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Abstract
Milling is a key manufacturing process that requires the selection of operating parameters that provide efficient performance.
However, the presence of chatter, a self-excited vibration causing poor surface finish and potential damage to the machine
and cutting tool, makes it challenging to select the appropriate parameters. To predict chatter, stability maps are commonly
used, but their generation requires expensive data, making it difficult to employ these maps in industry. Therefore, there is a
pressing need for an approach that can accurately predict stability maps using limited experimental data. This study introduces
the new Encoder GAN (EGAN) approach based on Generative Adversarial Networks (GANs) that predicts stability maps
using limited experimental data. The approach consists of the encoder, generator, and discriminator subnetworks and uses the
trained encoder and generator to predict the target stability map. This versatile method can be applied to various tool setups
and can accurately predict stability maps with limited experimental data (five to 10 cutting tests) even when there is little
information available for unknown parameters. The study evaluates the proposed approach using both numerical data and
experiments and demonstrates its superior performance compared to state-of-the-art benchmarks.
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Introduction

Milling is a common manufacturing process which uses a
rotating cutting tool to remove material from a workpiece
(Yan et al., 2023). Since milling is expensive, it is important
to select productive operating parameters, including spin-
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dle speed n, radial depth of cut a, and axial depth of cut b,
which enable efficient removal of material from the work-
piece (Fig. 1) (Schmitz & Smith, 2019).

Ideally, these values should be set as high as possible to
minimize cutting time.However, there are various constraints
that prevent someparameter combinations frombeing viable,
such as chatter. Chatter is a self-excited vibration that occurs
at certain selections ofmachining parameters and causes poor
surface finish and can potentially damage the cutting tool
and machine (see Fig. 2c) (Unver & Sener, 2023; Jauhari
et al., 2023). If the tool tip and workpiece dynamics are
not consideredwhen selectingmachining parameters, chatter
may occur, where varying chip thickness causes regenerative
vibration.

Stable (i.e., chatter-free) machining parameters can be
selected using the stability map (Fig. 2a), which separates
spindle speed-axial depth pairs that are stable from those that
exhibit chatter. The stability map can be predicted based on
the tool tip frequency response function (FRF) and the tool-
workpiece cutting force model (Deng et al., 2023). However,
in practice, these are not typically known and the stability
map and optimal machining parameters must be inferred
from experimental test cuts.
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The importance of considering the system’s vibration
response when selecting machining parameters has been
thoroughly established in the literature. Despite numerous
research efforts to improve the accuracy of stability maps,
the theoretical and experimental results sometimes differ,
which can require validation testing prior to final param-
eter selection. The dynamic model’s inputs, the machining
parameters, and the solution algorithm all affect stabilitymap
accuracy (Chen et al., 2021).Model advances include process
damping (Wan et al., 2017) and symmetry breaking (Totis et
al., 2019). In addition, to verify the accuracy of the solv-
ing algorithm, several methods such as full-discretization
method (FDM) (Ding et al., 2010), zeroth-order approxi-
mation (Budak & Altintas, 1998), and semi-discretization
method (SDM) (Insperger & Stépàn, 2002) have been intro-
duced. Despite these improvements, a key challenge that
remains is knowledge of the tool tip dynamics and the cutting
force coefficients (Chen et al., 2021).

Currently, modal impact testing is the technique that is
most frequently used tomeasure the tool tip dynamics. In this
method, the tool tip is excited using an instrumented hammer
and the vibration response is measured using a transducer
(commonly a piezoelectric accelerometer). While the mea-
surement technique iswell-understood, error sources remain,
which include the influence of the load condition (Postel
et al., 2018), the mass loading effect of the accelerometer
(Özşahin et al., 2010), and the centrifugal forces, gyroscopic
moments, and temperature increase in cutting operations
(Gupta et al., 2020). Similarly, the estimate of the cutting
force coefficients is also subject to various errors and uncer-
tainties. These include fitting errors in regression methods
and coefficient variation with cutting conditions (Dang et al.,
2010; Grossi et al., 2015; Campatelli & Scippa, 2012).

Due to these inherence uncertainties in the tool tip dynam-
ics and cutting force coefficients, uncertainties are introduced
into the deterministic stability maps. To address this limita-
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Fig. 1 Illustration of themilling operation. Nt represents the number of
teeth (or flutes) on the milling cutter. fz is the feed per flute. It indicates
the chip thickness that each tooth of the milling cutter removes from
the material as it passes through it

tion researchers have focused on approaches that identify
dynamics during machining. Operational modal (Zaghbani
& Songmene, 2009) analysis has been implemented to assess
the machine’s response using an accelerometer during rou-
tine machining operations. Although the identification of the
damping ratio and natural frequency is straightforward, the
dynamic stiffness is not easily obtained using this approach.
In Özşahin et al. (2015), an inverse identification approach
is proposed in which chatter frequencies and limiting axial
depths of cut are determined experimentally. In this approach,
data for two spindle speeds that are marginally different are
needed for the inverse identification of the tool tip dynamics.
Similar approaches are proposed in Eynian (2019), Grossi
(2016). However, these approaches necessitate specialized
tests under predetermined conditions,whichmake themchal-
lenging to implement in shop floor environments.

Recently, machine learning has been applied tomachining
stability modeling. Karandikar et al. (2020) propose a novel
Bayesian learning approach to predict the stability limit and
find the optimal parameters utilizing test data only without
knowledge of the underlying cutting force coefficients or tool
tip dynamics. Simulation results from physics-based models
offer another data source. In this approach, physics-based
models are used to generate stability maps. The predicted
stability maps are then discretized and used as training data
in machine learning approaches, such as artificial neural net-
works (Cherukuri et al., 2019; Oleaga et al., 2018; Yin et
al., 2023), K-nearest neighbors (Greis et al., 2020), and sup-
port vector machines (Friedrich et al., 2017). For instance,
Cornelius et al. (2021) propose a physics-guided Bayesian
approach in which first, prior uncertainties of parameters
are considered to obtain the probabilistic stability map using
the physics-based stability model. Second, this probabilis-
tic stability map is updated in each iteration based on the
new information obtained from the cutting test. A simi-
lar Bayesian approach is proposed in Chen et al. (2021).
Schmitz et al. (2022) presents a novel approach to improving
milling stability by combining Receptance Coupling Sub-
structureAnalysis (RCSA) andmachine learning techniques.
The method utilizes RCSA to predict the tool tip FRF and a
frequency-domain approach to predict the stability boundary.
Updating is based on the binary test results (stable/unstable)
and chatter frequency, if the test cut is unstable, as well as
the user’s risk preference. The machine learning model is
implemented using Markov Chain Monte Carlo (MCMC)
sampling. Postel et al. (2020) propose ensemble transfer
learning in which the stability map is predicted using fully
connected neural networks. The neural networks are pre-
trained with simulated data obtained from the analytical
stabilitymodel and fine-tuned by re-trainingwith experimen-
tal test data to produce the final stability boundary. Yesilli
et al. (2022) addressed the challenge of automating chatter
detection in machining processes by exploring the poten-
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Fig. 2 a Stability map showing
which cutting parameters will be
stable. Cuts above the blue
stability line will chatter and
cuts below will be stable. b
Stable cut surface. c Unstable
cut surface

tial of transfer learning. Their study evaluates the transfer
learning capabilities of various chatter detection methods
across turning and milling datasets. The findings revealed
that Topological Data Analysis and Discrete Time Warping
approaches can achieve comparable classification accuracies
to time-frequency methods while offering the advantage of
automation, particularly for scenarios involving limited data
or small datasets of unique processes. Deng et al. (2023)
introduces a novel approach for enhancing milling stability
analysis. The paper proposes a multi-fidelity (MF) surrogate
model combined with transfer learning to improve the accu-
racy of stability lobe diagram (SLD) predictions. Themethod
leverages both analytical stability modeling and experimen-
tal data to construct accurate stability models, resulting in
more precise lobe boundaries for selectingmachining param-
eters while reducing the number of required experimental
samples. Shanavas et al. (2023) introduces the application
of supervised neural networks to learn stability maps from
data, enhancing the prediction accuracy of machining stabil-
ity maps beyond traditional models. Their study investigates
the influence of hyperparameters on the learning process
of neural networks, providing insights into factors such as
dataset size, learning rate, activation functions, and network

architecture. Greis et al. (2023) introduces a physics-guided
machine learning (PGML) for stability modeling in machin-
ing. This study examines how uncertain physics-based data
can be employed to train a PGML stability model, subse-
quently updated with measured data, domain knowledge,
and theory-based information. The paper presents four novel
update strategies that enhance the PGML model’s accuracy
and reduce the need for extensive experimental measure-
ments, showcasing its potential for approximating the true
stability model for specific factory conditions.

