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Process Damping Identification
Using Bayesian Learning and
Time Domain Simulation
Process damping can provide improved machining productivity by increasing the stability
limit at low spindle speeds. While the phenomenon is well known, experimental identifica-
tion of process damping model parameters can limit pre-process parameter selection that
leverages the potential increases in material removal rates. This paper proposes a
physics-informed Bayesian method that can identify the cutting force and process
damping model coefficients from a limited set of test cuts without requiring direct measure-
ments of cutting force or vibration. The method uses time-domain simulation to incorporate
process damping and provide a basis for test selection. New strategies for efficient sampling
and dimensionality reduction are applied to lower computation time and minimize the effect
of model error. The proposed method is demonstrated, and the identified cutting and
damping force coefficients are compared to values obtained using machining tests and
least-squares fitting. [DOI: 10.1115/1.4064832]
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Introduction
Process damping is a phenomenonwhere amachining process dis-

sipates vibrational energy through the impact of the tool and work-
piece [1]. This energy dissipation can increase the stability limit
and improve machining productivity, particularly at low spindle
speeds. Various models have been proposed to predict the effect of
process damping on the machining process [2–7]. These methods
apply process damping coefficients which depend on the workpiece
material and the tool’s cutting-edge geometry and enable the selec-
tion of increased stable depths of cut at low cutting speeds.
Several approaches for identifying the process damping coeffi-

cients have been proposed. Altintas et al. directly measured the
coefficients using a piezoelectric fast tool servo to oscillate the

tool relative to the workpiece at selected oscillating frequencies
and amplitudes, and measured the cutting force components with
a dynamometer [2]. Tyler et al. determined the process damping
coefficient by performing least-squares fitting to a set of stable
and unstable cutting tests at low spindle speeds [3]. Budak et al.
determined the process damping model by recording the tool’s
vibration with a laser vibrometer and performing energy analysis
[4,5]. Sellmeier et al. performed planning cuts by fixing the
spindle and oscillating the crossfeed axis. They measured the result-
ing indentation force to establish the model [6]. As an alternative,
Tuysuz et al. described an algorithm for analytically predicting
the process damping based on the cutting-edge geometry [7].
Bayesian inference has recently been proposed as a method to

predict milling stability and the underlying system parameters,
including the frequency response function (FRF) and cutting
force model. These machine learning approaches begin with a prob-
abilistic guess about the shape of the stability map and iteratively
update it based on the results of cutting tests. This method was
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first implemented by Karandikar et al. using a non-physics-
informed method which updated the probabilistic stability map
based on proximity to stable/unstable test results [8,9]. While this
approach can find the cutting parameters with the highest material
removal rate (MRR), it does not provide new information about
the underlying system parameters. Several authors have recently
proposed physics-informed Bayesian learning models which
update not only the probabilistic stability map but also the underly-
ing uncertainties about the FRF and cutting force models [10–14].
These approaches can converge in a smaller number of cutting
tests compared to the non-physics-informed method [12]. However,
the methods presented thus far have three significant limitations.
First, the previous methods have used approximate stability

models which linearize the process dynamics. References [11–13]
utilized the zero-order approximation (ZOA) frequency domain
stability model [15]. This method is computationally efficient, but
offers reduced accuracy for low radial immersions and does not
include process damping or variable flute spacing. Chen et al.
employed a semi-discretization method, which utilizes Floquet
theory to determine stability and can incorporate additional model
complexities [10]. Because semi-discretization is more computa-
tionally expensive than the frequency domain stability solution,
Chen trained a surrogate machine learning model to approximate
the semi-discretization solution and reduce the computation time.
Second, previous work has utilized Markov Chain Monte Carlo

(MCMC) sampling algorithms to draw samples from the posterior
distribution. These methods create a chain of correlated samples
by randomly walking around the posterior distribution. MCMC
methods are well-suited for exploring complex high-dimensional
probability distributions since they naturally concentrate sampling
in high-probability regions of the target distributions [16]. However,
they have several disadvantages. MCMC implementation can be
highly complex, and it is difficult to design optimal samplers. As of
this writing, every physics-based Bayesian stability paper has uti-
lized a different MCMC sampler [9–12], and there has been no
direct comparison to determine which is the most efficient. The
most advanced MCMC samplers exploit knowledge about the tar-
get distribution to achieve efficient sampling, but these methods
are generally difficult to apply to stability algorithms. For example,
the Hamiltonian Monte Carlo algorithm utilizes the gradient of
the target distribution to improve efficiency, but there is no closed-
form solution for its application to stability maps [16]. MCMC
methods are also difficult to parallelize efficiently. While there are
a variety of methods for parallelizing the samplers [17], these
methods still impose parallelization overhead which makes it diffi-
cult to scale the MCMC approach to utilize high-performance com-
puting resources.
Third, no prior work has evaluated the ability of the Bayesian

methods to converge to the true cutting force model and system
FRF solely from stability test data. Instead, these efforts have
focused on stability map convergence [10,11] and the identification
of high MRR cutting parameters [12,13]. Ahmadi et al. compared
the posterior distribution to tap testing data during their study on
Bayesian identification of turning dynamics [14]; however, their
updating method required tool vibration measurement during
machining, which is not feasible for production environments.
Since stability maps may not be one-to-one (i.e., multiple sets of
input parameters may produce similar stability maps), stability
map convergence does not guarantee that the cutting force model
and FRF have converged to their true values. This limits the gener-
alizability of the posterior solution. For example, the cutting force
model learned in one setup could ideally be used to generate accurate
stability maps for other setups, such as changing the tool extension
length or increasing the radial depth of the cut. If an incorrect
force model or FRF is identified, this may not be true.
This work presents a Bayesian updating algorithm which can

identify both the process damping and cutting force model from a
set of cutting experiments. The algorithm is highly flexible and
can be adapted to different types of cuts and process damping
models. The work has four novel contributions.

