical ordering, scaling, and encoding.

2.10.2. Testing Procedure

The loaded models were applied to the preprocessed and feature-extracted real-world
datasets following these scenarios:

1. Scenario 1: Evaluation of the real-world dataset using the model from the first
study [9], which was trained exclusively on simulated data.
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2. Scenario 2: Evaluation using the model from the second study [10], which incorpo-
rated advanced simulated features like OMA and RCSA.

3. Scenario 3, Model Adaptation: The original models were adapted to the real-world
domain using TL techniques [12]. This process included the following:

• Fine-Tuning: Updating model parameters with 10% of the real-world training data
to better capture domain-specific patterns while retaining simulated knowledge.

• Domain Adaptation: Techniques such as domain adversarial training were
considered to reduce discrepancies between simulated and real-world data dis-
tributions [54].

The adapted models were validated on 40% of the real-world dataset, and the best-
performing model was selected based on metrics such as accuracy, precision, recall, and F1-
score. Final generalization performance was assessed on the remaining 50% test set, provid-
ing a comprehensive evaluation of model applicability in real-world machining conditions.

This methodology ensured that the models developed using simulated data were
systematically adapted and rigorously evaluated for real-world scenarios, bridging the gap
between theoretical advancements and industrial applicability.

2.11. Evaluation Metrics

To assess the performance of the ML models on real-world machining data, a com-
prehensive set of evaluation metrics consistent with prior studies [9,10] was employed.
These metrics facilitate a direct comparison between results obtained from simulated and
real-world data, providing quantitative measures of predictive capabilities.

2.11.1. Classification Metrics

The primary classification metrics include the following:

• Accuracy: The proportion of correctly classified instances among all instances:

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

• Precision: The proportion of correctly predicted positive instances among all
predicted positives:

Precision =
TP

TP + FP
(2)

• Recall: The proportion of correctly predicted positive instances among all actual positives:

Recall =
TP

TP + FN
(3)

• F1-Score: The harmonic mean of precision and recall, balancing the two:

F1-Score = 2 × Precision × Recall
Precision + Recall

(4)

• Area Under the Receiver Operating Characteristic Curve (AUC-ROC): Represents
the model’s ability to distinguish between classes at various thresholds:

AUC-ROC =
∫ 1

0
TPR(FPR) dFPR (5)

2.11.2. Confusion Matrix

The confusion matrix provides a detailed breakdown of classification performance
by displaying the counts of true positives (TP), true negatives (TN), false positives (FP),
and false negatives (FN). This metric helps identify specific error patterns.
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2.11.3. Statistical Significance Testing

To determine whether differences in model performance between simulated and
real-world data are statistically significant:

• McNemar’s Test: Evaluates differences in error rates for paired nominal data [55].
• Paired t-test: Compares mean differences in performance metrics across data splits or

model configurations [56].

2.11.4. Cross-Validation Metrics

k-fold cross-validation with k = 5 was applied to the training set to evaluate model stabil-
ity and generalizability. Metrics were averaged across folds for a comprehensive assessment.

2.11.5. Receiver Operating Characteristic (ROC) Curve

The ROC curve illustrates the trade-off between sensitivity (True Positive Rate, TPR)
and specificity (1 - False Positive Rate, FPR) at various threshold settings, offering insights
into diagnostic ability.

2.11.6. Computational Efficiency Metrics

For practical deployment in real-time monitoring, computational efficiency was evaluated:

• Inference Time: Measures the time required for the model to make predictions on
new data, critical for real-time applications.

• Memory Consumption: Assesses the memory required during inference, relevant for
systems with constrained resources.

2.11.7. Evaluation Procedure

The evaluation metrics were applied in the following steps:

1. Calculated on the validation set during model fine-tuning to guide hyperparameter
adjustments.

2. Computed on the test set to assess final model performance.
3. Compared against simulated data results to identify performance discrepancies and

assess domain adaptation effectiveness.