Although the data-driven approaches provide improve-
ments in specific circumstances, they have several limita-
tions. For instance, machine learning approaches can lack
physical interpretability, meaning that the stability maps do
not expose the physical constraints that underlie the sys-
tem’s dynamics; in some cases, they even produce solutions
that defy operational restrictions or the physical rules of
stability limits (Greis et al., 2020; Postel et al., 2020). In
addition, several approaches, exemplified by Friedrich et al.
(2017), Cherukuri et al. (2019), and Karandikar et al. (2020),
require a large number of sample data to learn the shape
of stability maps, which can be expensive. While success-
ful stability map prediction approaches have been proposed,
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a balance between the number of actual test experiments,
physical interpretability, and prediction accuracy has not
yet been achieved. To advance capabilities, this study intro-
duces the Encoder GAN (EGAN) approach, which is based
on Generative Adversarial Networks (GANs), for predicting
stability maps using limited experimental data. EGAN is a
modification of the traditional GAN that includes an addi-
tional encoder network to predict stability maps. The EGAN
approach is composed of the encoder, generator, and discrim-
inator subnetworks. A similar GAN structure can be found
in the work of Schlegl et al. (2019) but with a different appli-
cation focus, namely anomaly detection. Furthermore, while
Schlegl et al. trains their encoder separately from the genera-
tor and discriminator, our approach simultaneously trains all
three components to improve overall performance. The input
dataset for EGAN includes stability maps generated using
a physics-based analytical stability model and the generator
learns tomimic the physics-basedmodel’s behavior by taking
a noise vector from the latent space and outputting a plausi-
ble stabilitymap. The encoder learns to project stabilitymaps
back into the corresponding latent space parameter. The dis-
criminator distinguishes generated/fake stability maps from
sample maps in the input dataset. In the evaluation pro-
cess, the trained encoder projects a stability map into the
latent space to find the unique parameters that correspond
to the map and the trained generator produces the corre-
sponding stability maps based on the physics it learned. The
approach is used to predict stability maps with a limited
number of cutting test experiments by applying a simple non-
physics-based Bayesian updating approach to obtain partial
knowledge about the target stability map. The hypothesis
is that the perfectly trained EGAN has a regularized latent
space that can map similar stability maps to closed points in
the latent space, enabling the encoder to find the best param-
eters that leverage all the information it receives, even if there
is incomplete knowledge about the parameters and the sta-
bility maps. The novelty of the approach lies in the use of
EGAN and the regularization property of the latent space to
predict stability maps with limited information, which has
the potential to reduce the number of cutting tests needed to
predict stability maps accurately. We demonstrate the effec-
tiveness of the proposed EGAN approach through extensive
numerical simulations and experiments. We demonstrate the
proficiency of the EGAN approach in effectively predicting
stability maps, even when there is minimal data available
regarding the unknown parameters. This is achieved through
the consideration of wide normal and uniform distributions
for uncertain parameters. A comprehensive comparison is
also provided against state-of-the-art approaches, including
ensemble transfer learning (Postel et al., 2020) and Bayesian
learning (Karandikar et al., 2020).

The remainder of this paper is organized as follows:
“Methodology” sectiondescribes theproposedEGANapproach

used to predict the stability map. “Experimental verification”
section evaluates the proposed approach. Finally, “Con-
clusion and future work” section concludes the study and
discusses future work.

Model-based stability prediction

Chatter occurs due to the relative vibration between the cut-
ting tool and workpiece during cutting (Schmitz & Smith,
2019). This vibration is imprinted on the workpiece surface
(Fig. 3). The next tooth encounters this wavy surface and
experiences varying chip thickness h and, therefore, cutting
force. During a stable cut, the cutting force and vibration
will converge to an equilibrium that repeats for each tooth.
In an unstable (chatter) cut, the force and vibration do not
repeat from tooth to tooth and grow until the vibration is
large enough that the tooth temporarily leaves the cut. This
is referred to as the regenerative effect.

Theoccurrence of chatter depends on twomain factors: the
vibration of the tool, governed by the tool’s FRF, and the force
involved in the cutting process, described by the cutting force
model. The tool tip FRF is described by a complex-valued,
frequency-dependent matrix:

[FRF(ω)] =
[
FRFxx (ω) 0

0 FRFyy(ω)

]
(1)

where x is the feed direction and y is the orthogonal direction
in the plate of the cut. The cutting force is assumed to be
proportional to the chip thickness F = Ksbh, where Ks is
the specific cutting force coefficient and b is the chip width.
This cutting force can be decomposed into the tangential
force Ft = sin(β)Ksbh and normal force Fn = cos(β)Ksbh,
where β is the force angle.

The stability map can be estimated from these inputs
using the zero-order approximation algorithm proposed by
Altintas and Budak (1995). This method solves the periodic-
coefficient delay differential equation by approximating the

Fig. 3 Variable chip thickness due to tool vibration Schmitz and Smith
(2019)
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periodic cutting force as a matrix
[
αxx αxyαyx αyy

]
, where

αi j defines the amount that the average cutting force in the i
direction will change for a unit displacement in the j direc-
tion. Please refer to Altintas and Budak (1995) for a full
derivation.

Methodology

The purpose of the proposed study is to predict the stabil-
ity map in milling operations using a novel deep learning
approach named EGAN and limited experimental data. The
primary distinction of the EGAN approach from previous
approaches lies in the utilization of the GAN’s structure
for stability prediction. As far as our investigation shows,
the proposed EGAN approach is the first study to employ
a GAN-based architecture for predicting stability maps in
machining processes. This incorporation of GAN architec-
ture introduces a novel and innovative dimension to stability
prediction that sets the proposedmethod apart from the exist-
ing approaches. By integrating an encoder network within
the GAN framework, EGAN effectively bridges the gap
between physics-based modeling and data-driven learning.
This allows us to harness the advantages of GANs, such as
generating plausible stability maps from latent space param-
eters, while also benefiting from the analytical insights of
physics-based models. We believe that this pioneering uti-
lization of GANs in the context of stability prediction not
only contributes to the advancement of machining research
but also opens avenues for future explorations at the inter-
section of deep learning and manufacturing.

In this section, the problem definition is first discussed.
Then a brief background on the traditional GAN is provided.
Next, the encoder GAN (EGAN), which is a leveraged ver-
sion of the traditional GAN, is proposed for the purpose
of the milling stability prediction. Then, common train-
ing challenges for GANs are discussed. Following that, a
description of the state-of-the-art approaches that are used as
benchmarks in this study are presented. Next, a grid search
approach is introduced for the selection of cutting tests,
specifically intended for evaluation purposes. Lastly, the gen-
eral framework of the proposed and benchmark approaches
are presented.

Problem definition

Assuming a symmetric single degree-of-freedom (SDOF)
system, there are five unknown parameters θ = (Ks, β, fn,
k, ζ ) to predict the stability map, where Ks is the specific
cutting force coefficient, β is the force angle, fn is natu-
ral frequency, k is the modal stiffness, and ζ is the modal
viscous damping ratio (i.e., the SDOF FRF is approximated
using these three parameters).

As described in “Introduction” section, an accurate esti-
mation of the FRF and cutting force coefficients is required
to estimate an accurate stability map. However, obtaining the
FRF and cutting force coefficient information needs special-
ized sensors and can be challenging in industry.Nevertheless,
there exists a prior knowledge about these parameters. The
prior represents the initial beliefs about parameters and
incorporates all available information, whether it comes
from expert opinions, available experimental data, theoreti-
cal considerations, or analytical models. In this study, a prior
distribution is first defined for these parameters P(θ) and N
sample parameters are generated from this distribution. Next,
these sample parameters are used together with the physics
model to generate prior/simulated stability maps, which are
used as training data for the proposed approach. Finally, the
trained networks apply limited experimental data to predict
the target stability map.

Traditional GAN

The traditional GAN is a deep learning-based generative
model that was initially proposed by Goodfellow et al.
(2014). The primary goal of this approach is to generate
synthetic but realistic images by learning the input data
distribution by predicting features from an initially hidden
representation, which is also called the latent space repre-
sentation. The traditional GAN includes the generator and
discriminator networks, competing with each other in an
adversarial manner in the training process. Specifically, the
traditional GAN is designed as a minimax game, where the
generator and discriminator networks compete in a zero-sum
game framework, as originally used in game theory (Akcay et
al., 2019). The generator network learns to generate an image
that resembles images in the input dataset, while the discrimi-
nator network learns to distinguish the generated images from
the input images.

Figure4 illustrates the scheme of the traditional GAN to
generate handwritten digit numbers. In the traditional GAN,
the generator (G) has a decoder network architecture and
learns to capture the input data distribution (pX ) by gen-
erating plausible images from a latent space distribution
(pz), which is commonly a standard normal distribution. In
contrast, the discriminator (D) adopts an encoder network
architecture and works as a classification algorithm, reading
an input image and labeling it as real or generated/fake. Both
the generator and the discriminator networks are simultane-
ously trained through a two-player minimax game. During
the training process, the generator aims to make the dis-
criminator’s loss larger. In other words, it tries to fool the
discriminator by generating new plausible data (resembling
the input data) so that the discriminator fails to detect them
as fake images. Specifically, the original GAN solves the

123



Journal of Intelligent Manufacturing

Input noise ( )

Real ( )

Fake ( )

Real/Fake

Generator 
(G)

Discriminator 
(D)

Loss

Gradients

Gradients

D
 lo

ss
G

 lo
ss

Fig. 4 Scheme of the traditional GAN

following minmax game (Goodfellow et al., 2014):

min
G

max
D

V (D,G) (2)

where

V (D,G) = E
x∼pX

[log(D(x))] + E
z∼pz

[log(1 − D(G(z)))]
(3)

The discriminator is trained to maximize its outputs
on input images (i.e., log(D(x)); labeling input images
as “real ”) and minimize its outputs on fake images (i.e.,
log(D(G(z))); labeling generated images as “fake”). In con-
trast, the generator is trained based on the discriminator’s
performance on fake images. The generator tries to mini-
mize V (G) = log(1− D(G(z))), or equivalently, maximize
V (G) = log(D(G(z))), so it can fool the discriminator such
that this network treats fake images as input images. Note
that the generator is not able to control the discriminator’s
performance on input images (i.e., log(D(x))).

Encoder GAN (EGAN)

For predicting stabilitymaps, theGAN is advanced by adding
encoder network (E) to the traditional GAN structure. The
proposed approach is calledEncoderGAN (EGAN). Figure5
illustrates the scheme of the proposed approach.

