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Abstract 

Monitoring cutting forces for process control may be challenging because force measurements typically require invasive instrumentation. To 
remedy this situation, two new methods were recently developed to estimate cutting forces in real time based on the use of on-machine 
accelerometer measurements. One method uses machine learning, while another uses a physics-inspired data-driven approach, to generate a 
model that estimates cutting forces from on-machine accelerations. The estimated forces from both approaches were compared against cutting 
force data collected during various milling operations on several machine tools. The results reveal the advantages and disadvantages of each 
model to estimate real-time cutting forces. 
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1. Introduction 

Machine tools have progressed from being manually 
driven to being extremely automated, yet real-time knowledge 
of performance and mechanical degradation may still be in its 
infancy. Hence, the future of smart manufacturing, or Industry 
4.0, will rely upon dependable, robust, and relatively 
inexpensive monitoring systems [1, 2] to track the health of 
machines and their processes. Systems with integrated sensors 
and associated analytics for monitoring the errors and 
mechanical conditions of linear axes and spindles as well as 
the machine’s thermal displacements would help to enable the 
future vision of Industry 4.0. 

One potentially significant enabler would be spindles with 
integrated accelerometers [3, 4] or other inexpensive sensors 
to estimate cutting forces and track tool wear and other 
performance metrics in real time. Such an intelligent spindle 
system would be a true enabler of smart manufacturing 
because, although lower cost options have been proposed [5-
9], measuring cutting forces currently requires invasive and 
relatively expensive sensors, such as dynamometers. In 
contrast, accelerometers can be fixtured within machine tool 
spindle housings and can have relatively high bandwidths and 
sensitivities, which may prove useful to track high frequency 
cutting forces. 

http://www.sciencedirect.com/science/journal/22128271
https://nam11.safelinks.protection.outlook.com/?url=https%3A%2F%2Fcreativecommons.org%2Flicenses%2Fby-nc-nd%2F4.0&data=04%7C01%7CPROCIR%40elsevier.com%7C59ec6c0afa9b48cb42bb08d9e0736933%7C9274ee3f94254109a27f9fb15c10675d%7C0%7C0%7C637787608560962534%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000&sdata=axLII0m4p1Kw3WnhoDD0sgWRTabQyLWuBckzwK0s0oE%3D&reserved=0
https://nam11.safelinks.protection.outlook.com/?url=https%3A%2F%2Fcreativecommons.org%2Flicenses%2Fby-nc-nd%2F4.0&data=04%7C01%7CPROCIR%40elsevier.com%7C59ec6c0afa9b48cb42bb08d9e0736933%7C9274ee3f94254109a27f9fb15c10675d%7C0%7C0%7C637787608560962534%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000&sdata=axLII0m4p1Kw3WnhoDD0sgWRTabQyLWuBckzwK0s0oE%3D&reserved=0
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However, creating a method to estimate the cutting forces 
from accelerations for any spindle speed, force profile, tool 
type, and cutting conditions is challenging. Such a task 
requires knowledge of how forces relate to accelerations, 
which first requires on-machine measurements. Accordingly, 
a spindle metrology suite was developed to measure magnetic 
forces induced by a rotating magnet on an instrumented tool 
holder while accelerometers measure on-machine vibrations 
[10]. This process simulates cutting because of the cyclic 
forces from the interaction of rotating and stationary magnets. 
A dataset of synchronized accelerations and forces is 
collected for various combinations of spindle speeds and 
forces. Then, the “simulated cutting dataset” may be used to 
create models that input the accelerations and output the 
forces for any spindle speed and force level. 

This paper compares two approaches to estimate cutting 
forces based on the use of on-machine accelerations. One 
method uses machine learning, while another uses a physics-
inspired data-driven approach [10]. The modeled forces from 
both approaches were compared against cutting force data 
measured during milling operations on two machine tools. 

