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1. Introduction

Tool life is one of the significant limitations to machining 
productivity. Tool life is traditionally defined as the time 
required for the tool wear to reach a pre-determined wear limit 
(flank, notch, or crater depth), where tool wear is the loss of 
material from the tool cutting edge during operation due to 
interaction with the workpiece material [1]. 

Nomenclature

g          linear model of input features
k          number of input features
m        number of data points
n          Taylor tool life coefficient
p          probability
x          logistic model input

t tool replacement time
tm mean value of tool life from experimental data
ts standard deviation of tool life from experimental data
y          logistic model output
C Taylor tool life coefficient
T tool life
V cutting speed 
θ logistic model parameters

There have been many attempts in the literature at modeling 
and predicting tool life. The models are empirical, such as 
Taylor-type tool life equations or response surface 
methodology [1-4], or physics-based, including analytical and
finite element methods [5-7]. The challenge for the practical 
implementation of existing models is that they require 
extensive experimentation to calibrate the model coefficients; 
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Abstract

This paper describes the application of logistic classification for tool life modeling and prediction in an industrial setting using shop floor data. 
Tool life is treated as a classification problem since tool wear can only be measured at the time of tool replacement in a production environment. 
Laboratory tool wear experiments are used to simulate shop floor wear data by two states: not worn (class 0); and worn (class 1). To incorporate 
non-linearity in logistic classification, a log-transformation of input features is performed. The logistic classification approach, results, and 
interpretability of the logistic model are presented. 
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this is expensive and time-consuming for many tool-material 
combinations and, therefore, can be infeasible in a production 
environment. To address the problem of tool life prediction in 
a production environment, this paper presents the application 
of logistic classification for tool life modeling using shop floor 
tool wear data. The concept is to treat production parts as tool 
wear experiments and use the available tool wear data for 
modeling tool life. However, in a production environment, tool 
wear is typically only measured at the time of tool change 
resulting in a single data point on the tool wear-cut time curve.
Therefore, tool life is considered as a classification problem 
instead of a regression problem, where two classes are defined: 
tool not worn (class 0); and tool worn (class 1) based on the 
measured tool wear level. If the tool wear is less than the pre-
defined wear limit, the tool is not worn (class 0); otherwise, it 
is worn (class 1). Tool life is the classification decision 
boundary in time which separates the two classes. The 
remainder of the paper is organized as follows. Section 2 
describes the procedure to simulate wear data from the shop 
floor using laboratory experiments. Section 3 describes the 
logistic classification method and application to tool life 
modeling. A discussion on model interpretability is provided in 
Section 4 followed by conclusions in Section 5. 

2. Experimental results

To simulate shop floor tool wear data, tool wear experiments 
were completed using a 19.05 mm diameter, single insert 
Kennametal endmill in down milling. The insert was a 9.53 mm 
square uncoated carbide Kennametal insert (107888126 C9 JC) 
with zero rake and helix angles and a 15º relief angle. Tool wear 
tests were performed at 149.6 m/min (2500 rpm), 299.2 m/min
(5000 rpm), and 448.9 m/min (7500 rpm). The feed per tooth 
was 0.06 mm/tooth and the axial and radial depths of cut were 
3 mm and 4.7 mm (25% radial immersion), respectively. The 
insert wear status was measured at regular intervals using a 
handheld microscope (60× magnification). Tool life, T, was 
defined as the time required for the insert to reach a maximum 
flank wear width of 0.3 mm (no crater wear was observed 
during the tests). Three tests were completed at each cutting 
speed, V. Table 1 shows the results. As seen from Table 1, there 
is uncertainty in tool life results due to the stochastic nature of 
tool wear and tool-to-tool performance variation. Taylor first 
defined an empirical relationship between tool life and cutting 
speed using a power law [2]: 

𝑉𝑉𝑉𝑉𝑛𝑛 = 𝐶𝐶 (1)

In Eq. 1, n and C are coefficients which depend on the tool-
workpiece combination. The constant C is defined as the 
cutting speed required to obtain a tool life of 1 min. Figure 1 
shows the Taylor-tool life model fit to the experimental tool life 
data shown in Table 1. The Taylor tool life constants were 
determined as n = 0.363, and C = 675.7 m/min. The tool life at 
the experimental spindle speeds was modeled as a normal 
distribution. The mean, denoted by tm, and the standard 
deviation, denoted by ts, was calculated from the three 
experimental test results at each speed shown in Table 1. 