The input/real dataset in EGAN includes stability maps
generated using the physics-based analytical stability model,
considering a distribution for the unknown parameters. The
goal of the generator (G) in EGAN is to learn the physics
underlying the stabilitymaps in the input data. That is, it takes
a vector of noises from the latent space andoutputs a plausible
stability map. The generator learns to mimic the physics-

based analytical stabilitymodel’s behavior. However, instead
of taking the real parameters (θ ), the generator takes some
noise vector (z) from the latent space, which it is referred to
as the latent space parameter in the remainder of the paper.
It is important to clarify that the latent space is characterized
as a Gaussian random noise vector. It serves as a transformed
representation of parameters in an alternative space, devoid
of direct physical interpretability. It is essential to underscore
that the latent space lacks inherent interpretability.

On the other hand, the encoder E learns the opposite side
of the generator. That is, it uses a stability map that is gen-
erated by the generator and returns the corresponding latent
space parameter z′. The discriminator (D) has the same role
as it has in the traditional GAN. That is, it distinguishes the
generated/fake stability maps output by the generator from
sample maps in the input dataset. Through adversarial learn-
ing, the generator learns to generate realistic stabilitymaps to
fool the discriminator and the decoder learns to find unique
latent space parameters for each stability map.

The hypothesis is that if EGAN is perfectly trained, the
generator connects each set of latent space parameters to a
unique stability map, and, in contrast, the trained encoder
projects back each stability map to a unique set of parame-
ters. In addition, it is hypothesized that the perfectly trained
EGAN has a regularized latent space, which means that the
encoder canmap similar stabilitymaps to closed points in the
latent space. These hypotheses are applied in the test process
to predict the intended stability map with a limited number
of cutting test experiments. For now, assume that complete
knowledge of the target stability map is available, as seen in
Fig. 6. The trained encoder takes thismap and projects it back
into the latent space. The trained encoder finds the unique
parameters that correspond to thismap.Next, the trained gen-
erator takes the parameters that the trained encoder found and
produces the corresponding stability maps because it knows
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Fig. 6 Evaluation step in
EGAN with complete
knowledge of the stability map
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Fig. 7 Evaluation step in
EGAN with partial information
obtained from cutting tests

the physics. If both the generator and encoder are perfectly
trained, the generator should output the exact map that the
encoder receives. This is because, as hypothesized, there is
only one vector of parameters for each stability map.

In practice, however, knowledge regarding the parame-
ters (θ ) and, consequently, the stability maps is incomplete.
Hence, cutting tests are performed to obtain partial informa-
tion about the target stability map and then this information
is used as input to the proposed approach to predict the
actual stability boundary. In this study, a simple non-physics-
based Bayesian updating approach is applied (as proposed in
Karandikar et al. (2020)) to obtain partial knowledge (see
Fig. 7) about the target stability map using a limited number
of experiments. This approach is discussed in the benchmark
section (“Bayesian learning” section). It is hypothesized that,
given this partial knowledge of the stability map, the per-
fectly trained encoder will find the best parameters in latent
space that incorporates all the information that it receives.
If there is sufficient information, it can find the exact vec-
tor of parameters in the latent space that corresponds to the
target stability map and, as a result, the generator can then
return the target stability limit. However, if the information
is not sufficient, the encoder may not be able to find the true
latent space parameters, but at least it can find parameters
that are close enough to the true parameters. Consequently,
the generator may not be able to reconstruct the target sta-
bility map, but it can output a map that is close enough to

the target stability map. This behavior is explained using the
regularization property of the latent space.

To train the model in a way that enables the hypotheses to
be tested, the loss functions of each sub-network are formu-
lated as follows:

Generator Loss: The generator network G is trained to learn
the physics underlying the input dataset and generate unique
stability maps for each set of latent space parameters. To do
so, the generator needs to fool the discriminator to be able
to generate plausible stability maps. Hence, the generator’s
loss should compute how effectively the discriminator dis-
tinguishes generated/fake stability maps from input stability
maps. To capture this, the generator’s loss is calculated as:

LG = E
z∼pz

[log(D(G(z)))] (4)

Encoder Loss: The encoder network E should learn the
opposing side of the generator. That is, it should be able
to project the stability maps generated by network G back
into the latent space to find the corresponding latent space
parameters. The encoder can learn this information by cal-
culating dissimilarities between the input parameters of the
generator (z) and the corresponding reconstructed parame-
ters z′ = E(G(z)). Therefore, the encoder’s loss is calculated
as:

LE = E
z∼pz

[‖z − E(G(z))‖1 (5)
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(a) Mode collapse (b) Instability of training

Fig. 8 Examples of mode collapse and training instability in the EGAN approach

Discriminator Loss: In adversarial learning, the discrimina-
tor is trained to classify both the real data and the fake data
from the generator. It penalizes itself for incorrectly catego-
rizing a fake instance (generated by the generator) as real or
a real instance as fake by maximizing the function shown in
Eq. (6).

LD = E
x∼pX

[log(D(x))] + E
z∼pz

[log(1 − D(G(z)))] (6)

Common training problems in GANs

The traditional GAN in its original form suffers from
two major limitations including mode collapse and non-
convergence (or training instability).Mode collapse is known
as the lack of image diversity in GAN training and hap-
pens when the generator learns to associate multiple input
z values with a single output point. Non-convergence mainly
happens when the equilibrium between the discriminator and
the generator is not found. For instance, when the discrimina-
tor perfectly distinguishes between the fake and real images
and starts to reject the generated samples by the generator,
there is no longer enough information for the generator to
learn from, which causes the vanishing gradient problem for
the generator.

In recent years, empirical approaches have been intro-
duced to enhance the training efficiency of GANs regarding
mode collapse and/or training instability. For instance, the
Wasserstein GAN (WGAN) proposed in Arjovsky et al.
(2017) has demonstrated its capacity tomitigate both of these
issues. In addition, past studies (Ham et al., 2020; Munjal et
al., 2020; Rosca et al., 2017; Bang & Shim, 2021; Chong et
al., 2020; Bang & Shim, 2018; Lazarou, 2020) have shown
that autoencoder-based GANs generally have the ability to
prevent mode collapse. One of the most effective approaches
to overcome non-convergence (i.e., instability in training) is
Deep Convolutional GAN (DCGAN) proposed by Radford
et al. (2015), where convolutional layers replace fully con-
nected layers. In addition, Chakraborty et al. (2018) mention
that using batch normalization inGAN’s structure can reduce

the problem of training instability, which is caused by poor
initialization. Salimans et al. (2016) show that the feature
matching loss can address the instability of training caused by
over-training on the discriminator response. Goodfellow et
al. (2014) suggest training the discriminator for nd > 1 steps
every time the generator is trained for one step. This would
help balancing the power/optimization of the discriminator
and generator networks. Goodfellow (2016) also recommend
to balance the generator and discriminator by optimizing the
model size.

Figure8 provides examples of the mode collapse as well
as the training instability problems in EGAN. Specifically,
this figure presents a complete batch of 16 stability maps,
which are generated using the generator network by inputting
16 random Gaussian noise samples. As seen in Fig. 8a, it is
apparent that the generator network suffers from the mode
collapse problem and fails to produce diverse and realistic
stability maps. In addition, Fig. 8b demonstrates that the gen-
erator network is affected by training instability, which leads
to the generation of noisy stability maps.

Although many approaches have been proposed to over-
come mode collapse and instability of training problems,
they have not been completely solved. In this study, exist-
ing approaches are applied to address both problems, which
are explained later in the results section.

Benchmarks

In this section, two state-of-the-art machine learning
approaches are described, including Bayesian learning and
ensemble transfer learning approaches, that have been
successfully applied for stability prediction. These two
approaches are used as benchmarks in this study.

Bayesian learning

The Bayesian learning approach, which is proposed by
Karandikar et al. (2020), finds the stability boundary in
milling without knowledge of the underlying tool dynam-
ics or cutting force coefficients. In this approach, a prior for
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(a) Prior probability of stability
map

(b) Posterior probability of sta-
bility given a stable result at
11,000 rpm, 1.5 mm

(c) Posterior probability of sta-
bility given an unstable result at
11,000 rpm, 1.5 mm

Fig. 9 Stability prior and updatet posterior given stable and unstable results

Fig. 10 Neural network architecture in ensemble transfer learning

the stability map is first identified. The prior is the current
beliefs about the parameters that are formed based on all
available data. Second, the prior probability is updated using
the Bayes’ rule and experimental data.

In this study, the prior probabilities are established using
the basic knowledge that high axial depths are more likely to
be unstable at a selected spindle speed. To define the prior,
the space of the stability map is first divided into several
grid points. Then, the prior probability of stability (p(sG))
for each grid point G on the map is defined using the prior
knowledge (see Fig. 9a). As a result, each grid point has a
p(sG) probability of stability and a p(uG) = 1 − p(sG)

probability of instability (Fig. 10).
The goal is to update the probability of all grid points

given a stable (+) or unstable (−) result at the test point T .
Equation (7) shows the Bayes’ rule to update the probability
at grid point G based on a stable result at test point T .

p(sG |+T ) = p(+T |sG)p(sG)

p(+T )
, (7)

p(+T ) = p(+T |sG)p(sG) + p(+T |uG)p(uG) (8)

Based on expert knowledge of the stability behavior,
the likelihood probabilities p(+T |sG) and p(+T |uG) are
defined. For more details please refer to Karandikar et al.
(2020).

Figure 9b and c present the posterior probabilities updated
using these equations for a stable and unstable test result,
respectively.

Ensemble transfer learning

Ensemble transfer learning, which was originally proposed
by Postel et al. (2020), is a deep learning-based approach that
is designed to predict milling stability maps in milling by
utilizing simulated and experimental data. In this approach,
simulated data is utilized as the starting point for training
feed-forward neural networks to learn the concept of stabil-
ity maps. Next, experimental data are used to fine-tune the
pre-trained neural networks so that these networks can adapt
to the actual behavior of the system. The ensemble transfer
learning framework includes six steps, as follows:

(1) Parameter sampling In this step, the uncertain parame-
ters are sampled Nnet times from their distributions and
then fed to an existing stability model to generate the
corresponding stability maps. This step results in Nnet

simulated stability maps.
(2) Generating training datasets Each stability map gen-

erated in Step 1 is divided into several grid points to
construct Nsim artificial cutting tests (ni , bi ). As a result,
Nnet training datasets are constructed in this step, each
of which contains Nsim cutting tests.