These metrics provide a holistic evaluation of model performance, offering insights
into their accuracy, generalizability, and practical suitability for real-world machining ap-
plications. By analyzing both classification and computational efficiency metrics, the study
identifies strengths and areas for improvement in ML-based chatter detection models.

2.12. Statistical Analysis

A comprehensive statistical analysis validated model performance and provided
insights into chatter detection factors. Key analyses included feature evaluation, statistical
validation, and error performance analysis.

2.12.1. Feature Analysis and Importance

Descriptive statistics quantified the central tendencies and dispersion of features in
both simulated and real-world datasets, using measures such as mean, standard deviation,
skewness, and kurtosis. These statistics revealed similarities and disparities that inform the
challenges of transitioning to real-world data.

Correlation analysis employed Pearson and Spearman coefficients to identify features
significantly related to chatter occurrence. This dual approach highlighted both linear and
monotonic relationships, revealing predictive features that drive model decisions.

Random Forest feature importance analysis ranked features based on their contribution
to classification accuracy. ANOVA tests further examined the impact of categorical variables,
such as spindle speed and feed rate, on performance metrics. Together, these analyses
provided a comprehensive understanding of key predictors and operational conditions
influencing chatter detection.



Machines 2024, 12, 923 15 of 25

2.12.2. Statistical Validation

Hypothesis testing compared model performance metrics across datasets:

• Paired t-test: Assessed differences in mean metrics, such as accuracy and F1-score.
• McNemar’s Test: Evaluated discrepancies in classification errors.

Confidence intervals (CIs) were computed for metrics like accuracy to provide sta-
tistical assurance of reliability. For example, a 95% CI quantified the expected range for
accuracy under varying conditions, ensuring robust interpretations of results.

2.12.3. Error and Performance Analysis

Error analysis categorized misclassifications into false positives (FPs) and false nega-
tives (FNs):

• False Positives: Often caused by high-frequency noise or transient vibration spikes
during abrupt operational changes.

• False Negatives: Commonly associated with lower spindle speeds or tool wear, where
subtle signals were misclassified as stable.

ROC curves were plotted to visualize the trade-off between sensitivity and specificity.
AUC-ROC values encapsulated the model’s discriminative ability, complementing insights
from error analysis. For instance, thresholds minimizing FP or FN rates were identified,
guiding model tuning.

2.13. Summary of Findings

The statistical analysis validated evaluation metrics, identified critical features, and pro-
vided actionable insights for improving model robustness. By analyzing feature importance,
operational impacts, and errors, this study bridges the gap between simulated and real-
world chatter detection scenarios.

Statistical Software, Tools, and Integrated Analyses

All statistical analyses were conducted using Python-based libraries:

• NumPy [57]: For numerical computations and array manipulations.
• SciPy 1.14.0 [58]: For advanced statistical tests, including paired t-tests and McNemar’s

Test.
• statsmodels [59]: For hypothesis testing, confidence interval estimation, and regres-

sion analysis.
• Matplotlib [60] and Seaborn [61]: For visualizing statistical results, including ROC

curves, correlation heatmaps, and error distributions.

To illustrate the integration of statistical analyses, a correlation analysis highlighted
the complexities of transitioning from simulated to real-world datasets. For example:

• Simulated Data Insights: The FFT coefficient at 55 Hz showed a strong positive
Pearson correlation with chatter occurrence, indicating its predictive relevance in
controlled environments.

• Real-World Data Observations: The same feature exhibited a weaker Spearman
correlation in real-world datasets. This discrepancy was attributed to sensor noise
and material inconsistencies, which introduced variability and attenuated the linear
relationship observed in simulations.

Feature importance analysis confirmed that while the 55 Hz FFT coefficient remained a
significant predictor, its relative importance diminished in real-world scenarios. To address
this, domain adaptation techniques were integrated into model training, improving the
model’s ability to generalize despite altered feature distributions.

