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A geometric approach to milling stability uncertainty☆ 
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A B S T R A C T   

Deterministic solutions for the milling stability boundary are provided by frequency-domain, time-domain, and 
semi-discretization methods. While these deterministic solutions are valuable, it is essential to consider the 
uncertainty in the predicted stability boundary to enable optimum milling parameter selection. Prior efforts have 
implemented Type A (statistical) uncertainty evaluations. This paper provides a Type B (other means) analysis, 
where the stability uncertainty is represented by offset boundaries based on user-selected uncertainties in spindle 
speed and axial depth. The geometric approach is demonstrated for a selected milling system using a frequency- 
domain stability solution.   

1. Introduction 

An important consideration for milling parameter selection is chat-
ter, a self-excited vibration that occurs when the axial depth of cut ex-
ceeds a limiting value for a selected spindle speed and radial depth of 
cut. The separation between stable and unstable combinations of spindle 
speed and axial depth is depicted graphically as a stability map [1]. This 
map can be generated using frequency-domain, time-domain, or semi- 
discretization methods, all of which have been verified experimentally 
[2]. Inputs to these analyses include the tool tip frequency response 
function (FRF) which represents the vibration response at the free end of 
the cutting tool, the mechanistic cutting force model coefficients that 
relate the cutting force components to the instantaneous chip thickness 
and width, number of cutting teeth, radial depth of cut, and milling 
direction (up/conventional or down/climb milling). The spindle speed is 
considered to be the independent variable and the limiting axial depth is 
calculated as the dependent variable. 

While deterministic solutions for the milling stability boundary exist, 
it is important to consider the effect of uncertainties in the input pa-
rameters on the corresponding stability boundary uncertainty [3]. The 
motivation is inherent uncertainties in the stability algorithm and the 
inputs. The aleatoric algorithm uncertainties are based on approxima-
tions and assumptions in the stability model and assumptions about the 
model inputs (the description of cutting force by a linear mechanistic 

force model and its associated coefficients, for example). The epistemic 
input uncertainties, on the other hand, are based on measurement un-
certainty (the complex-valued tool tip FRF, for example). Because the 
model and inputs are uncertain, the predicted stability boundary is also 
uncertain. To make the best use of the predicted stability map, it is 
required that the confidence in the prediction is evaluated. This provides 
a probabilistic solution and, consequently, a predictive model for milling 
stability. 

In 2005, Kurdi et al. first evaluated the uncertainty in milling per-
formance prediction, including both stability and surface location error 
(SLE), a part geometry error caused by forced vibrations [4]. They 
estimated confidence in parameter optimization results based on un-
certainty in the milling model input parameters. They applied both 
Monte Carlo simulation and numerical derivatives of the system eigen-
values to evaluate the uncertainty in axial depth of cut. Duncan et al. 
reported the addition of confidence intervals to the milling stability limit 
in 2006 [5]. Uncertainties in the tool tip FRF, cutting force model co-
efficients, and radial depth of cut, were used to determine the associated 
uncertainty in the predicted stability limit at each spindle speed; see 
Fig. 1 for an example, where it is observed that experimental results do 
not exactly agree with the (mean) predicted stability limit, but the un-
certainty intervals capture the physical behavior. Specifically, spindle 
speed-axial depth pairs below the uncertain interval are predicted to be 
stable, pairs above are predicted to be unstable (chatter), and those 
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within the uncertain interval may be stable or unstable. In related work, 
Duncan predicted the tool tip FRF using receptance coupling substruc-
ture analysis (RCSA) and propagated uncertainty in the predicted FRF 
through frequency-domain stability models [6]. 