• The Bayesian stability updating method is extended to incor-
porate time-domain simulation (TDS). TDS utilizes numerical
integration to solve the instantaneous cutting forces and vibra-
tions in discrete time-steps [1]. TDS is well-suited to include
complex effects such as process damping [18], accurately
incorporates process nonlinearities, and can provide additional
information about the machining process. However, TDS is
computationally expensive compared to the ZOA, requiring
computation times that are at least 1000× higher.

• A grid-based sampling method and updating strategy is pro-
posed instead of the Markov Chain Monte Carlo (MCMC)
methods used in prior work. Grid-based sampling is computa-
tionally less efficient since the sample is not concentrated in
high-probability regions, but is trivially parallelizable and
enables the stability maps to be precalculated so that the Baye-
sian updating can be performed quickly. As such, it is
well-suited for iterative Bayesian updating and can easily
leverage high-performance parallel computing resources.

• A divided training method is proposed which uses subsets of
the data to learn different system parameters. This approach
reduces the effect of model errors by training each variable
using the most reliable data and can provide dimensionality
reduction for decreased computing time.

• A comparison between the posterior for the system parameters
and measured values is presented to evaluate how well the
Bayesian approach was able to converge to the underlying
values.

The paper is organized as follows. The Proposed Method section
presents the TDS algorithm, cutting force and process damping
models, and the Bayesian updating method. The Results section
demonstrates the approach using a set of milling tests. The Discus-
sion section analyzes the results and discusses the advantages and
limitations of the new method. Finally, the Conclusion section sum-
marizes the study.

Proposed Method
This section describes the proposed method. First, the TDS and

stability classification methods are described. Next, the proposed
iterative Bayesian updating scheme is detailed. The flowchart
shown in Fig. 1 provides an overview of the process flow.

Time-Domain Simulation. TDS combines numerical integra-
tion with a mechanistic force model to estimate the time-dependent
tool (and workpiece) vibration and cutting force components. After
the simulation is complete, the vibration and force signals can be
analyzed to classify the cut as stable or unstable. TDS methods
have been widely studied and are easily extended to include
complex effects such as process damping [18], variable flute
spacing tools [19], and low radial immersion milling [20].
The TDS algorithm is outlined in Fig. 2. As TDS methods have

been well-documented in the literature, this paper does not present
detailed step-by-step instructions (for further details and example
code, see [1]). Instead, this section examines the model choices nec-
essary to use TDS for Bayesian learning. Specifically, the cutting
force and process damping models are presented, followed by the
method for classifying simulations as stable or unstable and calcu-
lating the limiting axial depth.
The cutting force required to shear a chip from the workpiece can

be projected into the tangential and normal directions on each flute.
These force components Ft , Fn (illustrated in Fig. 3) are defined in
Eqs. (1) and (2), where Ks is the specific cutting force coefficient
(N/m2), which describes how much force is required to cut away
a chip of unit area, β is the cutting force angle (rad), which describes
how that cutting force is oriented relative to the surface normal
direction, h is the chip thickness (m), and db is the chip width
(m) for a differential element of the flute’s cutting edge. For com-
parison, the alternate cutting force component representations
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using the tangential, kt , and normal, kn, direction coefficients are
also shown. Edge coefficients are not included in this study since
they have a secondary effect on process stability (i.e., they are
modeled as proportional to chip width only and not the time-
dependent chip thickness). Note that the cutting force is set equal
to zero when h < 0 since the tool is not engaged with the workpiece.
TDS is well-suited for modeling this nonlinearity, which cannot be
captured in linear approximations such as the frequency domain sta-
bility algorithms.

Ft =
Ks sin (β)h db = kth db h ≥ 0

0 h < 0

{
(1)

Fn =
Ks cos (β)h db = knh db h ≥ 0

0 h < 0

{
(2)

The process damping force, on the other hand, is a dissipative
force caused by interference between the machined workpiece
surface and the cutting tool’s clearance face. The process
damping effect is modeled here using the nonlinear wavelength-
dependent model introduced in Ref. [2]. Let V = Ωd·2π

60 (m/s) be
the tangential velocity of the cutting tool’s surface due to spindle
rotation (where Ω is spindle speed in rpm and d is the tool diameter
in m), ẋ and ẏ be the relative vibrational velocities (m/s) between the
tool and workpiece in the X and Y directions, and cn (N/m) be a
process damping coefficient. The normal direction process
damping force FD(N) on a single flute element can then be calcu-
lated using Eq. (3), where ϕ is the tool rotation angle (rad).
Similar to the cutting force model, the process damping force is
zero when the tool is not engaged with the workpiece. Note that
there have been several other proposed damping models and any
of them can be implemented in the proposed Bayesian framework
(e.g., the indentation volume model [18]).