(3) Stability evaluation In this step, the stable or unstable
labels ci for all pairs of spindle speed and cutting depth
(ni , bi ) in each training dataset are determined by uti-
lizing the corresponding stability map generated in Step
1.

(4) Pre-training Each generated dataset from Step 2 and cor-
responding output labels from Step 3 are used to pre-train
a fully connected neural network. As a result, Nnet neu-
ral networks are trained to learn the shape of the each of
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(a) stability map subspaces

(b) Five test cuts (c) Ten test cuts

Fig. 11 Grid search to select five and 10 test cuts in the numerical analysis

the stability map in the training dataset. The structure of
these neural networks is presented in Fig. 31.

(5) Fine tuning In this step, each pre-trained neural network
in Step 4 is fine-tuned by utilizing the experimental cut-
ting tests. As a result, the pre-trained neural network that
had learned the general shape of the stability boundary
is now adapted to the actual stability behavior using the
experimental data.

(6) Prediction Finally, each of the fine-tuned networks in
Step 5 is used to predict the target stability map. Next, a
truncated mean approach is used to average the stability
maps obtained from Nnet fine-tuned networks to get the
final stability map.

Cutting tests selection

This section outlines the approach for selecting five and ten
cutting tests, which are conducted for evaluation. This study
initiates by randomly selecting five cutting tests from the sta-
bility map space (i.e., spindle speed and axial depth of cut) to
predict the actual stability map. Subsequently, an additional
five cutting tests are selected based on the previous set of five
chosen points to form a total of ten test points, to increase
the accuracy of the stability map prediction.

The initial selection of five test points is accomplished
through the use of a grid-based approach, which is detailed
below. First, the stability map space is partitioned into 25
subspaces by equally dividing the range of spindle speed and
axial depth of cut into five parts (see Fig. 11a). Next, the first
test point is randomly selected from the second subspace.
Note that the second subspace is always used as the start-
ing point in all setups. Then, the next subspace is selected
from the second range of spindle speed (i.e. from subspaces
6, 7, 8, 9, and 10) considering the stability behavior of the
current test result. If the current test result is stable, the sub-
sequent subspace is selected from the upper range of axial
depth of cut. Conversely, if the current test result is unstable,
the next subspace is selected from the lower range of axial
depth of cut. Once the subspace is selected, the next test point
is chosen randomly from the selected subspace. This process
is repeated until all five test points are selected. In this way,
this approach ensures that at least one test from each range of
spindle speed is selected. Figure11b presents a sample path
for the selection of five cutting tests from a known stability
limit.

To obtain 10 test cuts, the initial selection of five is
extended by including an additional set of five. The selection
begins by partitioning the axial depth of cut into 10 equal
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parts, thereby subdividing the stability map space into more
subspaces. Next, a test cut is selected from the previous set
of tests and, depending on the stability of this selected test
cut, tests with larger axial depth of cuts but the same spindle
speed are chosen if stable, or tests with lower axial depth
of cuts but the same spindle speed are chosen if unstable.
Figure11c illustrates a sample path to extract 10 test points
from a known stability limit. As depicted in the figure, this
approach yields the selection of points that are in proximity to
the stability boundary, thereby providing adequate informa-
tion for both the EGAN and other approaches to accurately
predict the target stability map.

General framework of the proposed and
benchmarks approaches

The general framework of the proposed and benchmarks
approaches is presented in Fig. 12. In the first step, N sam-
ple parameters ({θ i = (Ki

s , β
i , f in , k

i , ζ i )|i = 1, . . . , N })
are generated from their distribution P(θ). These parame-
ters are input to the physics model to find the stability limit
blim for each axial depth of cut n and, as a result, the cor-
responding stability map. This step results in N simulated
stability maps. These simulated stability maps are then used
as training samples to train the EGAN and ensemble trans-
fer learning approaches in the second step. Note that in the
EGAN approach, the last M = 100 trained networks are
selected to make prediction. Next, in the third step, a small
number of test cuts are selected based on the grid search
approach proposed in “Cutting tests selection” section. As
seen in the figure, the cutting test points are augmented by
establishing that for a stable test, all test points at the same
spindle speed and a lower axial depth of cut will also exhibit
stability. Conversely, if a test is unstable, then all test points
with the same spindle speed and a higher axial depth of cut
will also exhibit instability.

Finally, in the fourth step, the target stability map is
predicted using the Bayesian learning, ensemble transfer
learning, and EGAN approaches. The cutting tests are used
by the Bayesian learning approach to predict the target sta-
bility map. The augmented cutting tests are used to fine tune
the pre-trained neural networks. Next these fine-tuned neu-
ral networks are used to predict the stability map. Lastly,
the partial information obtained by the Bayesian learning
approach is used as input for the M trained encoders and
generators in EGAN to predict the target stability map. Each
trained encoder receives the partial information as input and
attempts to find the best latent space parameters that cover
the maximum amount of information it receives. Next, each
of the trained generators is used to predict the actual stabil-
ity map from the latent parameters that the encoder found.
Lastly, the prediction is obtained by taking the average of the
M outputs of the generators.

Experimental verification

Numerical experiments

In this section, numerical experiments are conducted to eval-
uate the proposed and benchmark approaches to identifying
a known stability map. A description of the setups for the
numerical experiments is first provided. Next, the training
performances of the EGAN and ensemble transfer learning
approaches are presented. Finally, a comparison between the
EGAN, ensemble transfer learning, and Bayesian learning
approaches using numerical experiments is provided.

Experiments setup

To investigate the efficiency of the proposed EGANapproach
for milling stability prediction under different target con-
ditions, three tool setups with different process and modal
parameters are selected, and their specific information is
listed in Tables 1 and 2. Specifically, Table 1 presents pro-
cess parameters for these three tool setups, including the tool
diameter, number of teeth, feed, feed direction, and radial
immersion, which refers to the depth of cut as a percentage
of the tool diameter. As seen in this table, a climb-milling
machining process is considered with tool diameters in the
range of 12.7 mm to 25.4 mm, three or four teeth, and radial,
and radial immersion in the range of 25% to 75% for differ-
ent setups. These simulations are not based on specific work
materials, but the cutting force values are generally in the
range common for aluminum and other soft metals.

Table 2 presents the uncertain process and modal param-
eters with their respective distributions for the three tool
setups. As seen in Table 2, in Setups 1 and 2, a SDOF
system is considered with five unknown parameters related
to the cutting coefficients and tool tip dynamics, including
Ks , β, k, fn , and ζ . The entries for Setups 1 and 2 can
be considered as a series of five univariate normal distribu-
tions with mean values of μ1, μ2, μ3, μ4, μ5 and standard
deviations of σ1, σ2, σ3, σ4, σ5. Generating sample parame-
ters from each of these distributions gives a series of values
θ i = (Ki

s , β
i , f in , k

i , ζ i ). However, it is more beneficial to
consider the inputs as a single five-dimensional multivariate
normal distribution N5(μs, �s) with a mean vector μs and
covariance matrix �s :

μs = [μ1, μ2, μ3, μ4, μ5] (9)

�s =

⎡
⎢⎢⎣

σ 2
1 0 0 0 0

0 σ 2
2 0 0 0

0 0 σ 2
3 0 0

0 0 0 σ 2
4 0

0 0 0 0 σ 2
5

⎤
⎥⎥⎦ (10)
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Forth step: Predicting the target stability map

Third step: Experimental/artificial cutting tests 

Second step: Training EGAN and ensemble transfer learning 

First step: Generating the training dataset

Physics Model ( , )~ ( )

Fig. 12 General framework of the proposed and benchmarks approaches
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Table 1 Process parameters for three tool setups

Setup 1 Setup 2 Setup 3 Unit

Tool diameter 25.4 25.4 12.7 mm

Number of teeth 4 4 3 –

Feed 0.1 0.1 0.1 mm/tooth

Feed direction Climb Climb Climb –

Radial immersion 25% 50% 75% –

InSetup 3, a 2DOFwith eight unknownparameters related
to the cutting coefficients and tool tip dynamics is con-
sidered. The uncertainty of these parameters is captured
through an eight-dimensional multivariate normal distribu-
tion N8(μs3, �s3) with mean vector μs3 and covariance
matrix �s3; the subscript 3 denotes the setup number. The
values for the vector μs3 and matrix �s3 are presented in
Eqs. (11) and (12).

μs3 = [4 × 108, 68, 1301, 6.64 × 106, 0.049, 1659, 6.75 × 106, 0.03] (11)

�s3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 × 1016 0 0 0 0 0 0 0
0 46.24 0 0 0 0 0 0
0 0 5.3 × 103 −1.2 × 108 0.67 1.3 × 104 1 × 108 −1.5
0 0 −1.2 × 108 5.7 × 1012 −2.1 × 104 −3.6 × 108 −3.8 × 1012 6.1 × 104

0 0 0.67 −2.1 × 104 1.1 × 10−4 1.72 1.7 × 104 −1.9 × 10−4

0 0 1.3 × 104 −3.6 × 108 1.72 3.5 × 104 2.8 × 108 −4.57
0 0 1 × 108 −3.8 × 1012 1.7 × 104 2.8 × 108 2.8 × 1012 −4.1 × 104

0 0 −1.5 6.1 × 104 −1.9 × 10−4 −4.57 −4.1 × 104 8.3 × 10−4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(12)

Each tool setup has two target stability maps associated
with it. These target stability maps represent specific desired
outcomes for the cutting process under investigation. To elab-
orate further, these target stabilitymaps are extracted through
a process where parameters are generated from the parameter
distributions outlined in Table 2. For each generated parame-
ter set, the physics analyticalmodel is employed to extract the
corresponding stability map. These extracted stability maps,
termed“target stabilitymaps,” serve as benchmark references
for evaluating the predictive performance of stability predic-
tion methods, such as the EGAN approach. Table 2 presents
the parameter values and corresponding stability maps for
the two targets considered in each setup. In this table, the
target stability maps are shown along with the stability map
that is obtained using the mean of the normal distribution,
which is labeled “Prior Mean” in the map.