2. Experimental setup 

Fig. 1 shows the first experimental setup on a vertical 
machining center (VMC). Two triaxial integrated electronic 
piezoelectric (IEPE) ground-isolated accelerometers (PCB 
Piezotronics J356A45) with nominal sensitivities of 
10.2 mV/(m/s²) (100 mV/g) were epoxied with high-
temperature epoxy (Permatex 84102) to the spindle face of the 
VMC (Haas VF-4). The instrumented tool holder containing a 
NeFeB magnet was placed in the spindle. During rotation, the 
rotating magnet of the tool holder interacts with stationary 
magnets on commercial strain-gauge-based force-torque 
sensors (ATI Industrial Automation Mini45) in the metrology 
suite, causing magnetic forces that simulate cutting. The 
resulting forces and vibrations are measured by the data 
acquisition (DAQ) box. 
 To create the simulated cutting dataset used to generate 
models that relate forces and accelerations, data was collected 
for various spindle speeds and force levels. To set the force 
levels, each stationary magnet of the metrology suite was 
moved via its linear positioning stage, and the Z-axis position 
of the instrumented tool holder was moved vertically, to 
produce the desired ranges of the magnetic forces in the X-, 
Y-, and Z-axis directions during rotation of the instrumented 
tool holder. Then, for that given configuration, the DAQ box 
collects the force and acceleration data repeatedly at 51.2 kHz 
over a duration of 1 s while the spindle speed increases from 
500 rpm to 7500 rpm in a stepwise manner with an increment 
of 100 rpm over a period of about 7 min. Next, a new 
configuration of the magnets was chosen to produce different 
magnetic forces, and data were collected during the same 
stepwise increase of the spindle speed from 500 rpm to 
7500 rpm. The highest force range was about 80 N, while the 
lowest force range was about 1 N. The variety of 
combinations of directional forces, and hence the variety of 
combinations of X-, Y-, and Z-axis accelerations, should aid 
in distinguishing the relationships of accelerations to forces 

for the models. In total, simulated cutting data were collected 
for 639 combinations of spindle speeds and force 
configurations. Table 1 shows the relative qualitative force 
ranges for the nine utilized magnet configurations. 

Table 1. Relative qualitative force ranges for each configuration of magnets. 

 Relative Qualitative Force Range 

Configuration Number X-axis Y-axis Z-axis 

1 Low Low Low 

2 Medium Low Low 

3 High Low Low 

4 Low Medium Low 

5 Low High Low 

6 Medium Low Medium 

7 High Low Medium 

8 Low Medium Medium 

9 Low High Medium 

 
 

 

Fig. 1. (a) Metrology suite and instrumented tool holder on vertical machining 
center, (b) end mill with dynamometer, and (c) shell mill with dynamometer. 

After collection of the simulated cutting dataset, the 
instrumented tool holder, DAQ box, and metrology suite were 
removed from the machine tool and the dynamometer was 
attached to the worktable within the machine tool, as seen in 
Fig. 1b. An Al 6061-T6 workpiece was then installed on top 
of the dynamometer. Consequently, the dynamometer and on-
machine accelerometers were the only sensors remaining in 
the machine tool for data collection during cutting of the 
workpiece. As seen in Fig. 1b, a three-fluted end mill with a 
diameter of 12.70 mm (0.5 in) and an overhang length of 
36.72 mm (1.4455 in) was inserted into a CAT-40 collet 
chuck and used to down mill the workpiece in the X-axis and 
Y-axis directions. Then, as seen in Fig. 1c, a new workpiece 
was installed on the dynamometer and an eight-toothed 
indexable shell mill with a diameter of 76.2 mm (3 in) and an 
overhang length of 79.38 mm (3.125 in) was used to down 
mill the workpiece in the Y-axis direction. Forces were 
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sampled by the dynamometer at 50 kHz and accelerations 
were sampled at 51.2 kHz, both with various record lengths, 
to capture cutting forces and machine accelerations before, 
during, and after each cutting pass. 

Fig. 2 shows the second experimental setup on a horizontal 
machining center (HMC). As seen in Fig. 2a, the simulated 
cutting dataset was collected for the HMC (Makino a51nx) in 
the same manner as for the VMC. Then, the cutting passes 
were performed. A three-fluted end mill with a diameter of 
12.70 mm (0.5 in) and an overhang length of 74.96 mm 
(2.951 in) in a heat shrink holder was used to down mill the 
workpiece in the X-axis direction (see Fig. 2b). Forces were 
sampled by the dynamometer at 50 kHz and accelerations 
were sampled at 51.2 kHz before, during, and after each pass. 
 

 

Fig. 2. (a) Simulated cutting setup within horizontal machining center and 
(b) cutting setup with end mill, dynamometer, and accelerometers. 