FD = −cn db
ẋ sin (ϕ) − ẏ cos (ϕ)

V
h ≥ 0

0 h < 0

⎧⎨
⎩ (3)

Stability classification is completed using once-per-flute sam-
pling from the simulated displacement signal x(t) [21]. Let xi be
the ith sample according to Eq. (4), where τ is the tool rotation (rad),

Nt is the number of flutes on the cutting tool, and i = 0, 1, 2, . . . The
N samples are then used to calculate the stability metric m using
Eqs. (4) and (5). In an ideally stable cut, the displacement repeats
with each new flute passage and m = 0. This is repeated for all pos-
sible different cutter rotations lags τ = {0:2π/Nt} since the peak m
value may not occur at the same rotation for every set of cutting
parameters (see Fig. 4). If any of the calculated values exceed a
preset stability cutoff ofm = 1 μm, then the cut is classified as unsta-
ble. Otherwise, it is classified as stable. In summary, the approach
confirms that the milling operation exhibits forced vibration,
which is labeled as a stable milling condition. In forced vibration,
the force and corresponding vibration repeat with each tooth
passage, so sampling the displacement once-per-flute and calculat-
ing the difference between adjacent samples confirms stable milling
when the value is (ideally) zero. When self-excited vibration occurs
during regenerative chatter, a new frequency (the chatter frequency)
is introduced and the samples do not repeat with each tooth passage.
The metric defined in Eq. (5) is sensitive to this variation from one
tooth to the next. The cutoff ofm = 1 μm is selected to avoid numer-
ical noise, while establishing a quantitative value for separating
stable and unstable (chatter) conditions automatically.

xi = x
60 i

ΩNt
+
60 τ

2πΩ

( )
, i = 0, 1, 2, . . . (4)

m =
1
N

∑N
i=1

|xi − xi−1| (5)

Two different stability functions are necessary for the Bayesian
updating. The first function S(θ, Ω, b) tests stability at a single
spindle speed and axial depth of cut b for a given set of system
parameters θ, returning 1 if the simulation is stable and 0 if the
simulation is unstable. This is determined by checking the result
of a single time-domain simulation. The second function
blim(θ, Ω) calculates the limiting axial depth for a given spindle
speed and set of system parameters. Because TDS does not calcu-
late an explicit limiting axial depth, as with the frequency domain
algorithm, blim is defined as the midpoint between the two simula-
tions where the cut transitions from stable to unstable (Fig. 5(a)).
There are two cases to consider. First, if there were no unstable sim-
ulations at a given spindle speed, then blim(θ, Ω) is undefined. As
such, it is important to run simulations at greater axial depths
than test cuts will be performed. Second, due to period-n

Fig. 1 Flowchart showing the proposed method for Bayesian updating and variable separation
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bifurcations that can occur in milling [22], there can sometimes be
multiple stable/unstable transitions at a given spindle speed which
result in multiple blim values, illustrated in Fig. 5(b). These bifurca-
tions are susceptible to small changes in system parameters and can
occur for individual sampled stability maps, even if the experimen-
tal test cuts do not demonstrate bifurcations. Therefore, all transi-
tions must be returned by the blim function so the Bayesian
updating can incorporate this behavior.

Establishing and Sampling the Prior. Let θ be a variable con-
taining all relevant system parameters necessary to define the work-
piece/machine/spindle/tool holder/cutting tool system, including
the tool tip FRF, process damping coefficient, and cutting force
model parameters. θ can take various forms depending on what

variables are known and what physics models are used. TDS
requires a set of modal parameters, so to use TDS θ should be a
vector containing a cutting force model and a set of modal param-
eters, e.g., θ = {Ks, β, fn, k, ζ}. Alternatively, the FRF could be
calculated using receptance coupling substructure analysis [23],
where θ would contain information about the coupling stiffness
and damping, tool and holder models, and spindle/machine FRFs.
The prior distribution Pprior(θ) is an initial probabilistic guess

about those system parameters based on the information that is
already known, describing how likely it is that a specific set of
values for θ represents the true system. The prior can be established
using a variety of techniques. Here, the prior is constructed using
the author experience with similar work materials and setups.
Previous work has drawn samples from the prior using Monte

Carlo sampling and then used MCMC sampling to draw samples
from the posterior [10–14]. Both these methods create samples
with equal weight and the density of the target distribution is
denoted by the concentration of samples. However, these samples
are difficult to update to represent the posterior, requiring the
MCMC sampler to be run again. Since this requires calculating
new samples and, thus, new stability maps, it is not suitable for iter-
ative Bayesian updating with time-consuming stability algorithms
such as TDS.
Instead, samples are selected from a fixed grid pattern. Each

sample contains both the sampled values θ and the precalculated
TDS stability maps. This method may require computing more
samples than the MCMC approach since samples are not concen-
trated in regions of high probability, but still has several significant
advantages versus MCMC. First, it is straightforward to parallelize
stability map calculations across multiple cores or computers since
each sample is calculated independently. Second, the Bayesian
updating is performed on the probability associated with each
sample, rather than by drawing new samples and calculating a
new stability map. As such, the grid integration method is
well-suited for iterative Bayesian updating with computationally
expensive TDS. Specifically, the TDS results can be precalculated
using a high-performance multi-node computing cluster, and the
Bayesian updating is performed by looping through all the
samples to update the probabilities and calculated the updated dis-
tributions. Calculation times for this process are presented in the
Results section.
After all the stability maps have been calculated, they are used to

generate a probabilistic stability map. Previous work using MCMC
sampling generated samples with equal weight and could calculate
the probability of stability as the percentage of samples which
predict that a given set of cutting parameters would be stable
using the stability prediction function (i.e., for N samples, the prob-
ability of stability was PS(Ω, b) = 1