To showhow closely the priorwould represent each target,
the probabilisticmap is constructed. To do so, the prior distri-
bution listed in Table 2 is used to generate N = 4000 sample
parameters, which are used as input to the physics model to
predict the stability maps. For each sample parameter θ , the
physics model computes the maximum cutting depth with-

out chatter blim for some spindle speeds n. Determining this
value for each spindle speed and for each parameter results in
the probabilistic stability map depicted in Fig. 13. The gray-
scale level of each point (n, b) is the probability of stability,
which is calculated using the following equation:

Pstabili t y = 1

N

N∑
i=1

blim(n, θi ) < b (13)

The probability of stability at a specific point indicates the
number of stability maps that forecast stable cutting test at
that point. Figure13 shows the resulting probabilistic stabil-
itymap alongwith the prior and target stabilitymaps for each
setup. As expected, the probabilistic stability map could rep-
resent the stability map that is related to the prior mean with
a good approximation; however, it does not represent the sta-
bility maps that are related to Targets 1 and 2. For instance,
Target 2 in Setup 2 completely contradicts the probabilistic

stability map. Note that the simulated stability maps that are
applied here to draw the probabilistic stability map are also
used as the training dataset to train the EGAN and transfer
learning approaches.

The rationale behind generating the probabilistic map and
subsequently comparing it with the target stability maps in
Fig. 13 is to underscore a significant observation: the training
dataset, instrumental in the construction of the probabilistic
stability map, does not inherently encompass the intricate
characteristics of the target stability maps employed during
the evaluation process. This distinction highlights the chal-
lenge facedby the approach in accurately predicting the target
stability maps, given the dissimilarity between the training
and evaluation datasets.

Training performance

This section presents the training performance of the EGAN
and transfer learning approaches.1 It should be noted that

1 The code is available at https://github.com/srezaei90/GANs-to-
predict-stability-maps-in-milling-machining.git.
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the Bayesian learning approach does not include a distinct
training step. To train these approaches, 4000 sample sta-
bility maps are generated using the uncertainty distribution
provided in Table 2. These samples are then employed to
train the EGAN approach and pre-train the neural networks
in the ensemble transfer learning approach. This enables both
approaches to acquire a comprehensive understanding of sta-
bility maps.

EGAN Network Architecture Per the discussion in
“Common training problems in GANs” section, deep con-

volutional layers with batch normalization are used for the
sub-networks in the architecture of the EGAN approach to
overcomemode collapse and training instability. The models
(i.e., the generator, encoder, and discriminator) are initial-
ized with the hyperparameter values suggested in (Radford
et al., 2015), but the parameters that are most important to
learning, including number of hidden layers, activation func-
tions, learning rate, batch size, and latent space dimension
are updated to get a perfectly trained generator and encoder.
To balance the power of the discriminator and generator

Table 2 Uncertain process and modal parameters with their respective distributions for three tool setups

Parameter Distribution (N (μ, σ )) Target 1 Target 2 Stability map

Setup 1 Ks(N/m2) N (8 × 108, 1.6 × 108) 5.2 × 108 10.2 × 108

β (degree) N (68, 6.8) 63 74

fn (Hz) N (1000, 100) 929 1164

k (N/m) N (8 × 106, 1.6 × 106) 6.16 × 106 9.94 × 106

ζ N (0.03, 0.006) 0.027 0.027

Setup 2 Ks(N/m2) N (6 × 108, 1.2 × 108) 6.67 × 108 4.99 × 108

β (degree) N (68, 6.8) 67 58

fn (Hz) N (1200, 120) 1096 1484

k (N/m) N (5 × 106, 1 × 106) 5.1 × 106 4.28 × 106

ζ N (0.02, 0.004) 0.017 0.024

Setup 3 Ks(N/m2) N (μs3, �s3) 6 × 108 3.7 × 108

β (degree) N (μs3, �s3) 68 57

fn1 (Hz) N (μs3, �s3) 1286 1272

k1 (N/m) N (μs3, �s3) 4.72 × 106 8.2 × 106

ζ1 N (μs3, �s3) 0.041 0.040

fn2 (Hz) N (μs3, �s3) 1694 1584

k2 (N/m) N (μs3, �s3) 7.90 × 106 5.50 × 106

ζ2 N (μs3, �s3) 0.033 0.038

Two target stability maps in each setup are considered for prediction in the numerical experiments

(a) Setup1 (b) Setup 2 (c) Setup 3

Fig. 13 Prior probabilistic stability map for each setup obtained by 4000 simulated stability maps
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networks, the discriminator’s size is decreased to two convo-
lutional layers and the generator’s size is increased to eight
convolutional transpose layers. In addition, it is observed that
increasing the number of steps for training the discriminator
(nd ) per iteration of generator training can aid in reducing
noise in the generated images. However, the optimal value of
nd may vary depending on the specific tool setup being used.
Therefore, it is recommended to experiment with different
values of nd , ranging from 1, and iteratively adjust it to find
the best-performing model for a given tool setup. Further-
more, one can choose between the sigmoid and hyperbolic
tangent (tanh) activation functions in the last layer of the
generator to reduce the noise in the generated images. Table
3 provides detailed information on the layers of the gen-
erator, encoder, and discriminator networks, including the
corresponding activation functions, optimizer used for each
network, and relevant hyperparameters. Note that the optimal
dimensionality of the latent space is set to four.

EGAN Training Performance The performance of the
achieved generator and encoder networks during the training
process on Setup 2 is illustrated in Figs. 14 and 15. Specifi-
cally, Fig. 14 depicts the progression of the generator’s ability
to produce plausible stability maps throughout the training
process. As depicted in the figure, the generator initially pro-
duces random noise in the first few epochs. However, as
training progresses, it acquires the ability to fool the dis-
criminator and ultimately generate plausible stability maps.
Despite the generator’s ability to produce a diverse range of
stabilitymaps, it still exhibits some level of noise in the gener-
ated output. This suggests that the issue of training instability
has not been entirely resolved, even though thegenerator does
not suffer from mode collapse.

Figure15 depicts the advancement of both the encoder
and generator’s capability to reproduce a given stability map
throughout the training process. More specifically, this fig-
ure demonstrates how the encoder can find the unique latent
space parameters that correspond to the input stability map
as it undergoes the training process. As explained in the
Methodology section, a perfectly trained encoder and gener-
ator should result in a reconstructed stability map (G(E(x)))
that is either identical or very similar to the input stabil-
ity map x . The input stability map depicted in this figure is
derived from the“Prior Mean” utilized in Setup 2. As illus-
trated in the figure, during the initial epochs, the encoder is
unable to identify the latent parameter that corresponds to
the input map. This outcome is to be expected, given that
the generator possesses only a limited understanding of sta-
bility maps in the initial epochs. Consequently, the encoder,
which relies on the generator’s outputs for learning purposes,
is unable to accurately connect the input stability map to the
latent space. As the training progresses, the generator gains
a deeper understanding of the physics underlying stability
maps, and as a result, the encoder becomes more adept at

accurately connecting the input stability map to the latent
space. As depicted in the figure, at epoch 100, the encoder
and generator are able to successfully reconstruct the input
stability map with a high degree of accuracy.

Ensemble Transfer Learning Architecture In ensem-
ble transfer learning, it is necessary to pre-train Nnet fully
connected neural networks on Nnet simulated stability maps
so that each neural network can learn the shape of each sta-
bility map. However, the entire training dataset, including
4000 simulated maps, cannot be used to train 4000 neural
networks, as it would be computationally expensive. Hence,
a subset is selected from the training dataset containing 200
sample stability maps to train Nnet = 200 neural networks.
Figure16 illustrates the probabilistic stability map for each
setup that is obtained by 200 simulated stability maps that
are used to pre-train neural networks. This figure shows that
even though only 200 sample stability maps are used, the
resulting probabilistic map is very close to the one that is
made with 4000 sample stability maps (see Fig. 13).

To achieve effective transfer learning, it’s crucial to use a
neural network architecture that is appropriate for replicat-
ing stability behavior. To accomplish this, hyperparameter
tuning is done by evaluating the network’s performance on
a simulated dataset. The number of hidden layers and the
number of nodes in each layer are set as hyperparameters
to determine an acceptable network structure. Table 4 pro-
vides detailed information on the layers of all Nnet neural
networks, and their corresponding learning rate, optimizer,
and training epochs. Note that all Nnet neural networks share
a common network architecture.

Ensemble Transfer Learning Training Performance
Fig. 17 shows the output prediction of three pre-trained neural
networks, which are trained on three sample stability maps
(shown as red lines) from the training dataset of Setup 1. As
this figure shows, all three neural networks are perfectly pre-
trained to replicate the behavior of the respective stability
maps.