3. Models for force estimation from accelerations 

Two models, based on separate approaches, were created 
for each of the machine tool datasets described in Sec. 2 to 
estimate cutting forces using accelerations from only one 
triaxial accelerometer. The models are described in this 
section and then compared in the following sections to 
understand their advantages and disadvantages. 

The first approach is a machine learning (ML) method that 
uses deep neural networks for regression. A data-driven 
regression method with a learned nonlinear basis has been 
proposed to learn the frequency response function (FRF) and 
was previously shown to estimate simulated cutting (i.e., 
magnetic) forces with a relatively high accuracy [11]. That 
method was tested for the simulated cutting datasets described 
in Sec. 2, but due to the limited amount of training data, the 
models could not converge. Instead, a simpler deep neural 
network (DNN) model was constructed for FRF learning. The 
DNN model contains [7, 30, 50, 50, 10, 1] nodes in each of its 
six layers, respectively. The DNN model inputs the real and 
imaginary parts of each triaxial vibration spectrum component 
as well as its frequency and outputs the force spectrum 
component at the corresponding frequency. The DNN model 

uses the Fast Fourier transform (FFT) data to predict the 
actual cutting forces, for the first time, up to 500 Hz. 

The second approach is a physics-inspired (PI) data-driven 
model [10] that accounts for pre-defined (not learned) 
nonlinearity types. Specifically, the model accounts for up to 
quadratic dependencies on spindle speed but does not account 
for other nonlinearities. Unlike the first model, the second 
model is from a non-ML approach. The PI model results in 
speed-dependent FRFs approximated by solving for discrete 
FRF values from a least-squares fit. Previously, the original 
method [10] used FFT data with signal-to-noise ratios (SNR) 
greater than 20 to solve for FRF values every 5 Hz. 

However, the PI method was modified such that each 
signal is fitted with harmonics up to 500 Hz and those 
coefficients are used to create each model by solving for FRF 
values at frequencies with varied spacings between 5 Hz and 
18 Hz. Elimination of a SNR constraint was needed because 
the accelerometers were changed to have a 10X higher range 
to allow for greater acceleration magnitudes but resulted in 
higher noise and lower SNRs. Using Fourier components 
partially mitigates the lower SNRs and also produces 
estimated forces that are strictly periodic. Furthermore, the 
adaptive frequency spacing between 5 Hz and 18 Hz was used 
to nominally produce at least 150 data points within each 
frequency bin, which helps to avoid both overfitting (small 
spacings; too few data per model variable) and underfitting 
(large spacings; too much data per model variable). 

Finally, other changes were implemented to create the PI 
model that handles low SNRs. First, 1000 models were 
created with random samplings of half of the simulated 
cutting data. These models have different FRFs due to their 
different data combinations used for the least-squares 
solution. Then, the five percent of the models (50 models) 
having the lowest root mean square error (RMSE) metric 
values (see Sec. 4) were averaged to create a final model. 

All data-driven models, whether ML or PI, output 
estimated forces with frequencies up to 500 Hz but not down 
to 0 Hz. IEPE accelerometers do not have bandwidths down 
to 0 Hz, so estimation of steady-state forces is not possible 
with this setup. Accordingly, all signals have their steady-
state components removed and only the alternating current 
(AC) components were used for the following results. 

4. Metrics for comparison 

Both ML and PI models output forces, so the performances 
of the models can be compared via the use of various metrics. 
The metrics depend upon the force deviation, 𝛿𝛿𝑖𝑖𝑖𝑖, which is the 
difference between the modeled and measured forces; that is, 
 
𝛿𝛿𝑖𝑖𝑖𝑖 = 𝐹𝐹�𝑖𝑖𝑖𝑖 − 𝐹𝐹𝑖𝑖𝑖𝑖 (1) 
 
where 𝐹𝐹�𝑖𝑖𝑖𝑖 is the 𝑗𝑗th data point in the 𝑖𝑖th modeled force signal, 
and 𝐹𝐹𝑖𝑖𝑖𝑖 is the 𝑗𝑗th data point in the 𝑖𝑖th measured force signal. 