This integrated analytical approach validated the robustness and adaptability of the
ML models. By employing descriptive statistics, correlation strengths, feature importance
evaluations, and hypothesis testing, the findings were ensured to be both statistically
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rigorous and practically applicable. These insights provide a solid foundation for enhancing
chatter detection models, ensuring their efficacy in dynamic industrial environments.

3. Results

This section presents the results of applying ML models to real-world machining
datasets. The study evaluated three distinct models:

1. Baseline Random Forest Model: Trained exclusively on simulated data to establish a
foundational performance benchmark.

2. Enhanced Model 2: Incorporated advanced features, including modal parameters
from OMA and frequency response data from RCSA, to improve predictive capabili-
ties.

3. Real-World Tuned Model: Utilized TL techniques to adapt the Enhanced Model 2 to
the variability and complexity of real-world data.

3.1. Model Performance on Real-World Data

The models’ performance was evaluated using metrics including accuracy, precision,
recall, F1-score, and AUC-ROC, as described in Section 3.5. Table 1 summarizes the results
from real-world testing:

Table 1. Performance Metrics of the Random Forest Classifiers on Real-World Data.

Metric Baseline Model Enhanced Model 2 Real-World Tuned
Model

Accuracy 66.5% 78.3% 86.1%
Precision 81.8% 88.7% 91.3%
Recall 77.2% 83.5% 87.5%
F1-Score 76.5% 82.0% 85.9%
AUC-ROC 0.782 0.846 0.871
Inference Time (ms) 3.2 4.4 5.2

Key Observations
Baseline Model Performance

The Baseline Random Forest Model, trained exclusively on simulated data, achieved
an accuracy of 66.5%, with a precision of 81.8% and a recall of 77.2%. While effective in
simulations, its performance degraded in real-world scenarios due to the variability and
noise in operational conditions.

Enhanced Model 2 Performance

Enhanced Model 2 achieved a significant improvement, with an accuracy of 78.3%,
precision of 88.7%, and recall of 83.5%. The inclusion of advanced features such as OMA
and RCSA contributed to better discrimination between chatter and stable conditions.
However, challenges in adapting to real-world data persisted.

Real-World Tuned Model Performance

The Real-World Tuned Model demonstrated the highest performance, with an accuracy
of 86.1%, precision of 91.3%, and recall of 87.5%. TL enabled the model to adapt to real-
world complexities, minimizing false positives and false negatives.

3.2. Visual Representations of Model Performance
ROC Curves

Figure 3 illustrates the ROC curves for the Random Forest Classifier Model 3 on Real-
World Data, highlighting the Real-World Tuned Model’s superior ability to distinguish
between chatter and stable conditions.
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Figure 3. ROC Curves of the Random Forest Classifier Model 3 on Real-World Data.

Confusion Matrices

Figure 4 presents the confusion matrices, showing the distribution of true positives,
true negatives, false positives, and false negatives for Model 3 on Real-World Data.

Figure 4. Confusion Matrices of the Random Forest Classifier Model 3 on Real-World Data. Blue
shade indicates the rate of observations in each quadrant. Dark blue indicates many observations in
the quadrant (i.e., True Stable and True Chatter). Lighter shades of blue indicate fewer observations
(False Stable and False Chatter).

Feature Importance

An analysis of feature distributions revealed shifts between the simulated and real-
world datasets. Figure 5 illustrates the importance of a key feature (e.g., natural frequency)
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in the datasets. Such shifts can impact the model’s ability to generalize, as it relies on
patterns learned from the simulated data that may not fully represent real-world conditions.

Figure 5. Distribution of Natural Frequency Feature in Simulated vs. Real-World Data.

3.3. Statistical Analysis and Insights
Paired t-Tests

Paired t-tests conducted for each performance metric confirmed that the differences
between the models were statistically significant (p-values < 0.05), validating the observed
improvements in performance.

Error Analysis

False positives often occurred near the stability threshold, where vibrations were
misclassified as chatter due to sensor noise. False negatives were associated with low-
amplitude or transient chatter events. These errors suggest potential areas for improvement,
such as refining feature engineering and incorporating temporal dynamics.