EGAN versus benchmarks

This section utilizes the proposed EGAN approach and
benchmarks including the ensemble transfer learning and
Bayesian learning to make predictions by utilizing numer-
ical tests derived from a known stability map. The objective
is to evaluate the accuracy of the stability predictions made
by the proposed and benchmark approaches through a com-
parison of their forecasts against a known stability map. The
primary focus is to demonstrate the proficiency of the EGAN
approach in predicting the stability map, even with a limited
number of numerical tests (limited to five and 10 numerical
test cuts). Through these methods, a thorough assessment of
the stability predictions made by different approaches and
their potential for practical applications is provided.
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Table 3 Architecture of the
EGAN approach

Layer Kernel size Stride size Panel size Output size

Generator

Input – – – (4, 1, 1)

ConvTran (Batchnorm/ReLU) (6,3) (1,1) (0,0) (4096, 6, 3)

ConvTran (Batchnorm/ReLU) (2,2) (1,1) (0,0) (2048, 7, 4)

ConvTran (Batchnorm/ReLU) (2,2) (1,1) (0,0) (1024, 8, 5)

ConvTran (Batchnorm/ReLU) (2,2) (2,2) (1,1) (512, 14, 8)

ConvTran (Batchnorm/ReLU) (2,2) (2,2) (1,1) (256, 26, 14)

ConvTran (Batchnorm/ReLU) (3,2) (2,2) (1,1) (128, 51, 26)

ConvTran (Batchnorm/ReLU) (3,3) (2,2) (1,1) (64, 101, 51)

ConvTran (Tanh) (2,2) (2,2) (1,1) (1, 200, 100)

Encoder

Input – – – (1, 200, 100)

Conv (LeakyReLU/Batchnorm) (2,2) (2,2) (1,1) (64, 101, 51)

Conv (LeakyReLU/Batchnorm (3,3) (2,2) (1,1) (128, 51, 26)

Conv (LeakyReLU/Batchnorm (3,2) (2,2) (1,1) (256, 26, 14)

Conv (LeakyReLU/Batchnorm (2,2) (2,2) (1,1) (512, 14, 8)

Conv (LeakyReLU/Batchnorm (2,2) (2,2) (1,1) (1024, 8, 5)

Conv (LeakyReLU/Batchnorm (2,2) (1,1) (0,0) (2048, 7, 4)

Conv (LeakyReLU/Batchnorm (2,2) (1,1) (0,0) (4096, 6, 3)

Conv (6,3) (1,1) (0,0) (4, 1, 1)

Discriminator

Input – – – (1, 200, 100)

Conv (LeakyReLU) (100,50) (14,4) (1,1) (64, 8, 14)

Conv (Sigmoid) (8,14) (1,1) (0,0) (1, 1, 1)

Generator Encoder Discriminator

Optimizer Adam Adam Adam

(β1, β2) (0.500,0.500) (0.500,0.500) (0.500,0.999)

Learning rate 0.002 0.002 0.0002

β = Momentum

Table 4 Architecture of the ensemble transfer learning networks

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6 Learning rate Optimizer Epoch

NN1 5 20 200 100 50 2 0.01 Adam 100

NN2 5 20 200 100 50 2 0.01 Adam 100
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NN200 5 20 200 100 50 2 0.01 Adam 100

As outlined in “Experiments setup” section, to assess the
effectiveness of the proposed EGAN approach in predict-
ing milling stability across various target conditions, three
different tool setups and two distinct target stability maps
for prediction within each setup are considered. To ensure a
comprehensive assessment of the proposed approach’s per-
formance and facilitate the creation of mean and confidence

intervals (CIs), the grid search approach is employed to select
10 distinct sets of five test cuts. In addition, to conduct a
comparative analysis against state-of-the-art techniques, two
evaluation metrics, the Geometric Mean (G-Mean) Espin-
dola and Ebecken (2005) and L1 norm Sinwar and Kaushik
(2014), are employed. The G-Mean assesses the approach’s
ability to balance false positives (incorrectly labeling sta-
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(a) Epoch 1 (b) Epoch 5

(c) Epoch 10 (d) Epoch 100

Fig. 14 Stability maps produced by the generator during the training process for Setup 2

(a) Input stability
map

(b) Epoch 1 (c) Epoch 5 (d) Epoch 10 (e) Epoch 100

Fig. 15 The reconstruction (G(E(x))) of the “Prior Mean” stability map in Setup 2 during the training process

ble cuts as unstable) and false negatives (incorrectly labeling
unstable cuts as stable). The G-Mean computes the square
root of the product of sensitivity and specificity. Sensitiv-
ity represents the proportion of true positives to the total
number of actual positives, while specificity represents the
proportion of true negatives to the total number of actual
negatives. Meanwhile, the L1 norm measures the extent of
dissimilarity between the predicted and actual stability maps
by computing the absolute differences between correspond-
ing elements and summing themup. These evaluationmetrics
are chosen to provide a comprehensive evaluation of the pro-
posed approach’s performance and assess its practicality in
real-world applications.

Table 5 presents the average performance metrics and
their 95% confidence intervals (CIs) over 10 different sets of
five and 10 test cuts for both the proposed EGAN approach
and the benchmark methods. The evaluation is performed
on Targets 1 and 2 for each of the three tool setups. These
results provide a comprehensive assessment of the proposed

approach’s performance in predicting milling stability for
various tool setups and target conditions. Additionally, to
visually showcase the stability predictions for each of the
scenarios, Figs. 18, 19, 20, 21, 22 and 23 present three rep-
resentative samples from the 10 sets of test cuts performed
for each scenario, namely Setup 1 Target 1, Setup 1 Tar-
get 2, Setup 2 Target 1, Setup 2 Target 2, Setup 3 Target
1, and Setup 3 Target 2, respectively. These figures provide
a visual representation of the stability predictions made by
the EGAN approach and the benchmark methods, which fur-
ther complement the quantitative results presented in Table
5. Specifically, each figure displays the predicted probabilis-
tic stability maps generated by the EGAN and benchmark
approaches for each of the target within different setups.
The true stability limit for each target is shown as a red line
in all figures. These figures also show the predicted stability
boundary, which is determined by applying a threshold of
0.5 to the output probability of the approaches. These figures
enable a direct comparison between the predicted stability
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(a) Setup1 (b) Setup 2 (c) Setup 3

Fig. 16 Prior probabilistic stability map for each setup obtained by 200 sample stability maps that are used to pre-train neural networks in ensemble
transfer learning

Fig. 17 Three sample stability maps from the training dataset of Setup 1 represented as red lines, along with their respective output probability of
stability predictions obtained through the process of transfer learning

boundaries and the true stability limit, thereby providing
insight into the accuracy and effectiveness of the EGAN and
benchmark approaches in predictingmilling stability for each
scenario. In addition, Figs. 29, 30, and 31 in the appendix
present the test cuts selected by the grid search approach for
these numerical experiments.

The comparison between the EGAN and Bayesian learn-
ing approaches is presented in Table 5. As can be seen,
the EGAN approach outperforms the Bayesian learning
approach in predicting stability limits, as indicated by the
higher values of the G-Mean and/or lower values for L1

metrics under both five and 10 test cuts in all scenar-

Table 5 Mean and 95% CI of the performance metrics over 10 different sets of five and 10 test cuts for the Bayesian learning, ensemble transfer
learning, and EGAN approaches

5 Test Cuts 10 Test Cuts
BL ETL EGAN BL ETL EGAN

Setup 1 Target 1 G-Mean 75.90 ± 0.55 83.05 ± 2.83 84.36 ± 4.22 78.66 ± 0.99 88.55 ± 2.76 87.94 ± 3.62

L1 0.31 ± 0.01 0.14 ± 0.01 0.14 ± 0.03 0.27 ± 0.01 0.10 ± 0.01 0.11 ± 0.02

Target 2 G-Mean 76.68 ± 1.01 83.59 ± 3.09 88.37∗ ± 3.37 79.16 ± 1.75 87.25 ± 2.62 91.77∗ ± 5.46

L1 0.32 ± 0.01 0.14 ± 0.02 0.11∗ ± 0.02 0.28 ± 0.02 0.09 ± 0.02 0.09 ± 0.03

Setup 2 Target 1 G-Mean 79.91 ± 1.09 81.01 ± 3.30 83.22 ± 6.15 83.24 ± 0.86 88.76 ± 3.08 87.21 ± 5.58

L1 0.30 ± 0.01 0.17 ± 0.02 0.16 ± 0.04 0.25 ± 0.01 0.11 ± 0.01 0.13 ± 0.03

Target 2 G-Mean 84.14 ± 0.93 77.39 ± 4.63 82.14∗ ± 3.55 85.94 ± 0.68 84.71 ± 3.46 82.67 ± 2.58

L1 0.26 ± 0.01 0.19 ± 0.02 0.16∗ ± 0.02 0.23 ± 0.01 0.14 ± 0.02 0.15 ± 0.02

Setup 3 Target 1 G-Mean 86.19 ± 0.55 87.67 ± 1.5 90.36∗ ± 2.90 88.59 ± 0.56 90.69 ± 2.66 92.02∗ ± 1.15

L1 0.24 ± 0.01 0.16 ± 0.01 0.12∗ ± 0.02 0.19 ± 0.01 0.12 ± 0.01 0.10∗ ± 0.01

Target 2 G-Mean 84.74 ± 0.43 87.34 ± 0.75 87.43 ± 2.15 87.55 ± 0.74 90.97 ± 2.51 93.57∗ ± 2.01

L1 0.25 ± 0.01 0.16 ± 0.01 0.14∗ ± 0.02 0.20 ± 0.01 0.11 ± 0.01 0.08∗ ± 0.02

The bold formatting is used to highlight instances where EGAN demonstrates superior performance compared to benchmarks
BL Bayesian learning, ETL ensemble transfer learning
∗ p value < 0.1: Paired t-tests between the EGAN and ensemble transfer learning
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Sample Bayesian Learning Ensemble transfer learning EGAN Boundary prediction