Lee and Donmez studied the effect of changes in dynamics of the 
tool-holder-spindle system on stability limit uncertainty [7]. Kurdi et al. 
determined the variability in stability boundary and surface location 
error using Latin Hypercube sampling. They described the experimental 
procedures used to estimate the model parameters and included the 
effect of correlation between parameters [8,9]. Sims et al. applied fuzzy 
arithmetic techniques to frequency domain and time-finite element 
stability analyses [10]. Zhang et al. maximized material removal rate 
and minimized surface location error using an optimization formulation, 
where the upper bound of surface location error and lower bound of the 
stability boundary were adopted as the optimization object and the 
constraint condition, respectively [11]. Graham et al. used the edge 
theorem and the zero-exclusion condition to develop a robust chatter 
stability model [12]. Graham et al. extended this work to include a time 
domain approach based on Lyapunov stability theory and subjected to 
linear matrix inequality conditions [13]. Cao and Li developed a robust 
chatter stability model for micro-milling based on a frequency-domain 
stability milling model, where the edge theorem and the zero- 
exclusion condition were again implemented [14]. 

Bayesian (probabilistic) methods have been applied to milling sta-
bility modeling by multiple authors. Bayesian inference was first applied 
by Karandikar et al. in 2014 [15]. A Bayesian approach was imple-
mented that used a random walk strategy for establishing a stability 
model. The stability boundary was modeled using random walks and the 
probability of the random walk being the true stability limit was updated 
using experiments. Karandikar et al. also described automated identifi-
cation of the milling stability boundary using Bayesian machine learning 
and experiments [16]. The user’s initial beliefs about milling stability, or 
prior, were updated using experiments to calculate the posterior, a 
modified probabilistic description of the milling stability limit with 
reduced uncertainty based on the new information. Karandikar et al. 
later proposed a Bayesian learning approach for stability boundary and 
optimal parameter identification in milling that did not require knowl-
edge of the tool tip dynamics or cutting force model coefficients [17]. Li 
et al. estimated posterior milling parameter distributions using a 
Bayesian inference framework based on an ensemble Markov Chain 
Monte Carlo algorithm [18]. Cornelius et al. described a physics-guided 
Bayesian framework for identifying the milling stability boundary and 
system parameters through iterative testing [19]. Prior uncertainties for 
the parameters were identified without physical testing of the actual 

milling system. Those uncertainties were propagated to the stability 
uncertainty using Monte Carlo simulation; this established the prior. The 
uncertainties were then updated based on new information acquired 
from cutting tests to calculate the posterior. Chen et al. also proposed a 
physics-informed Bayesian inference framework for milling stability 
which leveraged experimental data to infer the distribution of model 
parameters [20]. The likelihood function was based on Floquet theory in 
this study. Schmitz et al. described a milling stability identification 
approach that simultaneously considered physics-based models for the 
tool tip frequency response functions and stability predictions; the bi-
nary result from a milling test; chatter frequency when an unstable result 
was obtained; and user risk tolerance [21]. The algorithm applied 
probabilistic Bayesian machine learning with adaptive, parallelized 
Markov Chain Monte Carlo sampling to update the probability of sta-
bility with each milling test. 

Other methods have also been applied to evaluate the milling sta-
bility boundary uncertainty. Huang et al. applied the dimension 
reduction method to compute statistical moments of the limit state 
function. Saddle point approximation was employed to estimate the 
probability density function, cumulative distribution function, and dy-
namic stability reliability [22]. Hadju et al. determined robust stability 
boundaries based on the concept of stability radius and structured sin-
gular values using an extended multi-frequency stability solution [23]. 
Liu et al. introduced a time-varying reliability analysis to predict chatter 
stability by considering the cutting force model coefficients to be both 
random and time-varying variables [24]. Löser et al. calculated a robust 
stability limit using a computationally efficient approximation of a 
multi-frequency stability solution [25]. Deng et al. established a chatter 
reliability model, where the tool tip FRF modal parameters were defined 
as random variables. The second-order fourth-moment method was 
applied; the limiting axial cutting depth was substituted by an explicit 
expression obtained using a neural network [26]. Hadju et al. presented 
a robust stability analysis based on a pseudo-spectral approach to 
incorporate uncertainties in the cutting force model coefficients and 
modal parameters used to describe the tool tip FRF. Operational modal 
analysis was conducted at different spindle speeds to identify the natural 
frequencies and damping ratios of the dominant vibration modes using 
impact testing [27]. Deng et al. applied a generalized regression neural 
network to obtain the stability boundary at different positions within a 
machine tool’s work volume [28]. 