N

∑N
i=1 S(θi, Ω, b)). In this study,

each sample has a different weight based on its probability, and the
probability of stability for a given point PS(Ω, b) is calculated by
integrating S(θ, Ω, b) using Eq. (6). An example probabilistic sta-
bility map is displayed in Fig. 6. The grayscale indicates the

Fig. 2 Flowchart for time-domain simulation. This simulation
process is repeated for each set of cutting parameters to be
tested.

Fig. 3 Normal and tangential force directions on the cutting tool
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probability of stability, where brighter regions are more likely to be
stable and darker regions are more likely to chatter.

PS(Ω, b) =


θPprior(θ) S(θ, Ω, b) dθ (6)

Bayesian Updating. Once the tests have been selected, per-
formed, and classified, their results are used to define the posterior
distribution. Let α be a variable containing the results of the ith test,
including the tested spindle speed αΩ and axial depth αb, whether
the cut was stable or unstable, and any other observed information

about the cutting test (e.g., chatter frequency). The posterior distri-
bution P(θ|α) is calculated using Bayes’ theorem, as shown in Eq.
(7). In this equation, P(α|θ) is the likelihood function which states
how likely the test result α is for a given set of parameters θ and c is
a normalizing constant that ensures



θp(θ|α) dθ = 1. This constant

does not have an analytical solution for this case. The non-
normalized probability distribution p(θ|α) is therefore used (Eq.
(8)) and normalized numerically during the updating process. If
more than one cutting test has been run, then the posterior for the
first test serves as the prior for the next, giving the general form
shown in Eq. (9).

P(θ|α) = Pprior(θ) P(α|θ)
c

(7)

p(θ|α) = P(θ|α) · c = Pprior(θ) P(α|θ) (8)

p(θ|α1:n) = Pprior(θ)
∏n
i=1

P(αi|θ) (9)

The likelihood function here is the same as used in Refs. [12,13],
shown in Eqs. (10) and (11), where Δb is the error in the stability
limit and σb is a stability error hyperparameter (larger values for
σb allow for larger errors in stability limit). If θ correctly predicts
the cut stability, then Δb = 0 and P(α|θ) = 1. If the θ prediction is
incorrect, then 0 ≤ P(α|θ) < 1, where larger errors give smaller
likelihoods according to a Gaussian dropoff (Fig. 6(b)). For the spe-
cific case where there is an unstable cut and blim(θ, αΩ) is undefined

Fig. 4 Stability classification example: (a) stability map calculated using time-domain simula-
tion, and (b) once-per-flute standard deviations for a TDS at 8000 rpm, 1.3 mm axial depth. This
example exceeds the m=1 µm threshold and is classified as unstable.

Fig. 5 (a) blim is determined from a set of time-domain simulations. blim is undefined between
11,000 and 14,000 rpm since there were no unstable simulations at those spindle speeds. (b) Mul-
tiple values for blim due to system nonlinearities, with specific nonlinear regions boxed.

Fig. 6 Probabilistic stability map generated through grid
sampling
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since no simulations at that spindle speed were unstable, then P(α|θ)
is assumed to be 0. This is not an issue with stable cuts since the
time-domain simulation at b = 0 will have zero cutting force and
is always stable. If there are multiple blim values for the given
spindle speed, then the blim value closest to αb is selected.
Figure 7 displays Δb and the Gaussian likelihood function for
three representative σb values.

P(α|θ) = exp −
Δb

σb

( )2
( )

(10)

Δb =
0 S(θ, αΩ, αb) = αStable

min (|blim(θ, αΩ) − αb|) S(θ, αΩ, αb) ≠ αStable
∞ blim(θ, αΩ) is undefined

⎧⎨
⎩ (11)

The likelihood function can be extended to include additional
terms, such as chatter frequency [12]. For this paper, chatter fre-
quency is omitted since it is not significantly affected by the
cutting force model or process damping, and thus does not signifi-
cantly accelerate the learning process.
Once the posterior probability function has been defined, it is

evaluated for each calculated sample. To maintain numerical accu-
racy, this should be done using the logarithm of the non-normalized
probability log ( p(θ|α1:n)) (see Eq. (12)). The logarithmic probabil-
ities are offset to ensure that the highest probability samples are cen-
tered in the highest resolution area for floating point calculations,
forming a temporary non-normalized distribution p̃(θ|α1:n) (Eq.
(13)). The normalizing constant c is calculated (Eq. (14)), and the
final normalized distribution P(θ|α1:n) is calculated as follows
(Eq. (15)):

log ( p(θ|α1:n)) = log (Pprior(θ)) +
∑n
i=0

−0.5
Δb i

σb

( )2

(12)

p̃(θ|α1:n) = exp (log ( p(θ|α1:n)) −max (log ( p(θ|α1:n)))) (13)

c =


θexp(log ( p̃(θ|α1:n))) dθ (14)