Three metrics for the 𝑖𝑖th comparison are the mean absolute 
error (MAE𝑖𝑖), the root mean square error (RMSE𝑖𝑖), and the 
maximum absolute error (MaxAE𝑖𝑖), defined as 
 

MAE𝑖𝑖 =
1
𝑚𝑚𝑖𝑖

��𝛿𝛿𝑖𝑖𝑖𝑖�
𝑚𝑚𝑖𝑖

𝑖𝑖=1

 (2) 
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RMSE𝑖𝑖 = �
1
𝑚𝑚𝑖𝑖

�𝛿𝛿𝑖𝑖𝑖𝑖2
𝑚𝑚𝑖𝑖

𝑖𝑖=1

 (3) 

MaxAE𝑖𝑖 = max��𝛿𝛿𝑖𝑖𝑖𝑖� ∀ 𝑗𝑗� (4) 
 
where 𝑚𝑚𝑖𝑖 is the number of data points in each 𝑖𝑖th force signal. 
Equations (2)-(4) yield three populations (or vectors) of 
metric values, each having a length of 𝑛𝑛, which is the number 
of force signals within the given dataset. If the metric values 
are for a simulated cutting dataset, then 𝑛𝑛 = 639  because 
there are 639 data files, one for each force signal based on a 
unique combination of spindle speed and force configuration. 
Naturally, these error metric populations may be statistically 
analyzed, e.g., via means and standard deviations. Also, the 
mean range (M-R) for all measured force signals is a useful 
measure and is defined as 
 

M-R =
1
𝑛𝑛
��max�𝐹𝐹𝑖𝑖𝑖𝑖  ∀ 𝑗𝑗� − min�𝐹𝐹𝑖𝑖𝑖𝑖  ∀ 𝑗𝑗��
𝑛𝑛

𝑖𝑖=1

 (5) 

 
Therefore, for a given machine tool, each model yields 

three populations of overall error metrics (MAE, RMSE, 
MaxAE) for the simulated cutting dataset, as measures of the 
model’s training performance, as well as a different set of 
overall error metric populations for the actual cutting dataset, 
as measures of the model’s prediction performance. 

5. Comparison of model training performances 

Table 2 and Table 3 show the training performance metrics 
of the models for the VMC and the HMC, respectively, based 
on use of the associated simulated cutting (magnetic force) 
datasets. Each simulated cutting dataset is composed of 639 
data files with synchronized accelerations and magnetic forces 
that were each collected over a duration of 1 s. The 
accelerations were inserted into each model to output the X-, 
Y-, and Z-axis force estimates for comparison with the 
measured forces. The overall error metrics are reported in the 
form of “mean ± standard deviation,” based on the error 
metric populations defined in Eqs. (2)-(4). The mean force 
range (M-R) of the measured data is also shown in the tables 
for comparison purposes. 

Table 2. Training performance metrics for the ML and PI models for the 
VMC with its associated simulated cutting dataset. 

  Metric  

Force Model MAE (N) RMSE (N) MaxAE (N) M-R (N) 

𝐹𝐹X 
ML 3.248 ± 2.411 4.027 ± 3.039 10.584 ± 8.435 

24.72 
PI 2.821 ± 1.346 3.438 ± 1.652 7.395 ± 3.831 

𝐹𝐹Y 
ML 3.252 ± 2.417 4.026 ± 3.020 10.435 ± 8.007 

23.62 
PI 3.017 ± 1.570 3.633 ± 1.891 7.550 ± 4.110 

𝐹𝐹Z 
ML 0.764 ± 0.515 0.961 ± 0.676 2.521 ± 1.959 

4.653 
PI 1.039 ± 0.370 1.322 ± 0.482 3.175 ± 1.332 

 
As seen in Table 2 and Table 3, the PI and ML models 

estimate the magnetic forces with average MAEs of roughly 

15 percent of the mean force ranges (M-Rs). However, the PI 
models are slightly more accurate, in general, than the ML 
models because the PI models produce metric populations 
with standard deviations that are relatively smaller compared 
to the corresponding means. 

Table 3. Training performance metrics for the ML and PI models for the 
HMC with its associated simulated cutting dataset. 