1 5 tests

10 tests

2 5 tests

10 tests

3 5 tests

10 tests

Fig. 18 The numerical results of theBayesian learning, ensemble trans-
fer learning, and EGAN approaches in predicting Target 1 within setup
1 using five and ten test cuts. The results are shown for three representa-

tive samples from the 10 sets of test cuts. As demonstrated by the results,
the EGAN approach outperforms benchmarks especially in samples 1
and 2
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Sample Bayesian Learning Ensemble transfer learning EGAN Boundary prediction

1 5 tests

10 tests

2 5 tests

10 tests

3 5 tests

10 tests

Fig. 19 The numerical results of theBayesian learning, ensemble trans-
fer learning, and EGAN approaches in predicting Target 2 within setup
1 using five and ten test cuts. The results are shown for three repre-

sentative samples from the 10 sets of test cuts. As demonstrated by the
results, the EGAN approach consistently outperforms the benchmarks
across all samples, particularly in scenarios involving ten test cuts
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Sample Bayesian Learning Ensemble transfer learning EGAN Boundary prediction

1 5 tests

10 tests

2 5 tests

10 tests

3 5 tests

10 tests

Fig. 20 The numerical results of theBayesian learning, ensemble trans-
fer learning, and EGAN approaches in predicting Target 1 within setup
2 using five and ten test cuts. The results are shown for three repre-
sentative samples from the 10 sets of test cuts. As demonstrated by the

results, the EGAN approach exhibits superior performance compared
to the benchmarks in sample 1. However, it is notable that none of
the approaches achieved satisfactory predictions for the other two test
samples
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Sample Bayesian Learning Ensemble transfer learning EGAN Boundary prediction

1 5 tests

10 tests

2 5 tests

10 tests

3 5 tests

10 tests

Fig. 21 The numerical results of theBayesian learning, ensemble trans-
fer learning, and EGAN approaches in predicting Target 2 within setup
2 using five and ten test cuts. The results are shown for three repre-

sentative samples from the 10 sets of test cuts. As demonstrated by the
results, the EGAN approach consistently outperforms the benchmarks
across all samples
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Sample Bayesian Learning Ensemble transfer learning EGAN Boundary prediction

1 5 tests

10 tests

2 5 tests

10 tests

3 5 tests

10 tests

Fig. 22 The numerical results of theBayesian learning, ensemble trans-
fer learning, andEGANapproaches in predictingTarget 1within setup 3
using five and ten test cuts. The results are shown for three representative
samples from the 10 sets of test cuts. As demonstrated by the results,

the EGAN approach consistently demonstrates superior performance
over the benchmarks across a majority of the samples particularly in
samples 1 and 3
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Sample Bayesian Learning Ensemble transfer learning EGAN Boundary prediction

1 5 tests

10 tests

2 5 tests

10 tests

3 5 tests

10 tests

Fig. 23 The numerical results of theBayesian learning, ensemble trans-
fer learning, and EGAN approaches in predicting Target 2 within setup
3 using five and ten test cuts. The results are shown for three repre-
sentative samples from the 10 sets of test cuts. As demonstrated by
the results, the EGAN approach demonstrates superior performance in

comparison to the benchmarks in sample 1. While in samples 2 and 3,
none of the approaches perform adequately with five test cuts; however,
it is notable that EGAN outperforms the other approaches with ten test
cuts
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ios. Paired t-tests confirm the statistical significance of this
improvement. The only exception to this trend is observed
in predicting Target 2 in setup 2, where the Bayesian learn-
ing approach appears to outperform the EGAN approach in
terms of the G-Mean metric measurements (84.14 ± 0.93
versus 82.14± 3.55 under 5 test cuts, and 85.94± 0.68 ver-
sus 82.67 ± 2.58 under 10 test cuts). However, considering
the L1 norm, it is the EGAN approach that outperforms the
Bayesian learning approach (0.26± 0.01 versus 0.16± 0.02
under 5 test cuts, and 0.23 ± 0.01 versus 0.15 ± 0.02 under
10 test cuts). The sample results presented in Fig. 21 confirm
the superiority of the EGAN approach to the Bayesian learn-
ing in predicting stability limits as indicated by the L1 norm
results.

Table 5 also provides a comprehensive comparison of
the EGAN and ensemble transfer learning approaches. The
results reveal that the EGAN approach exhibits superior per-
formance to the ensemble transfer learning approach for
most scenarios, based on G-Mean and/or L1 metrics, for
five test cuts. The statistical significance of this improve-
ment is confirmed through paired t-tests, as presented in
the table. For instance, in Target 1 of Setup 3, the EGAN
approach attains a G-Mean measurement of 90.36, which
is higher than the G-Mean measurement of 87.67 achieved
by the ensemble transfer learning approach. Similarly, the
L1 norm measurements for the EGAN and ensemble trans-
fer learning approaches in this scenario are 0.12 and 0.16,
respectively, indicating a reduction of 0.04 in the L1 norm
by the EGANapproach. However, there are exceptions to this
trend, as observed in Target 1 of Setup 1 and Target 1 of Setup
2, where both approaches exhibit similar performance under
both metrics. For instance, the G-Mean measurement for
EGAN in Setup 1 Target 1 is 84.36±4.22, while the G-Mean
measurement for ensemble transfer learning is 83.05± 2.83
(paired t-tests > 0.1). Furthermore, the results indicate that
increasing the number of test cuts to 10 enhances the per-
formance of all approaches. Nonetheless, for 10 test cuts,
the EGAN approach still outperforms the ensemble transfer
learning in predicting Target 1 in Setup 2, as well as Targets
1 and 2 in Setup 3. In the remaining setups, no significant
differences are observed between these two approaches.

The results presented in Table 5 and Figs. 18, 19, 20, 21,
22 and 23 highlight the effectiveness of the proposed EGAN
approach in accurately identifying the actual stability bound-
ary, even with a limited number of numerical tests (to present
cutting experiments) employing only five or 10 test cuts.
For instance, the third sample presented in Fig. 21 demon-
strates the ability of the EGAN approach to detect the target
stability boundary using only five or 10 test cuts, whereas
the ensemble transfer learning approach fails to identify the
boundary evenwith 10 tests. This exemplifies the potential of
the EGAN approach to achieve accurate stability predictions

in scenarios with limited experimental data. Furthermore,
Figs. 18, 19, 20, 21, 22 and 23 demonstrate the ability of
the EGAN approach to predict all stability maps, whereas
the ensemble transfer learning approach fails to do so. For
instance, the samples presented in Fig. 19 illustrate that the
EGANapproach can predict the entire stability boundary, not
only the high spindle speed range, with only limited infor-
mation from five or 10 tests. Conversely, in most scenarios,
the ensemble transfer learning approach is unable to predict
these boundaries accurately. This observation emphasizes the
superiority of the EGAN approach over the ensemble trans-
fer learning approach in predicting all stability maps with
limited experimental data.

However, it is important to note that there are some cases
where the EGAN approach does not receive sufficient infor-
mation to predict the stability boundary with only five tests.
For instance, the second sample in Fig. 23 demonstrates this
limitation. As seen in the figure, the information obtained
from five test cuts is insufficient, resulting in failure for both
the EGAN and ensemble transfer learning approaches to find
the stability boundary. Nevertheless, by increasing the num-
ber of tests to 10, both approaches are able to predict the
stability boundary with good accuracy. Variations in the
shape and positioning of predicted stability boundaries have
emerged as a noteworthy consideration, influenced by the
selection of test cuts. These variations signify the sensitiv-
ity of the EGAN approach to the specificities of the chosen
test cases. Overall, the results of this study demonstrate the
potential of the EGAN approach as an effective method for
stability prediction in scenarios with limited experimental
data, and highlight its superiority over the ensemble trans-
fer learning approach in accurately identifying the stability
boundary.

Experimental validation

In this section, a series of experiments are conducted to fur-
ther verify the proposed EGAN approach using real-world
cutting data. The tool setup 3 and a new tool setup, named
tool setup 4, are used for this evaluation.

Actual experiment for setup 3

In this section, actual cutting tests are performed for tool
setup 3, as outlined in Tables 1 and 2, to utilize the EGANand
ensemble transfer learning approaches to predict the actual
(unknown) stability map that best represents the test cuts. To
make predictions, the previously trained networks in EGAN
and ensemble transfer learning are utilized to provide a sub-
set of the performed test cuts as input and output the actual
stability map. This approach is taken to further demonstrate
the effectiveness of the EGAN approach in practical settings.
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Fig. 24 Machining setup for cutting tests Schmitz et al. (2022)

These test cuts are performed on a DMGMori Ultrasonic
65 machining center using a three flute 12.7 mm diameter
carbide endmill (Robbjack FMHV-304-16). The work mate-
rial is 7050-T7451 aluminum. The test setup is shown in
Fig. 24. Figure25 displays the selected five test cuts and the
predicted probabilistic stability map generated by the ensem-
ble transfer learning, and EGAN approaches. The accuracy
and efficacy of these predictions can be evaluated by exam-
ining the remaining actual cutting tests that are displayed
in the figure alongside the predictions. As can be observed
from Fig. 25, the proposed EGAN approach is capable of
generating a stability map that most accurately reflects the
actual cutting tests. While it is not possible to carry out a
comprehensive comparison between these approaches due
to the limited number of available test cuts, comparing the
probabilistic maps shows that the ensemble transfer learning
approach is uncertain about the stability boundary in areas
where no information is available, while the EGAN can pre-
dict the boundary even in these areas.