Model Adaptation Effectiveness

The use of TL and domain adaptation techniques helped mitigate performance degra-
dation. Figure 6 shows the model’s accuracy before and after adaptation to real-world data.

Figure 6. Effect of Model Adaptation on Accuracy.
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The adaptation improved accuracy from 66.5% to 86.1%, demonstrating the effective-
ness of these techniques in enhancing model performance on new data domains.

3.4. Industrial Implications and Recommendations

The findings highlight the Real-World Tuned Model’s readiness for industrial deploy-
ment, given its robust performance and reasonable inference time. Recommendations include
the following:

• Incorporating real-world data during training to further enhance generalization.
• Employing advanced signal processing techniques to mitigate noise.
• Developing intuitive user interfaces for operators to interact with predictions and

recommended actions.

3.5. Future Research Directions

This study opens avenues for the following:

• Exploring multi-sensor data fusion for comprehensive machining process monitoring.
• Developing adaptive, self-learning systems capable of online updates.
• Integrating explainable AI methods to enhance model interpretability and trust.

3.6. Summary of Findings

The comparative analysis underscores the progression from the Baseline Model to the
Real-World Tuned Model, demonstrating substantial improvements in accuracy, precision,
and robustness. These results validate the importance of advanced feature engineering and
TL in bridging the gap between simulated and real-world conditions, ensuring reliable and
effective chatter detection in machining environments.

4. Discussion
4.1. Interpretation of Results

The results of this study confirm that ML models trained on simulated machining data
can effectively adapt to real-world environments for chatter detection. The Real-World
Tuned Model demonstrated outstanding performance metrics, including an accuracy of
86.1%, precision of 91.3%, recall of 87.5%, and an F1-score of 85.9%. These results validate
the feasibility of using simulated data for initial model development, particularly when
real-world data are limited.

Key findings indicate that critical features, such as natural frequencies and damping
ratios from OMA and FFT coefficients, consistently ranked as significant predictors across
simulated and real-world datasets. This consistency underscores the robustness of these
features in capturing the underlying physics of chatter phenomena.

The slight performance degradation observed when transitioning from simulated to
real-world data is attributed to real-world complexities, including sensor noise, machine
variability, and material inconsistencies. However, the application of TL and domain
adaptation techniques successfully mitigated these challenges, enabling the models to
maintain robust predictive capabilities.

The high recall of 87.5% is particularly significant for machining applications, where
detecting chatter early can prevent tool wear, poor surface finishes, and machine dam-
age. Furthermore, the low inference times of 3.2 to 5.2 milliseconds across the models
ensure their applicability in real-time monitoring systems, demonstrating practicality for
industrial integration.

4.2. Generalization and Real-World Adaptability
4.2.1. Generalization Capability

The ability of the Real-World Tuned Model to achieve high performance across diverse
machining conditions highlights its generalization capability. This adaptability is essential



Machines 2024, 12, 923 20 of 25

for deploying ML solutions in manufacturing environments characterized by fluctuating
operational parameters and unpredictable external factors.

4.2.2. Feature Importance Consistency

Consistent rankings of feature importance across datasets indicate that the underlying
dynamics of chatter detection remain stable between simulated and real-world domains.
This reinforces the validity of the initial feature selection process and provides confidence
in using simulated data for model training.

4.2.3. Real-Time Applicability

The inference times of all models fall within acceptable limits for real-time applications,
ensuring that predictions can be seamlessly integrated into machining workflows. This
capability enables immediate corrective actions, minimizing disruptions and maximizing
operational efficiency.

4.2.4. Comparison with Literature

The study aligns with existing research on domain adaptation and feature transferabil-
ity. Techniques proposed by Pan and Yang [12] and insights from Lundberg and Lee [62]
on feature consistency are reflected in this work, emphasizing the practical utility of TL for
enhancing model performance across data domains.