  Metric  

Force Model MAE (N) RMSE (N) MaxAE (N) M-R (N) 

𝐹𝐹X 
ML 3.952 ± 2.649 4.877 ± 3.297 12.616 ± 8.634 

29.27 
PI 3.153 ± 1.668 3.796 ± 2.007 7.744 ± 4.234 

𝐹𝐹Y 
ML 3.583 ± 2.220 4.444 ± 2.789 11.882 ± 7.264 

25.75 
PI 2.474 ± 1.172 2.945 ± 1.363 5.959 ± 2.612 

𝐹𝐹Z 
ML 1.225 ± 0.679 1.530 ± 0.864 3.960 ± 2.397 

7.183 
PI 1.204 ± 0.456 1.537 ± 0.582 3.704 ± 1.515 

6. Comparison of model prediction performances 

It is worth noting again that the model training is only 
performed with the simulated cutting data while the real 
cutting data is reserved for prediction purposes, because every 
model must demonstrate its interpolation and extrapolation 
capabilities on unforeseen data. Accordingly, Table 4 and 
Table 5 show the testing performance metrics of the models 
for the VMC and the HMC, respectively, based on use of the 
associated cutting datasets. Accelerometer and dynamometer 
data were recorded for 37 cutting passes for the VMC and 18 
cutting passes for the HMC. For each cutting pass, the 
accelerometer data during 1 s of the dynamic steady state in 
the middle of the pass were inputted into the models to output 
the X-, Y-, and Z-axis force estimates. Because the 
accelerometer data was not synchronized to the dynamometer 
data in the middle of the cut, being collected by different 
systems without triggering, each measured force was aligned 
(shifted in time) to its associated modeled force to minimize 
the RMSE (see Eq. (3)) between the two signals. After this 
alignment was performed for each pair of modeled and 
measured forces, the overall error metric populations defined 
in Eqs. (2)-(4) were utilized in Table 4 and Table 5 in the 
form of “mean ± standard deviation.” The mean force range 
(M-R) of the measured data is also shown in the tables for 
comparison purposes. 

As seen in Table 4 and Table 5, the PI models estimate the 
cutting forces with average MAEs of roughly 20 percent of 
the mean force ranges (M-R values). This relative error is 
slightly greater than its value of around 15 percent for the 
simulated cutting datasets (see Table 2 and Table 3). 
Therefore, the PI models perform almost as well for the actual 
cutting datasets as for the simulated cutting datasets used for 
training. This consistent performance is fairly impressive 
when considering that (1) the cutting forces are generally 
more than 10X greater in magnitude than the magnetic forces 
on which the models were trained and (2) the cutting 
components may be dominated by harmonics due to multiple 
cutting teeth, which is not the case for the magnetic force 
components. In contrast, the ML models estimate the cutting 
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forces with average MAEs of roughly 30 percent of the mean 
force ranges, which is a significant decrease in performance 
compared to its training performance. Also, the standard 
deviations of the MAE testing populations for the ML models 
are about twice as large as those for the PI models. 

Table 4. Testing performance metrics for the ML and PI models for the VMC 
with its associated cutting dataset. 

  Metric  

Force Model MAE (N) RMSE (N) MaxAE (N) M-R (N) 

𝐹𝐹X 
ML 52.46 ± 35.04 61.84 ± 40.23 132.98 ± 83.33 

259.9 
PI 38.41 ± 17.09 46.43 ± 20.45 102.99 ± 49.67 

𝐹𝐹Y 
ML 67.04 ± 58.39 80.32 ± 72.27 164.58 ± 133.03 

275.1 
PI 55.63 ± 35.12 66.31 ± 41.51 136.68 ± 86.45 

𝐹𝐹Z 
ML 18.93 ± 15.74 22.51 ± 20.07 46.88 ± 34.95 

78.06 
PI 10.76 ± 3.60 13.36 ± 4.60 31.92 ± 13.18 

 

Table 5. Testing performance metrics for the ML and PI models for the HMC 
with its associated cutting dataset. 