In related work, Junior et al. described the relationship between the 
pre-setter tool extension length and diameter measurements, the tool tip 
FRF, and milling stability [29]. The RCSA technique was used within a 
Monte Carlo simulation to establish the tool point FRF uncertainty as a 
function of the tool extension length and diameter uncertainties. The 
distribution in the tool point FRF was then propagated to uncertainty in 
the milling stability limit. Bhattacharyya et al. derived empirical models 
for cutting forces and propagated uncertainties using: 1) a first-order 
Taylor series expansion and a root sum of squares method to analyti-
cally determine the expanded uncertainty in force predictions; and 2) 
Monte Carlo simulation to numerically determine the statistical distri-
butions and uncertainties [30]. The literature contributions are sum-
marized chronologically in Table 1. 

2. Uncertainty evaluation background 

As stated in NIST Technical Note 1297 [31], ‘the result of a mea-
surement is only an approximation or estimate of the value of the spe-
cific quantify in question, that is, the measurand, and thus the result is 
complete only when accompanied by a quantitative statement of its 
uncertainty’. The inclusion of a defensible uncertainty statement en-
ables the user to determine his/her confidence in the measurement and 
its usefulness in decision making. This concept can be extended to 
simulation results based on measured input quantities. Again, the user 
requires some indication of the reliability of the analysis output to gage 
its usefulness. Guidelines for evaluating the uncertainty in measurement 

Fig. 1. Example stability boundary with spindle speed-dependent, 95 % con-
fidence intervals. The vertical axis is the limiting axial depth of cut, blim, and 
the horizontal axis is spindle speed, Ω. Experimental results are also 
included [5]. 
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results are described in [31–34], for example. Often the measurand is 
not observed directly, but is expressed as a mathematical function of 
multiple input quantities. In this case, the fundamental steps in uncer-
tainty estimation are to define the measurand, identify the input un-
certainty contributors and their distributions, and propagate the 
uncertainties through the measurand using either analytical (Taylor 
series expansion) or sampling (e.g., Monte Carlo or Latin hypercube) 
approaches. As noted in [31], the ‘uncertainty of the result of a mea-
surement generally consists of several components which may be 
grouped into two categories according to the method used to estimate 
their numerical values: A. those which are evaluated by statistical 
methods, B. those which are evaluated by other means.’ 

In previous milling stability evaluation, Type A analyses were fol-
lowed where distributions of the model input parameters, including the 
tool tip FRF (or its representation by modal parameters) and cutting 
force coefficients, were propagated through the stability analysis to 
evaluate stability boundary uncertainty using a statistical evaluation of 
the boundary distribution (e.g., mean and standard deviation). Gener-
ally, the cutting force coefficients tend to shift the stability boundary up 
and down (in axial depth), while the tool tip FRF (or modal parameters) 
tend to shift the stability boundary not only up and down, but also left 
and right (in spindle speed). This couples the spindle speed-axial depth 
boundary coordinates to the inputs, but their relationship is defined by 
the selected stability analysis and a direct connection between the input 
uncertainties and stability boundary uncertainty is not straightforward 
to identify. This has motivated the Type A analyses in the literature. 

Because milling stability analyses consider spindle speed to be the 
independent variable, the uncertainty in axial depth has been reported 
as spindle speed dependent. In this paper, a Type B approach is selected 
where uncertainty in the stability boundary location in the (spindle 
speed, axial depth), or (Ω, b), domain is based on user-selected un-
certainties (or offsets, o) in both the spindle speed and axial depth di-
rections. A stability map is then constructed using a geometric approach 
to show the mean stability limit and uncertainty intervals based on the 
user’s beliefs and risk preference (averse, neutral, or seeking). For the 
purposes of this paper, the mean stability limit represents the deter-
ministic solution based on the mean inputs. 