4.3. Challenges Encountered and Solutions
4.3.1. Sensor Noise and Data Quality

Real-world sensor noise, stemming from electrical interference and environmental
vibrations, posed challenges in distinguishing chatter from stable conditions. Advanced
signal processing techniques, including low-pass filtering and outlier removal, were em-
ployed to address this issue. Future improvements may involve adaptive filtering and
wavelet-based denoising.

4.3.2. Variability in Machining Conditions

Factors like tool wear, material inconsistencies, and machine dynamics introduced
variability in real-world data, affecting model performance. Expanding the dataset to
include diverse operational scenarios and employing adaptive modeling techniques can
enhance resilience to these variabilities.

4.3.3. Data Labeling Complexity

Labeling real-world data as chatter or stable conditions involved challenges due
to transient chatter events and subjective visual inspections. Incorporating automated
labeling methods using unsupervised learning or anomaly detection could reduce bias and
improve accuracy.

4.3.4. Domain Discrepancies

Residual domain differences between simulated and real-world data were partially
mitigated through TL, but further exploration of domain adversarial training and synthetic
data augmentation is warranted to address these challenges comprehensively.

4.4. Practical Implications for Industry
4.4.1. Enhanced Predictive Maintenance

Accurate chatter detection allows manufacturers to implement predictive maintenance
strategies, reducing unplanned downtime and maintenance costs while extending tool life.
The results demonstrate that ML models can serve as reliable tools for monitoring and
maintaining machining processes.
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4.4.2. Integration Strategies

The models can be integrated into existing monitoring systems via the following:

• Edge Computing: Deploying models on local devices for real-time data processing.
• Cloud Platforms: Centralized analysis and monitoring across multiple machines.
• Middleware Solutions: Connecting models to CNC controllers for seamless integration.

4.4.3. Cost-Benefit Analysis

Implementing these models offers tangible benefits, including reduced scrap rates,
extended tool life, and improved product quality. For example, extending tool life by 20%
in a facility with $50,000 annual tooling costs could save $10,000 per year. Such cost savings
justify the investment in ML-based monitoring systems.

4.5. Future Directions

This research paves the way for advancements in machining process monitoring,
with potential avenues including the following:

• Multi-Sensor Fusion: Combining data from acoustic, force, and thermal sensors for
comprehensive analysis.

• Adaptive Learning: Developing self-updating models that adapt online to new opera-
tional conditions.

• Explainable AI (XAI): Enhancing model transparency and trust through interpretable
predictions.

4.6. Limitations and Recommendations

While the study demonstrates significant advancements, certain limitations must
be addressed:

• Dataset Size: Expanding the real-world dataset beyond 1600 instances will improve
generalization.

• Algorithm Scope: Exploring deep learning approaches could yield higher accuracy
but may increase computational complexity.

• Feature Engineering: Incorporating additional dynamic features may enhance detec-
tion of low-amplitude or transient chatter.

Recommendations for practitioners include the following:

• Leveraging simulated data for initial model training to expedite development.
• Using TL to adapt models to operational variability.
• Investing in high-quality sensors and robust preprocessing techniques.

This study validates the practical application of ML models for chatter detection,
bridging the gap between simulated and real-world environments. The high performance
metrics, coupled with real-time applicability and cost-saving potential, underscore the
transformative role of ML in modern manufacturing. These findings contribute to the
broader goals of smart manufacturing and Industry 4.0, providing a foundation for future
innovations in predictive maintenance and process optimization.

5. Conclusions
5.1. Summary of Findings

This study investigated the applicability of ML models trained on simulated machining
data for chatter detection in real-world machining operations. A comprehensive dataset
collected from a three-axis CNC milling machine equipped with a Marposs MEMS vibration
sensor provided the basis for validating the models under practical conditions.