Actual experiment for setup 4

To further investigate the effectiveness of theEGANapproach
on actual experiments, a new tool setup (Setup 4) is intro-
duced for a climb-milling process. This tool setup includes
a cutting tool with a diameter of 12.7 mm, equipped with
four cutting teeth. The recommended feed rate for this tool
is 0.1mm per tooth. Additionally, the radial immersion is set
at 40%. For the uncertain parameters, three distributions are
considered, referred to as Case 1, Case 2, and Case 3, where
somevalues are overestimated, some are underestimated, and
some provide a good initial estimate, with the largest uncer-
tainty generally applied to damping ratio. Specifically, Case
1 represents a situationwhere the tool FRFwasmeasured, but
the FRF changes with spindle speed. The cutting forcemodel
is based on prior experience using similar tool/workpiece
material combinations, but is not measured specifically for
this case. Case 2 represents a situation where the FRF uncer-
tainty is low, but not zero due to modeling efforts. The work
material is similar to previous testing, but not the same. Case
3 represents a wide distribution where very little is known
about the system to explore the bounds of the EGAN capa-
bilities.

Tables 6, 7 and 8 contain detailed information about these
distributions. These tables also provide the nominal values
for the unknown parameters obtained through tap testing. In
Figure 26, the red line identifies the stability boundary for
these nominal values, along with the test cuts performed.
As seen in this figure, there is uncertainty in the analytical
prediction and, consequently, the nominal stabilitymap is not
able to accurately predict all test cuts. The goal is to assess
the prediction performance of the EGAN approach for either
the nominal or actual stability map.

The EGAN and ensemble transfer learning approaches
are trained on stability maps generated by each distribution
presented in Tables 6, 7 and 8. To evaluate the performance
of these models, a set of five test cuts is selected and used

(a) Test cuts (b) Ensemble transfer learning (c) EGAN

Fig. 25 The actual cutting tests in Setup 3 and predicted probabilistic stability maps generated by the ensemble transfer learning and EGAN
approaches using five test points
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Table 6 Case 1: Tight normal
distribution for the Setup 4

Parameter Nominal value Mean (μ) StdDev (σ ) Error (stdDevs) Error (%)

fn (Hz) 1998 1950 100 −0.48 −0.02

k(N/m) 4.47×106 5×106 1×106 0.53 0.12

ζ 0.0123 0.01 0.0025 −0.92 −0.19

Ks(N/m2) 6×108 6×108 1×108 0 0

β (degree) 68 65 5 −0.6 −0.04

Table 7 Case 2: Wide normal
distribution for the Setup 4

Parameter Nominal value Mean (μ) StdDev (σ ) Error (stdDevs) Error (%)

fn (Hz) 1998 1800 100 −1.98 −0.1

k(N/m) 4.47×106 5×106 2×106 0.265 0.12

ζ 0.0123 0.01 0.01 −0.23 −0.19

Ks(N/m) 6×108 7×108 1×108 1 0.17

β (degree) 68 60 10 −0.8 −0.12

Table 8 Case 3: Wide uniform
distribution for the Setup 4

Parameter Nominal value Min Max Width as % of nominal

fn (Hz) 1998 1600 2400 0.4

k(N/m) 4.47×106 3×106 6×106 0.67

ζ 0.0123 0.005 0.025 1.63

Ks(N/m2) 6×108 3×108 10×108 1.17

β (degree) 68 55 75 0.29

Fig. 26 Actual test cuts along with the stability boundary for the nom-
inal values obtained through tap test in Setup 4

as input to predict the stability maps. Figure27 displays the
selected test cuts alongside the probabilistic stability predic-
tions of themodels and the experimental results for each case.
The predicted stability boundary is also shown in the figure
as a green line, which is determined by applying the thresh-
old 0.5 on the probabilistic maps. The results indicate that,
while the EGAN approach cannot predict the true stability

map covering all cutting tests, it can identify the best stability
map based on the available information. In Case 1, the tight
normal distribution limits the EGAN’s ability to learn vari-
ous stability behaviors including the true stability, and thus,
the best stability map that it finds closely matches the nomi-
nal map. Conversely, in Cases 2 and 3, where a wider range
of stability behavior is observed, the EGAN can adjust the
nominal stability boundary and predict a stability map that
covers more information than the nominal map. The figure
illustrates that this adjustment is more significant when the
EGAN is trained on awide uniform distribution. Notably, the
EGANoutperforms the ensemble transfer learning approach,
particularly in Cases 2 and 3, where the latter exhibits low
accuracy in predicting the true stability boundary.

This example experiences a degree of mode collapse. For
instance, in the case of a wide normal distribution, the EGAN
encounters various stability maps but fails to identify the true
stability map. This could be due to the fact that the EGAN
does not learn andgenerate awide rangeof stability behaviors
as observed in the training dataset. One possible explana-
tion for this is the imbalanced dataset, where some similar
samples occur more frequently than others. To address this,
K-Means is used to cluster the stability maps and up-sample
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Fig. 27 The performance of the EGAN and ensemble transfer learning approaches on actual experiments in Setup 4, using Case 1, Case 2, and
Case 3. The figure shows the predictions of the models compared to the experimental results and nominal stability map

the clusters with fewer samples to balance the dataset. This
approach prevents the EGAN from being biased towards the
clusters with more samples. The performance of the EGAN
approach in predicting the boundary is depicted in Fig. 28
before and after applying K-Means to balance the dataset
generated under Case 3 in Setup 4. The figure demonstrates a
substantial improvement in theEGAN’s performance follow-
ing the dataset balancing. The stability map that is calculated
using tap-testing is inaccurate. Even so, EGAN is still able
to find a stability map that’s able to match the actual cutting
test results. The results suggest that addressing the problems
of instability of training and mode collapse can significantly
enhance theEGANapproach’s performance.The study antic-
ipates that the rapid development of GANs will soon yield a
robust structure that does not have these issues.

It is important to consider that variations in workpiece
material have a direct impact on cutting force coefficients.
This implies that altering the work material could lead to
changes in the resulting stability map. However, in the con-
text of the proposed EGAN approach, our training process
relies on a dataset of stability maps derived from a physics-

based analytical stability model. This dataset accounts for a
distribution of unknown parameters, encompassing cutting
force coefficients among others. Consequently, it encom-
passes stabilitymaps representing a spectrumof cutting force
coefficient variations.

The training of the generator and encoder networks within
the EGAN framework is rooted in this diverse dataset. This
enables the model to acquire insights into the inherent stabil-
ity behaviors and patterns linked to different combinations
of materials andmachining parameters. Given that the model
is trained across a range of distinct cutting forces, it exhibits
an inherent adaptability that may extend to different work
materials within the bounds of its training data. However,
it is worth noting that to ensure the seamless adaptation of
the EGAN approach to new materials, retraining the model
using stability maps generated from the dynamic character-
istics of the new material is a prudent recommendation. This
ensures that the model captures the material-specific behav-
ior required for accurate stability predictions.
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(a) Test cuts (b) EGAN without K-Means (c) EGAN with K-Means

Fig. 28 The performance of the EGAN with and without applying K-Means to balance the training dataset generated under Case 3 in Setup 4

Conclusion and future work

In this study, Encoder GAN (EGAN) is introduced for pre-
dicting stabilitymaps using simulated and experimental data.
The proposed approach is based on Generative Adversarial
Networks (GANs) and consists of the generator, encoder,
and discriminator subnetworks. The simulated data gener-
ated using a physics-based analytical stabilitymodel are used
as training dataset for EGAN. The generator learns to mimic
the physics-basedmodel’s behavior by outputting a plausible
stability map. The encoder learns to project stability maps
back into the corresponding latent space parameter, while
the discriminator distinguishes generated/fake stability maps
from sample maps in the input dataset. The EGAN approach
is designed to generate plausible and distinctive stability
maps for each latent space parameter set, while simulta-
neously enabling the encoder to identify the unique set of
latent parameters associated with each stability map. This is
achieved through a rigorous training process that involves
regularization of the latent space, ensuring that similar sta-
bility maps are assigned to nearby points in the latent space.
These properties allow the EGAN to accurately reconstruct
partial stability information and effectively identify the actual
stability map. To obtain partial information about the target
stabilitymap, a limited number of cutting tests are input into a
non-physics-based Bayesian heuristics approach. Once par-
tial information is obtained, the trained EGAN is utilized to
predict the actual stability map.

The novelty of the approach lies in the use of EGAN
and the regularization property of the latent space to pre-
dict stability maps with limited information, which has the
potential to reduce the number of cutting tests needed to
predict stability maps accurately. The study demonstrates
the effectiveness of the proposed EGAN approach through
extensive numerical simulations and real-world experiments,
with a comprehensive comparison against state-of-the-art
approaches.

Several promising directions for future research are sug-
gested. For instance, the proposed approach could be evalu-
atedusingother variations ofGANs,such as variationalGAN,
cycle GAN, DRAGAN, and others, to reduce mode collapse
and instability of training problems. These methods may fur-
ther enhance the accuracy and robustness of the proposed
approach. Moreover, future studies can explore alternative
approaches to the grid search method proposed in this study,
which could provide additional information to theEGANand
potentially accelerate the identification of the target stabil-
ity map. Such investigations may improve the efficiency and
effectiveness of the proposed approach and contribute to its
broader applicability. Furthermore, the effectiveness of the
proposed approach can be evaluated for othermachining pro-
cesses, such as turning. Investigating the applicability of the
proposed method to other machining processes would pro-
vide valuable insights into its generalizability and potential
for wider adoption across various industrial applications.
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Fig. 29 Sample test points for
numerical experiments: Setup 1

Sample Setup 1, Target 1 Setup 1, Target 2

1 5 tests

10 tests

2 5 tests

10 tests

3 5 tests

10 tests
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Fig. 30 Sample test points for
numerical experiments: Setup 2

Sample Setup 2, Target 1 Setup 2, Target 2

1 5 tests

10 tests

2 5 tests

10 tests

3 5 tests

10 tests
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Fig. 31 Sample test points for
numerical experiments: Setup 3

Sample Setup 3, Target 1 Setup 3, Target 2

1 5 tests

10 tests

2 5 tests

10 tests

3 5 tests

10 tests

1
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