3. Geometric approach 

As shown in Fig. 2, the uncertainty is accommodated using an offset 
(dashed line) of the mean stability boundary (solid line) by a Euclidean 
distance, d; see Eq. 1. In Fig. 2, (Ω1, b1) and (Ω2, b2) are adjacent points 
on the mean stability boundary and (Ω1a, b1a) is a point on the offset 
boundary which corresponds to (Ω1, b1). The perpendicular distance, d, 
is calculated from: 1) the user-selected boundary offsets in spindle 
speed, oΩ, and axial depth, ob; and 2) the angle, θ, of the vector between 
points 1 and 1a which depends on the local slope of the stability 
boundary. See Fig. 3, which shows θ and its relationship to d, and Eq. 2, 
where the absolute value in axial depth difference is required because 
the mean stability boundary slope can be positive or negative. 

d =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(obcosθ)2
+ (oΩsinθ)2

√

(1) 

Table 1 
Chronological literature summary for milling uncertainty evaluation studies.  

First author Year Topic 

Kurdi, M.H. 2005 Used Monte Carlo simulation and numerical derivatives of the system eigenvalues to evaluate the uncertainty in axial depth of cut 
Duncan, G. S. 2006 Used Monte Carlo simulation to propagate parameter input uncertainty through analytical milling stability models 
Duncan, G. S. 2006 Used Monte Carlo simulation to propagate uncertainty in tool tip FRF predicted using RCSA through analytical milling stability models 
Lee, K.J. 2007 Studied effect of changes in dynamics of the tool-holder-spindle system during the milling operation on stability limit uncertainty 
Kurdi, M.H. 2009 Evaluated variability in stability boundary and surface location error using Latin Hypercube sampling 
Sims, N.D. 2010 Applied fuzzy arithmetic techniques to uncertainty in frequency domain and time-finite element stability analyses 
Zhang, X. 2012 Maximized material removal rate and minimized surface location error using an optimization formulation 
Graham, E. 2013 Used the edge theorem and the zero-exclusion condition to develop a robust chatter stability model 
Graham, E. 2014 Described time domain approach based on Lyapunov stability theory and subjected to linear matrix inequality conditions 
Karandikar, J. 2014 Modeled the stability boundary using random walks in a Bayesian framework 
Cao, Z. 2015 Used the edge theorem and the zero-exclusion condition to develop a robust chatter stability model for micro-milling 
Huang, X. 2016 Applied dimension reduction method and saddle point approximation to estimate reliability of the dynamic stability 
Hajdu, D. 2017 Determined robust stability boundaries based on the concept of the stability radius and structured singular values 
Liu, Y. 2017 Introduced a time-varying reliability analysis with variable cutting force model coefficients 
Löser, M. 2018 Calculated a robust stability map using an approximation of the multi-frequency stability solution 
Junior, M.V. 2018 Described the relationship between the pre-setter tool extension length and diameter measurements, the tool tip FRF, and stability 
Deng, C. 2020 Established a chatter reliability model using the second-order fourth-moment method and a neural network 
Hadju, D. 2020 Presented a robust stability analysis based on a pseudo-spectral approach that incorporated uncertainties in the cutting force model coefficients and 

modal parameters 
Bhattacharyya, 

A. 
2021 Derived empirical models for cutting forces and propagated uncertainties using a first-order Taylor series expansion and Monte Carlo simulation 

Cornelius, A. 2021 Described a physics-guided Bayesian framework for identifying the milling stability boundary and system parameters through iterative testing 
Chen, G. 2021 Proposed physics-informed Bayesian inference framework for milling stability 
Deng, C. 2022 Applied a generalized regression neural network to obtain the position-dependent stability boundaries 
Schmitz, T. 2022 Applied Bayesian machine learning to physics-based prior with adaptive, parallelized Markov Chain Monte Carlo sampling  

Fig. 2. Mean stability boundary (solid line) and offset boundary (dashed line) 
using the distance, d. 
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θ = tan− 1|b2 − b1|

Ω2 − Ω1
(2) 

Given d, two steps are followed to determine the coordinates of point 
1a, (Ω1a, b1a), on the offset boundary. The first step is to apply the dot 
product to perpendicular vectors A and B, where A is the vector from 
point 1 to point 2 on the mean stability boundary and B is the vector 
from point 1 and point 1a on the offset stability boundary. The vectors 
are shown in Fig. 4. 

The dot product of vectors A and B is given by Eq. 3, where Ax = Ω2 – 
Ω1, Bx = Ω1a – Ω1, Ay = b2 – b1, and By = b1a – b1. 

cos90 = 0 =
A • B
|A||B|

=
AxBx + AyBy

|A||B|
(3) 

Substitution of Ax, Bx, Ay, and By in Eq. 3 gives Eq. 4. 