P(θ|α1:n) = 1
c

p̃(θ|α1:n) (15)

The normalized distribution is used to calculate an updated prob-
abilistic stability map using Eq. (6). Additionally, the marginal
distribution for each subvariable is calculated and used to determine
the posterior mean and standard deviation for each variable. Let θi
be the ith element of the θ vector. The marginal distribution
P(θi|α1:n) can be calculated by integrating across all the other

dimensions of θ (Eq. (16)) and the mean and standard deviation cal-
culated by integration (Eqs. (17) and (18)).

P(θi|α1:n) =


θj , j≠i

P(θ|α1:n) dθj (16)

μ(θi|α1:n) =


θi
θi · P(θi|α1:n) dθi (17)

σ(P(θi|α1:n)) =
�������������������������������������

θi
(θi − μ(θi|α1:n))2 · P(θi|α1:n) dθi

√
(18)

Separated Learning. Prior Bayesian stability models treated all
test cuts identically and attempted to fit a global stability map to the
data simultaneously. However, cutting tests in different areas of
the stability map may provide information on different aspects of
the system. For example, high spindle cutting tests provide very
little information on process damping since the increased stability
is generally only significant at low spindle speeds. This is naturally
accounted for in the Bayesian updating model: if a variable has little
effect on the stability map close to a cutting test, then that test will
not significantly alter the posterior distribution. However, the
inverse is not true: low spindle-speed cutting tests are affected by
both the process damping and cutting force models. Specifically,
modifying either can affect the local stability limit. Increasing
process damping increases the stability limit, while decreasing
cutting force model coefficients likewise increases the stability
limit. This is problematic since process damping models can have
local errors even if they are broadly accurate [3,18]. This error
affects the posterior distributions for the stability map, process
damping model, and cutting force model.
Rather than learning using the entire data/parameter domain

simultaneously, Bayesian updating is separated here into discrete

Fig. 7 (a) Demonstration of how Δb is calculated for an incorrectly predicted stability test.
(b) Likelihood functions using the Gaussian drop-offs for different stability error
hyperparameters.

Fig. 8 Maximum-likelihood estimator
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subdomains which each learn specific variables from a subset of the
cutting tests. This provides the most reliable information for the
selected subdomain. In this study, the cutting force model is
learned using only cutting tests conducted at high spindle speeds,
with process damping fixed at zero. The posterior maximum-
likelihood estimator (MLE) is established for the cutting force
model variables Ks and β, where the MLE is the value in the poste-
rior with the highest probability using Eq. (19) with the reduced
model θ = {Ks, β}. Figure 8 shows a univariate example for the
specific cutting force coefficient where the MLE for
Ks ≈ 3000N/mm2. These values for Ks and β are then used to cal-
culate new stability maps which incorporate the process damping
uncertainty for cn. Finally, the cn distribution is updated using the
low-speed cutting tests.

MLE(θ) = argmax
θ

(P(θ)) (19)

This method has two advantages compared to learning with all
variables simultaneously. First, since each variable is learned
using those cutting tests which provide the most accurate informa-
tion, it reduces the impact of model errors and bias on the learning.
Second, it enables the number of variables to be reduced signifi-
cantly. Without this approach, the computational requirements
scale as N = mn, where N is the total number of required samples,
m is the number of samples per variable, and n is the number of var-
iables used. The demonstration shown in the Results section utilizes
three variables (Ks, β, and cn) and 40 samples per variable. When
learning all variables simultaneously (hereafter referred to as “com-
bined learning”), a total of 403 = 64,000 samples are required.
Using the separated learning approach, only 402 + 40 = 1640
samples must be calculated.

Results
Setup Description. The cutting tests reported by Tyler and

Schmitz are used to demonstrate the proposed approach [3]. They
ran a series of cutting tests on a 1018 steel workpiece mounted
on a single-degree-of-freedom flexure setup and used least-mean
squares fitting to fit a frequency domain process damping model
(Fig. 9). These cutting tests demonstrate process damping,
showing an exponential increase in stability limit as the spindle
speed decreases. The cutting tool was a 19.05 mm single insert
endmill with zero helix angle (Cutting Tool Technologies model
DRM-030), and all up-milling cuts were performed using 50%
radial immersion and a feed per tooth of 0.05 mm. The flexure
dynamics were measured by tap testing and are summarized in
Table 1.
These results were used for this study for three reasons. First, the

system is computationally efficient to model with TDS since a
straight flute tool with one insert does not need to be discretized

into multiple segments. Second, the flexure dynamics were mea-
sured by tap testing and are thus known with low uncertainty.
While tool tip FRFs may shift at high spindle speeds due to
changes in bearing dynamics [24], workpiece dynamics are not
subject to this variation. Instead, the flexure dynamics will change
as the material is removed from the workpiece, but this effect is
easier to predict and quantify than the spindle dynamics shifts.
The largest cut conducted in the reference paper had an axial
depth of 3 mm, a radial depth of 9.525 mm, and a total cut length
of approximately 125 mm, removing roughly 30 grams of material.
This is much lower than the modal masses (Table 1) so the FRF
does not significantly shift and can be treated as a constant to
reduce the number of updating variables. Third, the paper measured