  Metric  

Force Model MAE (N) RMSE (N) MaxAE (N) M-R (N) 

𝐹𝐹X 
ML 106.77 ± 85.97 120.53 ± 93.65 208.10 ± 128.00 

204.9 
PI 52.84 ± 23.37 60.73 ± 26.45 122.17 ± 50.06 

𝐹𝐹Y 
ML 102.70 ± 57.83 115.04 ± 62.44 208.36 ± 126.22 

453.1 
PI 47.20 ± 34.60 55.68 ± 40.77 119.06 ± 80.65 

𝐹𝐹Z 
ML 29.90 ± 24.74 34.92 ± 28.22 65.75 ± 44.40 

77.17 
PI 16.01 ± 7.00 18.96 ± 8.17 39.02 ± 14.57 

 
 In addition to the metric comparisons, visualizations of the 
modeled and measured forces are helpful to understand the 
success of each model. Fig. 3 shows the measured and 
modeled cutting forces as the feed per tooth increases for a 
series of six cutting passes at 2500 rpm on the VMC. The 
plots on the left-hand/right-hand side of the figure compare 
the PI-modeled/ML-modeled forces to the measured forces. In 
general, the PI model captures the force levels among the 
three cutting teeth. Accordingly, the model could be used in 
real time to detect a tooth breakage and the force levels 
among the teeth could be used to monitor runout of the end 
mill. In contrast, the ML model does not capture the 
variations of the force level for each tooth. Furthermore, as 
the general force level increases with the feed per tooth, the PI 
model captures this increase in force while the ML model 
fails to do so. Note that the measured forces in Fig. 3 for the 
PI and ML models are slightly different due to dissimilar 
model filtering operations on the force signals. 

Similarly, Fig. 4 shows the measured and modeled cutting 
forces as the feed per tooth increases for a series of six cutting 
passes at 5000 rpm on the HMC. The plots on the left-
hand/right-hand side of the figure compare the PI-
modeled/ML-modeled forces to the measured forces. 
Compared to the cuts performed on the VMC, the cuts 
performed on the HMC do not exhibit as much variation 
among the forces for each of the three cutting teeth, perhaps 

because the end mill of the HMC is in a heat shrink holder. 
Nonetheless, the PI and ML models capture the nominal force 
levels and dominant frequencies among the three cutting 
teeth, except for two outliers produced by the ML model, as 
seen in Fig. 4h and Fig. 4l. 
 

 

Fig. 3. Measured AC X-axis forces on the VMC for the three-fluted end mill 
spinning at 2500 rpm with the modeled forces for the (a-f) PI model and the 
(g-l) ML model with passes of increasing feed per tooth from 25.4 μm 
(0.001 in) to 152.4 μm (0.006 in). 

 Finally, Fig. 5 shows the modeled force range versus the 
measured force range for all cutting passes performed on the 
VMC (37 passes) and the HMC (18 passes). The plots on the 
left-hand/right-hand side of the figure compare the PI-
modeled/ML-modeled force ranges to the measured force 
ranges. Being imperfect, the models produce estimated forces 
with ranges that are different from the measured force ranges. 
Hence, the plot markers do not typically coincide with the 
dashed identity lines. As seen in Fig. 5, the PI-modeled and 
ML-modeled force ranges may be significantly different from 
the measured ranges. However, the PI-modeled markers 
follow nominally linear trends as the feed per tooth increases, 
which is promising for process monitoring and optimization, 
while the trends of the ML-modeled force ranges are not 
nominally linear. This fact is understandable, since ML-based 
models typically lack a sufficient ability to extrapolate, which 
is needed because the cutting force magnitudes are more than 
10X greater than those on which the models were trained. 
Nonetheless, Fig. 5 shows that the ML models do not produce 
enormously large outliers during extrapolation. 
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Fig. 4. Measured AC Y-axis forces on the HMC for the three-fluted end mill 
spinning at 5000 rpm with the modeled forces for the (a-f) PI model and the 
(g-l) ML model with passes of increasing feed per tooth from 25.4 μm 
(0.001 in) to 152.4 μm (0.006 in). 

 

Fig. 5. Modeled force range versus the measured force range for all cutting 
passes, using the (a) PI model for the VMC, (b) PI model for the HMC, (c) 
ML model for the VMC, and (d) ML model for the HMC. 

7. Conclusions 

Two data-driven methods that estimate three-dimensional 
cutting forces from on-machine accelerometer measurements 
were compared with data measured during milling operations 
on two machine tools. One method uses machine learning 
(ML) while another uses a physics-inspired (PI) data-driven 
approach to estimate forces from accelerations. The PI models 
estimated the cutting forces with mean absolute errors of 
about 20 percent of the mean force ranges, which was 
generally better than the performance of the ML models. 
Nonetheless, both methods show the potential for monitoring 
real-time cutting forces via accelerometer measurements, to 
provide intelligence for the optimization of parts production. 
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