The experimental results were used to simulate shop floor 
data as follows. First, the tool life value at the selected cutting 
speed was sampled from the normal distribution determined 
from the three experimental test results shown in Table 1. 
Second, the tool replacement time for wear measurement was 
generated by a uniform random sample from the interval [tm -
3× ts, tm + ts]. The upper limit for the interval was limited to 
one standard deviation above the mean tool life because tool 
change in a production environment is typically conservative, 
where the tool is replaced before tool wear exceeds the 
threshold wear limit. Third, the tool life sample was compared 
to the tool replacement time sample. If the tool replacement 
time was less than the tool life, the tool was considered not 
worn (class 0). Otherwise, the tool was worn (class 1). Figure 
2 shows 30 data points (10 at each test spindle speed), where
blue denotes class 0 and red denotes class 1. As seen in Fig. 2, 
the data has more points where the tool is not worn (21) than 
when the tool is worn (9). This is representative of data 
collected from the production environment. The simulated data 
is not perfectly separable because the class 0 and class 1 data 
points overlap. This accounts for the tool life uncertainty
observed in Table 1. 

Table 1. Experimental tool life results.

Test # 149.6 m/min 
(2500 rpm)

299.2 m/min 
(5000 rpm)

448.9 m/min 
(7500 rpm)

1 50.1 min. 8.5 min. 2.6 min.

2 68.5 min. 11.5 min. 3.2 min.

3 72.0 min. 9.5 min. 3.3 min.

Figure 1. Taylor tool life fit to the experimental tool life data.

Figure 2. 30 simulated data points; blue denotes tool has not worn (class 0) and 
red denotes tool is worn (class 1).
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3. Logistic classification

When classifying data, the task is to decide class 
membership y' of an unknown data item x' based on a dataset
D = (x1, y1),….,(xm,ym) of m data points xi with known class 
membership yi [8]. For two classes, y is either 0 or 1. Logistic
classification calculates the probability of class membership 
given input data using the sigmoid function [9-10]. 

𝑝𝑝(𝑦𝑦 = 1|𝑥𝑥, 𝜃𝜃) = 1
1 + 𝑒𝑒−𝑔𝑔(𝑥𝑥)

𝑔𝑔(𝑥𝑥) = 𝜃𝜃0 + 𝜃𝜃1𝑥𝑥1 + 𝜃𝜃2𝑥𝑥2 + ⋯ 𝜃𝜃𝑛𝑛𝑥𝑥𝑘𝑘 (2)

In Eq. 2, p is the probability, k is the number of input features
x, y is the class membership, and θn are the logistic model 
parameters, where g(x) is a linear combination of the k input 
features. The decision boundary between the two classes 
satisfies the equation g(x) = 0 giving p(y = 1 | x, θ) and p(y = 0 
| x, θ) equal to 0.5. The logistic model parameters θ are learned 
using the input data by minimizing the cost function for the 
logistic model [9-10]. The data shown in Fig. 2 was used to 
train a logistic classification model; the inputs to the model 
were cutting speed, V, and tool replacement time, t, and the 
corresponding labeled class membership for tool wear (0 or 1). 
In this study, the logistic classification fit was performed in 
Python using the Scikit-learn library [11-12]. Since the logistic 
classifier is linear, regularization was not used in training the 
model. Figure 3 shows the probability of worn tool (class 1)
(left) and the decision boundary separating the two classes 
(right) from the trained logistic model. As seen in Fig. 3, the 
linear logistic classifier cannot capture the non-linear behavior 
of tool life with cutting speed. To enable non-linear 
classification using the logistic classifier, a log-transformation 
of input features was performed to mimic the behavior of tool 
life described by the Taylor tool life equation. With this 
transformation, the classifier’s decision boundary is linear in 
the logarithmic space and non-linear in the original space.
Figure 4 shows the non-linear decision boundary resulting from 
the log-transformation of the input features. Note that since the 
data is not perfectly separable, the predicted decision boundary 
finds the best fit for the given dataset. 

4. Model interpretability

Machine learning (ML) models are generally considered
“black box” where the ML model provides the relationship, but 
its structure is not interpretable by humans. As noted in Section 
3, the input features (cutting speed and tool replacement time)
were transformed into the log-space. Recall that tool life is 
given by the decision boundary between the two classes which 
satisfies the equation g(x) = 0 as shown in Eq. 2. The logistic 
decision boundary can be rearranged as shown in Eq. 3 and Eq. 
4.