Fig. 9 Cutting test setup and results from Ref. [3]: (a) flexure test setup; (b) high spindle-speed cutting tests; (c) low spindle-
speed cutting tests with fit process damping stability map

Table 1 Flexure dynamics determined by tap testing [3]

Direction fn (Hz) k (N/µm) ζ m (kg) c (N-s/m)

X (feed) 228 2.77 0.063 1.35 244
Y 1482 174 0.037 2.01 1380

Fig. 10 Prior distributions for the three variables Ks, β, and cn.
The on-diagonal frames show the marginal distribution for
each variable, with the vertical line representing the reference
value from [3] and other curve representing the prior. The off-
diagonal frames show the conditional distribution between
each pair of variables, with brighter colors representing high-
probability densities.
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and reported values for the cutting force and process damping
models which can be used as a benchmark to compare with the pos-
terior values. The cutting force model was quantified using a piezo-
electric cutting force dynamometer to measure the force for known
cutting conditions, while the process damping coefficient was cali-
brated by least-squares fitting to stability tests.
The prior was established based on the author’s experience. Ks

and β both used normal distributions, with Pprior(Ks) =
N (μ = 2500, σ = 200)N/mm2 and Pprior(β)=N (μ=65,σ=5)deg.
The normal process damping term cn had an exponential prior
Pprior(cn)=E(λ=75000)N/m using Eq. (20).

E(λ)=
λexp(−λx) x≥0

0 x<0

{
(20)

This is a long-tailed distribution which assigns a high probability
that cn is close to 0 (Fig. 10). The exponential distribution was
chosen for two reasons. First, it is difficult to predict the process
damping coefficient and, as such, it is not possible to select a mean-
ingful mean value for a normal distribution. Second, process
damping often does not have a significant effect on the stability
map, either because the cutter has a high clearance angle or
because milling operations are conducted at high spindle speeds,
so it is appropriate to select a prior which assumes that process
damping most likely does not have a significant effect on the stabi-
lity map. The prior assigns only a ∼1% probability that the process
damping is as high as the best-fit value from [3]. The three uncer-
tainties are combined to form a single multivariate distribution
θ = {Ks, β, cn}, where Pprior(θ) = Pprior(Ks) · Pprior(β) · Pprior(cn).

Combined Learning. The combined learning approach was
used to learn both the process damping and cutting force models
from all test points simultaneously. Stability maps were calculated

Fig. 11 Prior probabilistic stability map for the example setup from Ref. [3]: (a) low spindle-speed range, and
(b) high spindle-speed stability map

Fig. 12 Posterior stability maps for the combined updating: (a) low spindle-speed range, and (b) high spindle-
speed stability map

Fig. 13 Posterior distribution for Ks, β, and cn after updating
using the single-stage strategy. These follow the same notation
as Fig. 10 with the new lines in the diagonal plots representing
the posterior.
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for each sample using the ISAAC-NG high-performance computing
cluster at the University of Tennessee, Knoxville. Six nodes were
applied with Intel Xeon Gold 6248R processors [25]. The calcula-
tions were parallelized using the Slurm Workload Manager’s array
calculation functions, dividing the job into 24 equally sized
subjobs which each utilized twelve threads. Since each subjob uti-
lized only a fraction of a node, this allowed the Slurm scheduler to
backfill the jobs into idle time on the nodes, rather than having to
wait for entire nodes to be available for use. After all the subjobs
had been run, the results were concatenated to produce the final
set of stability maps. Forty samples were used for each variable
to give a total of 64,000 samples. Each stability map was calculated
at 96 different spindle speeds (increments of 50 rpm from 200 rpm
to 1200 rpm and increments of 250 rpm from 1500 rpm to
20,000 rpm) and 65 axial depths from zero to 4 mm, for a total of
4896 simulations per map. Each simulation was classified as
stable or unstable using a stability metric cutoff of m = 1 μm.
These calculations took approximately 4 h. This resulted in the
probabilistic stability map shown in Fig. 11.
The Bayesian updating was performed on a standard laptop and

took approximately one minute (Intel i7-10750H processor, paralle-
lized on six threads). Updating was performed using all 56 test cuts
reported in Ref. [3], resulting in the posterior probabilistic stability
map displayed in Fig. 12 and the parameter distributions shown in
Fig. 13. Table 2 in the Comparison section compares the prior and
posterior distributions. The posterior successfully identified the
presence of process damping. However, it failed to converge to
the experimental values for the underlying system variables due
to model error on the low-speed cutting tests, overestimating both
cn and Ks as explained in the Discussion section.