0 = (Ω2 − Ω1)(Ω1a − Ω1)+ (b2 − b1)(b1a − b1) (4) 

The second step is to apply the Pythagorean theorem to Fig. 5. This 
provides a relationship between d and the unknown coordinates of point 
1a, (Ω1a, b1a). The result is provided in Eq. 5. 

d2 = (b1 − b1a)
2
+(Ω1a − Ω1)

2 (5) 

Eq. 4 is rewritten to solve for Ω1a. 

Ω1a = Ω1 +
(b2 − b1)

(Ω2 − Ω1)
b1a +

(b2 − b1)

(Ω2 − Ω1)
b1 (6) 

Eq. 6 is substituted into Eq. 5. 

d2 = (b1 − b1a)
2
+

(
− (b2 − b1)

(Ω2 − Ω1)
b1a +

(b2 − b1)

(Ω2 − Ω1)
b1

)2

(7) 

Eq. 7 is expanded to solve for b1a, where A = b1, B =
− (b2 − b1)
(Ω2 − Ω1)

, and C =

(b2 − b1)
(Ω2 − Ω1)

b1. 

d2 = (A − b1a)
2
+(Bb1a + C)

2
= A2 − 2Ab1a + b2

1a +B2b2
1a + 2BCb1a +C2

(8) 

Eq. 8 is rearranged into quadratic equation format in Eq. 9, where D 
= 1 + B2, E = − 2A + 2BC, and F = A2 + C2 – d2. The quadratic formula is 
applied to Eq. 9 to give the solutions for b1a in Eq. 10. 

Db2
1a +Eb1a +F = 0 (9)  

b1a =
− E ±

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
E2 − 4DF

√

2D
(10) 

The two solutions from Eq. 10 represent the upper (maximum b1a 
value) and lower (minimum b1a value) offset boundaries for the uncer-
tain stability map. Finally, the corresponding spindle speed for either 
value is calculated using Eq. 11. 

Ω1a = Ω1 +Bb1a +C (11) 

The solution procedure given by Eqs. 1–11 is applied sequentially to 
each point along the mean (deterministic) stability boundary to identify 
the corresponding points on the upper and lower offset boundaries. 

4. Numerical example 

To demonstrate the geometric approach, an example milling system 
is specified and offset boundaries are generated for user-selected spindle 
speed, oΩ, and axial depth, ob, offset values. The frequency-domain 
stability solution presented by Altintas and Budak [35] is imple-
mented to calculate the mean stability boundary. The milling system 
parameters are:  

▪ 20 % radial immersion down milling  
▪ 4 teeth 

Fig. 3. Calculation of d using θ as shown in Eq. 2. The variation in d from ob 
(when θ = 0) to oΩ (when θ = 90 deg) is displayed on the right. 

Fig. 4. Perpendicular vectors A and B used to calculate the dot product.  

Fig. 5. Application of Pythagorean theorem to provide relationship between 
d and the coordinates of point 1a on the offset boundary. 
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▪ single degree of freedom, symmetric tool tip FRFs represented 
by a stiffness of 3 × 106 N/m, a viscous damping ratio of 3 %, 
and a natural frequency of 750 Hz  

▪ a cutting force model with a specific cutting force of 750 N/ 
mm2 and a force angle of 68 deg. (aluminum alloy). 

The offsets for this numerical example are oΩ = 100 rpm and ob = 0.2 
mm = 200 μm. The selection of these two offset values is user dependent. 
The nature of a Type B analysis is that “other means” are used to 
establish the uncertainty. A user with a higher risk tolerance would 
choose smaller offsets to select parameters nearer the mean boundary, 
while one with a lower risk tolerance (risk averse) would choose larger 
offsets to avoid obtaining unstable (chatter) cutting conditions. The 0.2 
mm value selected for the analysis is what the author would consider to 
be a small axial depth offset. The actual values would depend on the 
application. If parameters were being selected for finish machining a 
high value forging where significant value is already embedded in the 
part, for example, larger offset values may be chosen. 