𝜃𝜃0 + 𝜃𝜃1 log(𝑉𝑉) + 𝜃𝜃2log(𝑡𝑡) = 0 (3)

log(𝑡𝑡) = − 𝜃𝜃1
𝜃𝜃2

log 𝑉𝑉 − 𝜃𝜃0
𝜃𝜃2

(4)

Taking the logarithm of Eq. 1 (Taylor tool life equation) and 
rearranging the terms gives:

log(𝑉𝑉) + 𝑛𝑛log(𝑇𝑇) = log(𝐶𝐶) (5)

log 𝑇𝑇 = − 1
𝑛𝑛 log 𝑉𝑉 + log 𝐶𝐶

𝑛𝑛 (6)

Figure 3. Probability of class 1 (left) and the decision boundary (right) from 
the logistic classifier model.

Figure 4. Probability of class 1 (left) and decision boundary (right) from 
logistic classifier model with log-transformation of the input features.

Comparing Eq. 4 and Eq. 6, the logistic classification model 
parameters may be directly related to the Taylor tool life 
coefficients. This provides the desired interpretability for the 
logistic classification model. To illustrate the approach, the 
logistic model parameters from the fit to the log-transformed 
features, shown in Fig. 4, were θ0 = -140.3, θ1 = 21.4, and θ2 = 
8.1.  The logistic model parameters were converted into the 
equivalent Taylor tool life coefficients using Eq. 4 and Eq. 6 as 
nlogistic = 0.378, and Clogistic = 704.0 m/min. Figure 5 shows a 
comparison between the Taylor tool life fit and the logistic 
classification decision boundary trained using data shown in 
Fig. 2. 

Figure 5. Comparison between the Taylor tool life fit and the logistic 
classification decision boundary.
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The input data shown in Fig. 2 was generated by randomly 
sampling tool life and the tool replacement time from the 
experimental results modeled as a normal distribution. To 
evaluate the influence of input data on logistic classification 
and the equivalent Taylor tool life coefficients, a Monte Carlo 
simulation was performed, where 10 input data points at each 
experimental cutting speed (30 total) were generated multiple 
times using the procedure described in Section 2. The 
simulated data was used to learn the logistic model parameters 
and the equivalent Taylor coefficients from the logistic 
parameters. Figure 6 shows the histogram of nlogistic and Clogistic 

from the Monte Carlo simulations. The distribution of the 
coefficients implies that the logistic model results are 
dependent on the nature of the input data. To illustrate, Fig. 7 
shows the logistic classification prediction for a sample input 
data from a single Monte Carlo execution. The equivalent 
Taylor tool life coefficients are nlogistic = 0.312, and Clogistic = 
628.1 m/min. The logistic model prediction deviates 
substantially from the Taylor tool life fit at 149.6 m/min. This 
is because class 1 data points were not recorded at 149.6 m/min. 
In a production environment, the problem of imbalanced data 
can be addressed by generating synthetic data using expert 
opinions, user experience, or extrapolating wear measurements
in time. The Monte Carlo simulation was repeated for 20, 50, 
100, and 250 measurements at each cutting speed. Table 2 
shows the results for mean and standard deviation of the 
equivalent Taylor tool life coefficients from the trained logistic 
model parameters. As seen from Table 2, the results converge 
to nlogistic = 0.363, and Clogistic = 678.5 m/min, which are 
different than the least squares Taylor tool life values (n = 
0.363, and C = 675.7 m/min) due to the differences in the cost 
function for the logistic model. As seen from Table 2, the
logistic classification approach can be effectively used to 
model tool life in a production environment with binary 
information (tool worn and tool not worn).

Figure 6. Histogram of the calculated Taylor tool life coefficients from the 
trained logistic model parameters.

Figure 7. Probability of class 1 (left) and decision boundary (right) from 
logistic classifier model with log-transformation of the input features.

6. Conclusions

A logistic classification approach for modeling tool life in a 
production environment using shop floor data was presented. 
The input data was simulated using tool life experiments and 
divided into two classes: class 0 for tool not worn and class 1 
for tool worn. A logistic classification model was fit to the data, 
where a log-transformation of input features was performed. A 
method to transform logistic model parameters into the 
equivalent Taylor tool life coefficients was presented. This 
provided interpretability for the logistic classification model.

Table 2. Equivalent Taylor tool life coefficients from logistic model parameters 
as a function of the number of data points from the Monte Carlo simulation; 
the values in parenthesis are the mean and standard deviation, respectively. 

Data # nlogistic Clogistic  (m/min)

30 (0.363, 0.0201) (681.0, 49.0)

60 (0.362, 0.0089) (676.0, 15.4)

150 (0.364, 0.0058) (680.4, 10.9)

300 (0.364, 0.0040) (678.7, 7.5)

750 (0.363, 0.0026) (678.5, 4.7)
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