Separated Learning. The separated learning strategy using the
maximum-likelihood estimator was completed in two steps.
Figure 14 shows the posterior stability maps for the first step,
where process damping is assumed to be negligible so the cutting
force model can be learned from the high spindle-speed cutting
tests. Figure 15 shows the corresponding posterior distributions

for Ks and β. This step required calculating 1600 stability maps
and took less than ten minutes on the ISAAC computing cluster.
It is feasible that this number of stability maps could be calculated
using a high-power personal computer. Both Ks and β shift toward
their reference values. Since only six test cuts were performed at
high spindle speeds and because those test cuts were not selected
to maximize information gain, these values still had significant
uncertainty. Ks had an error of 5.5% between the posterior mean
and experimental value, while β had an error of 1.3%.
Figures 16 and 17 show the results from the second updating step

where the maximum-likelihood estimates for Ks and β are set as
fixed and new cutting tests are used to update the prior for cn.

Table 2 Comparison of prior and posterior uncertainties for each marginal distribution

Variable Prior Combined learning posterior
Separated learning
stage 1 posterior

Separated learning
stage 2 posterior

Reference
value

Ks (N/mm2) N (2500, 200) N (2970, 115) N (2671, 156) 2671 2531.0
β (deg) N (65, 5) N (60.2, 3.1) N (62.8, 3.9) 62.8 62.0
cr (N/m) E(75,000) N (411000, 30,500) N/A N (309000, 10,400) 330000

Note: N (μ, σ) is a fit normal distribution with mean μ and standard deviation σ, E(λ) is an exponential distribution with rate parameter λ.

Fig. 14 Posterior distributions after learning the cutting force model using the high spindle-speed cutting tests:
(a) closeup of the low spindle-speed range, and (b) high spindle-speed range

Fig. 15 Posterior distribution for Ks and β after the first sepa-
rated learning updating step
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This required calculating 40 stability maps, which was done on a
personal computer (laptop). This posterior converged to the exper-
imental value for cn, with an error of 6.4% and low uncertainty.

Comparison. This section compares the combined and sepa-
rated learning methods. Figure 18 shows the 50% probability
boundaries for each case. The prior is generally a poor match, incor-
rectly predicting stability results at low speeds as well as the test cut
at 5400 rpm. The posteriors for the combined and separate learning
algorithms are similar with only minor differences in stability
boundary. Both have successfully identified the presence of
process damping at low spindle speeds. However, the posterior dis-
tributions in Table 2 clearly show that the separated learning
method converged more accurately to the reference values from [3].

Comparison to MCMC Sampling. This section compares the
computational efficiency and accuracy of the proposed numerical
integration method to the parallel adaptive MCMC sampling
method used in Ref. [12]. The new sampler is designed to approx-
imate a target distribution in a small number of samples. This
approach first samples the prior distribution using Monte Carlo
sampling and then calculates the updated posterior distribution
using MCMC. While the framework does allow for parallelization,
it is not infinitely scalable and cannot practically be used with mul-
timode computing. As such, the MCMC sampling was evaluated
using a single node on the ISAAC cluster with 48 cores. Performing
the initial Monte Carlo sampling with 4000 samples took 3 h and
20 min. Based on this, calculating the posterior using the MCMC
sampler with a typical acceptance rate of 30–40% would take
between 8 h and 11 h.
Due to the computational expense, the accuracy is evaluated

using two trivariate distributions which resemble the prior and pos-
terior distributions obtained from the combined learning updating
and can be evaluated without the cost of calculating the stability
map. For ease of comparison, both MCMC and the integration
method use a total of 64,000 samples, representing the best case
for the MCMC sampler. The case shown in Fig. 19(a) and
Table 3 is based on the prior distribution. Here, the MCMC
sampler had an acceptance rate of ∼30%. Figure 19(b), and
Table 4 shows the case based on the combined learning posterior
distribution and had an acceptance rate of ∼40%. In general, the
MCMC output is somewhat noisy and slightly underestimates the
probability at the tails. Including more samples improves accuracy
but increases calculation time. However, there are a wide variety of
MCMC samplers available in the literature, which may perform
better or worse for specific applications. In contrast, the integration-
based method result is nearly indistinguishable from the nominal.
The slight divergence on the x2 distribution is due to the range

chosen for the integration: x2 was only evaluated between 55 and
75, resulting in a truncated normal distribution which has slightly
increased probability density near the mean.

Discussion
Results show that the system parameters were able to converge

close to the experimental values using the Bayesian approach.
This confirms the viability of the Bayesian approach for identifying
system parameters and suggests the potential for transfer learning.
For example, a cutting force model for a tool/workpiece combina-
tion can be learned on one machine tool and then re-used later,
e.g., if the cutting tool is transferred to a different machine. These
results also highlight the importance of intelligent test selection.
Even with six high spindle-speed cutting tests, there was still signif-
icant uncertainty about the true values of Ks and β since the cutting
tests were not selected to maximize information gain. Specifically,
only one of the high-speed tests significantly altered the posterior
distribution. One advantage of the Bayesian approach is that test
cuts can be iteratively selected based on the current uncertainties
about the system in order to maximize information gain. Prior
Bayesian-based approaches have either performed test cuts in a
grid pattern [10,11] or selected test cuts designed to identify high-
productivity machining parameters [8,9,12,13]. Future work will
investigate test selection strategies which focus on reducing uncer-
tainty in the underlying system variables.
Even after updating, the posterior stability map showed some

errors at low spindle speeds, with the stability boundary located
slightly above the 1.5 mm axial depth test cuts from 800 rpm to