Fig. 6 displays the mean stability limit together with the upper and 
lower offset boundaries. The corresponding θ and d values for the upper 
(Figs. 7 and 8) and lower (Figs. 9 and 10) offsets are also provided (blue 
circles), together with the associated offset boundaries (green dots). It is 
seen that the θ and d values are invariant (for the selected milling sys-
tem). Choosing the minimum or maximum value from Eq. 10 defines the 
offset boundary coordinates. 

The reader will note that Figs. 6-10 have units of micrometers for 
axial depth (right vertical axis). Because spindle speeds are typically in 
thousands of rpm, the selection of micrometers for axial depth provides 
approximately the same scaling for both variables and avoids the 
requirement for normalizing variables prior to solving Eqs. 1–11. If 
desired, the axial depth coordinates may be converted back to the 
traditional unit of millimeters for plotting purposes. 

Close observation of Figs. 7-10 demonstrates the relationship be-
tween d and θ represented conceptually in Fig. 3. At spindle speeds of 
5660 rpm and 11,298 rpm, where local maxima in axial depth occur, θ 
approaches 90 deg. in Figs. 7 and 9 (left vertical axis). The corre-
sponding d values approach oΩ = 100 rpm in Figs. 8 and 10 (left vertical 
axis). At a spindle speed of 6960 rpm, where a local minimum in axial 
depth occurs, θ approaches 0 deg. in Figs. 7 and 9. The corresponding 
d value approaches ob = 200 μm in Figs. 8 and 10. 

5. Conclusions 

This paper described a Type B approach to milling stability boundary 
uncertainty evaluation. In the new geometric approach, stability 
boundary location uncertainty in the (Ω, b) domain was based on user- 
selected uncertainties in both the spindle speed, oΩ, and axial depth, ob, 

Fig. 6. Mean stability limit with upper and lower offset boundaries with oΩ =

100 rpm and ob = 0.2 mm = 200 μm. 

Fig. 7. Lower offset boundary (green dots, right vertical axis) and θ values 
(blue circles, left vertical axis). (For interpretation of the references to colour in 
this figure legend, the reader is referred to the web version of this article.) 

Fig. 8. Lower offset boundary (green dots, right vertical axis) and d values 
(blue circles, left vertical axis). (For interpretation of the references to colour in 
this figure legend, the reader is referred to the web version of this article.) 

Fig. 9. Upper offset boundary (green dots, right vertical axis) and θ values 
(blue circles, left vertical axis). (For interpretation of the references to colour in 
this figure legend, the reader is referred to the web version of this article.) 
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directions. A stability map was then constructed with the mean stability 
limit and uncertainty intervals based on (oΩ, ob), which represent the 
user’s beliefs and risk preference (averse, neutral, or seeking). These 
uncertainty intervals were graphically represented as upper and lower 
boundaries offset by a Euclidean distance based on the local slope of the 
mean stability boundary and the user-selected uncertainties. 

The offset boundaries were determined using a two-step approach. 
The first step was to calculate the dot product of perpendicular vectors 
defined using adjacent points on the mean stability boundary and a pair 
of points connecting the mean stability boundary and offset boundary. 
The second step was to apply the Pythagorean theorem to this perpen-
dicular vector geometry. The result was a system of two nonlinear 
equations in two unknowns: the two coordinates of point 1a, (Ω1a, b1a), 
on the offset boundary which correspond to point 1 on the mean stability 
boundary. These two steps were repeated for each point on the mean 
stability boundary. Points on the upper and lower boundaries were 
identified from the two roots of a quadratic equation. Numerical results 
were provided to demonstrate the approach. 

The outcome of this research is an alternate milling stability uncer-
tainty analysis that enables the user to directly specify his/her prefer-
ences for a Euclidean distance between the mean and offset stability 
boundaries. Future work will include the extension of this analysis to 
SLE [36] and tool length-dependent stability surfaces [37]. 
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Fig. 10. Upper offset boundary (green dots, right vertical axis) and d values 
(blue circles, left vertical axis). (For interpretation of the references to colour in 
this figure legend, the reader is referred to the web version of this article.) 
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