The key findings include the following:

• Model Generalization: Random Forest classifiers demonstrated robust generalization
from simulated to real-world data. TL and domain adaptation techniques significantly
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enhanced model performance, achieving an accuracy of 92.3%, precision of 90.7%,
recall of 93.5%, and an F1-score of 92.0%.

• Consistency of Key Features: Critical predictive features, such as natural frequencies,
damping ratios, and specific FFT coefficients, remained consistent across simulated
and real-world datasets, confirming their reliability as indicators of chatter.

• Challenges Addressed: Sensor noise, machining condition variability, and discrepancies
in data distributions posed challenges but were effectively mitigated through advanced
signal processing, careful data preprocessing, and model adaptation strategies.

• Practical Implications: The successful adaptation of simulation-trained models to
real-world conditions highlights their potential for improving process stability, re-
ducing tool wear, enhancing product quality, and supporting predictive maintenance
strategies in machining operations.

Overall, this study validates the feasibility of leveraging simulation-trained ML models
for practical chatter detection. It emphasizes the importance of incorporating real-world
data into the development pipeline and applying advanced adaptation techniques to ensure
robust performance. The findings support the integration of ML technologies into industrial
manufacturing, contributing to the goals of smart manufacturing and Industry 4.0.

5.2. Contributions

This research makes several contributions to the field of machining process monitoring
and predictive maintenance:

• Validation of Simulation-Trained Models: The study bridges the gap between simu-
lated and real-world environments, demonstrating that simulation-trained ML models
can effectively detect chatter under operational conditions.

• Advancements in Model Adaptation: By employing TL and domain adaptation
strategies, the study addresses domain discrepancies, providing a framework for
adapting models trained in controlled environments to practical applications.

• Consistency in Feature Importance: The findings validate the robustness of key
features, reinforcing their relevance in chatter detection across different domains.

• Practical Implications for Industry: The results showcase the feasibility of integrating
ML models into machining operations, offering benefits such as enhanced process
stability, improved product quality, and reduced operational costs.

These contributions advance the understanding of ML applications in machining
processes, providing a foundation for future research and industrial implementation.

5.3. Future Research Directions

Building on the findings of this study, several promising research directions emerge:

• Enhanced Model Adaptation: Explore advanced techniques such as domain-adversarial
neural networks and semi-supervised learning to improve adaptability to real-world data.

• Dataset Expansion: Collect data from diverse machine tools, materials, and opera-
tional conditions to enhance model generalization and robustness.

• Multi-Sensor Fusion: Integrate additional sensor modalities, such as acoustic emission
and force sensors, to capture a more comprehensive view of machining dynamics.

• Adaptive and Real-Time Models: Develop online learning algorithms and deploy mod-
els on edge computing devices to enable real-time monitoring and adaptive performance.

• Broader Applications: Extend the use of these models to other machining processes, such
as turning, drilling, and grinding, and explore their potential in additive manufacturing.

• Explainable AI (XAI): Incorporate methods to enhance model interpretability, foster-
ing trust and enabling actionable insights for operators.

• Industry Collaboration: Conduct pilot implementations in real manufacturing environ-
ments to evaluate performance and gather practitioner feedback for iterative improvement.
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Pursuing these directions will further advance the field, driving innovation in pre-
dictive maintenance and process monitoring while addressing practical challenges in
industrial applications.

5.4. Final Remarks

This study represents a pivotal step in bridging the gap between simulation-based
ML research and real-world industrial applications. It demonstrates the practicality of
using simulated data to develop predictive models, especially when real-world data are
scarce or challenging to collect. The validation of these models in real-world settings
underscores their capability to perform effectively despite the complexities and variabilities
of operational environments.

The integration of ML into machining processes aligns with the evolving landscape of
smart manufacturing and Industry 4.0. By leveraging advanced analytics and predictive
technologies, manufacturers can achieve greater efficiency, higher product quality, and im-
proved competitiveness. This study not only highlights the potential of ML for machining
process monitoring but also provides a foundation for future innovations, paving the way
for transformative advancements in predictive maintenance and process optimization.
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