Fig. 16 Posterior distributions after learning Ks and β after the second separated learning step using the low
spindle-speed cutting tests: (a) closeup of the low spindle-speed range, and (b) high spindle-speed range

Fig. 17 Distribution for cn after updating using the low spindle-
speed data. Distributions are not presented for Ks and β since the
maximum-likelihood estimators were used as fixed values after
the first updating step.
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1100 rpm (Fig. 16). This error is attributed to three sources. First,
while they were treated as fixed for this study, there is still some
uncertainty in the flexure dynamics obtained by tap testing, both
due to uncertainty in the tap testing [26] and the changes in dynam-
ics as the material is removed from the workpiece. Second, while
the Bayesian method applied here treats the stability boundary as
a sharp cutoff, there is usually some uncertainty about what
exactly qualifies as a stable or unstable cut. The in-process data
for the cutting tests in Ref. [3] are not available, and the results
were classified as stable or unstable without additional qualifying
information. Finally, inaccuracies in the process damping model
affect the fit. With only the single variable cn, it is not possible
for a stability map to exactly fit all experimental cutting tests.
Note that, even in the paper that published the original dataset
[3], there were several cutting tests which were not predicted by
the best-fit stability map (see Fig. 6(c)).

These model errors are currently a major limitation of the
physics-informed Bayesian learning approach. Using the physics-
based stability models to inform learning can enable the models
to efficiently converge and discover information about the underly-
ing system that cannot be identified by naïve approaches. However,
errors in the stability models can cause the physics model to fail to
converge to the ground truth for underlying system parameters or, in
extreme cases, cause the Bayesian updating to fail to identify the
correct stability map [13]. This can occur even when the models
are broadly accurate and experience only local errors. In contrast,
a learning method which is not constrained to the process physics
will necessarily be able to converge to the true stability boundary
given sufficient cutting tests [8]. However, this does not necessarily
provide new insight into the process behavior.
The integration-based method introduced here has both advan-

tages and disadvantages compared to the MCMC sampling

Fig. 19 Accuracy comparison between MCMC and numerical integration methods: (a) case
shown in Table 3, and (b) case shown in Table 4

Fig. 18 Posterior stability maps, comparing the 50% probability of stability boundary for the different
updating methods: (a) low spindle-speed region, and (b) high spindle-speed region
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approaches that have been applied in previous work. The grid sam-
pling approach enables stability maps to be precalculated, removing
the heavy computational load so that the Bayesian updating itself
can be performed in close to real time. This is particularly important
if iterative test cut selection is to be implemented, since MCMC
would require new sampling after each update in order to select
new test cuts. This is not computationally feasible when algorithms
such as TDS are used. In contrast, the integration approach updates
the probability associated with precalculated samples and can there-
fore be performed quickly, regardless of the computation time for
the selected algorithm, although this approach scales poorly as
the dimensionality of θ increases. Even with access to high-
performance computing resources, this becomes infeasible for
complex systems with many uncertainties.
This issue can be partly addressed by separating the Bayesian

updating into smaller subproblems with fewer variables. Here,
this separation was achieved using high and low-speed cutting
tests, but it can be accomplished in other ways with various data
sources. For example, if the goal is to learn the system’s natural fre-
quencies, cutting force model, and process damping model, then
the natural frequencies could be learned from the chatter frequen-
cies obtained from a microphone that records the machining
sound [12], the cutting force model could be learned from
spindle torque or dynamometer data, and the process damping
learned from binary stable/unstable classifications at low spindle-
speed cutting tests. This approach can significantly reduce the
number of required samples and the overall computation time.
However, since it does not consider the uncertainty for all variables
during each updating step, this approach must be used cautiously,
especially in cases where cutting tests have not been selected to
optimize information gain, and there is still significant uncertainty
remaining.

Conclusion
This study demonstrated for the first time that Bayesian learning

can identify both the stabilitymap and underlying system parameters
from a set of cutting tests. Novel sampling and updating strategies
were proposed to enable the use of computationally expensive stabi-
lity models. These methods were tested using experimental results
from the literature, and the updating results were found to closely
agree with measured values. It was demonstrated that the method
was able to learn a process damping model represented by a single
coefficient with no direct force or vibration measurements. It is
anticipated that the method can be extended to other learning appli-
cations in milling and, potentially, other manufacturing processes.
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Nomenclature
b = axial depth of cut
h = instantaneous chip thickness
m = once-per-flute stability metric
cn = normal direction process damping coefficient
FD = process damping force
Ks = specific cutting force coefficient

blim(θ, Ω) = limiting axial depths at a spindle speed for a set of
system parameters

x, y = tool/workpiece relative displacement in the X and Y
axes

ẋ, ẏ = tool/workpiece relative velocity in the X and Y axes
S(θ, Ω, b) = stability prediction for a given set of system

parameters, spindle speed, and axial depth
Ft , Fn = cutting force components in the tangential and

normal directions
α = a set of cutting test results
β = cutting force angle

Δb = stability error used to calculate the likelihood
function P(α|θ)

θ = a set of system parameters which can be used to
calculate a stability map

σb = stability error tolerance hyperparameter used in the
likelihood function

Ω = spindle speed
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