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Additive friction stir deposition (AFSD) provides a solid-state approach to metal deposition that does not
rely on local melting and solidification, but rather on kinetic energy and plastic flow. In this study, AFSD is
combined with structured light scanning, turning, and milling to produce metal components while con-
sidering the unique requirements imposed by the hybrid manufacturing process sequences. Two demon-
strations are presented which include: 1) a cylindrical build plate selection to enable coordinate system
transfer between deposition and turning of a hollow cone; and 2) intermittent deposition-machining
operations with structured light scanning to fabricate a two-sided hexagon-cylinder geometry.

� 2023 Society of Manufacturing Engineers (SME). Published by Elsevier Ltd. All rights reserved.
1. Introduction

Beam-based metal additive manufacturing (AM) methods,
including powder bed fusion and directed energy deposition, as
well as wire arc AM, are finding broader applications in production.
These methods melt the metal powder or wire using a high inten-
sity heat source to deposit the material layer-by-layer. The geom-
etry and microstructure are defined by the solidification behavior,
which depends on the local temperature gradient and cooling rate
[1]. Additive friction stir deposition (AFSD) provides a solid-state
alternative [2–5], where no melting occurs and the geometry and
microstructure are defined by the kinetic energy introduced by
the AFSD process. Prior research has included the study of
microstructure and its relationship to mechanical properties and
operation parameters [6–15]. Materials include aluminum, magne-
sium, copper, and steel alloys [16–20]. Repair and cladding [21–
24], effect of alloy temper [25], fatigue behavior [26], process mod-
eling [27], and force/temperature control [28] have also been
examined.

In this paper, AFSD is combined with structured light scanning,
turning, and milling to produce metal components while consider-
ing the hybrid manufacturing processes holistically to arrive at a
comprehensive process plan. Deposition and machining strategies
are presented for two geometries and materials. First, a 7075 alu-
minum cone is deposited and turned using a cylindrical build plate.
Second, a 6061 aluminum hexagon-cylinder combination is depos-
ited using a square build plate. Milling and turning are applied
intermittently with deposition to enable part fabrication using
both sides of the build plate. Structured light scanning is used to
connect the deposition, machining, and part design coordinate sys-
tems in both cases [29–31].

In general, the hybrid manufacturing process plan includes
seven primary steps: 1) digital part design; 2) path planning for
AFSD; 3) metal deposition using AFSD to produce the preform; 4)
measuring the preform to determine its geometry and identify its
coordinate system using available (e.g., edge of the build plate)
or added (e.g., tooling spheres) features, or fiducials; 5) path plan-
ning for CNCmachining by importing the measured preform geom-
etry and using it as the stock model with its predefined coordinate
system; 6) CNC machining the preform to its design dimensions
and surface finish using the coordinate system established by the
fiducials; and 7) measuring the machined part to ensure confor-
mance to design intent. These steps are summarized in Fig. 1.
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2. Manufacturing processes

AFSD was completed using a MELD Manufacturing L3 machine,
which forces 9.5 mm square metal feedstock (e.g., wrought mate-
rial) through a rotating spindle using a screw-type actuator located
above the spindle. The actuator allows rotation of the 0.5 m long
feedstock with the spindle while simultaneously providing the
axial force and material feed against the build plate or previous
layer. The feedstock rotation against the build plate/previous layer
generates frictional heat, which softens the feedstock sufficiently
to cause plastic flow and solid-state metallurgical bonding with
the existing material. The printed material is constrained axially
by the gap between the rotating tool and build plate/previous layer
(1 mm to 3 mm). In the lateral direction, there is only friction
between the plastically flowing material and the tool (on the
top) and build plate/previous layer (on the bottom). For this rea-
son, flash can occur at the outer portions of the current layer.
The tool is translated parallel to the base plate/previous layer with
a selected feed rate to print the current layer. Milling was com-
pleted using a Haas VF-4 three-axis CNC milling machine. Turning
was completed using a Haas ST-15 CNC lathe. Structured light
scanning was performed using a GOM ATOS Q.
3. Cone

The cone processing sequence included AFSD, scanning, turning,
and surface finish measurements. The innovations were: 1) offset
deposition paths to enable an angled (not vertical), hollow geome-
try; and 2) the selection of a cylindrical build plate to seamlessly
combine the deposition and turning steps. The 25 mm thick,
216 mm diameter 7075 aluminum build plate was turned to final
dimensions and then secured to the L3 table. This was accom-
Fig. 1. Seven primary steps for hybrid manufacturing process plan beginn
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plished by drilling and tapping blind holes in the back of the build
plate, bolting it to a larger rectangular subplate using countersunk
socket head cap screws, and clamping the subplate to the machine
table using four toe clamps. The center of the cylinder was located
using the L3 spindle and edge finder. The center of the build plate
was set as the work coordinate system origin and the deposition
tool paths were defined relative to the cone center. A helical inter-
polation scheme was used to deposit the 7075 aluminum bar stock.
This alloy was selected because it is relevant to the aerospace (i.e.,
conical) geometry.

The 57.2 mm radius, 57.2 mm tall (45 deg) cone geometry is
displayed in Fig. 2(a). For the 38 mm AFSD layer width, the initial
tool path radius (at the build plate) was 63.5 mm to ensure that
adequate material was available after flash removal by machining
to achieve the design radius. Because the tool path radius was
more than half the layer width, the cone base was hollow. A layer
height of 1.5 mm was selected to define the helical interpolation
tool path. The initial layer was deposited using a spindle speed of
300 rpm, material feed rate (through the spindle) of 58.4 mm/
min, and tool feed rate (across the build plate surface) of
132.1 mm/min. Subsequent layers were deposited at 140 rpm with
the same feed rates. The reduced spindle speed was applied due to
heat buildup and increased temperature in the deposited material.
The deposition is shown in Fig. 2(b), including the cylindrical build
plate, subplate, and toe clamps.

After deposition, the build plate was released from the subplate
and scanned to determine the deposition geometry. The scan result
is shown in Fig. 2(c) and the superposition of the AM preform and
cone design is displayed in Fig. 2(d). The scan origin was defined at
the top center of the build plate. The design was then aligned at
this same location.

Given the coincident origins, design geometry, and deposited
material, the turning tool paths were generated by the CAM soft-
ing with digital part design and ending with part measurement [32].



Fig. 2. A) Cone design. b) afsd deposition, build plate, andsubplate. c) Scan result, including deposition and build plate. d) The scan serves as the CAM stock model. The center
of the build plate from the scan and center of the cone base from the design are used to align the coordinate systems for tool path generation.
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ware using the scan as the stock model. Because the tool paths
were based on the cylinder top center, the only requirement for
clamping in the CNC lathe was to provide three-jaw clamping sur-
faces that centered the part on the lathe spindle centerline. A single
touch-off on the build plate surface in the lathe enabled the tool
paths to be executed and the flash and extra deposited material
to be removed and reveal the cone design.

The external soft jaw clamping approach is shown in Fig. 3(a).
The cone geometry after rough turning is displayed in Fig. 3(b).
The final cone is shown in Fig. 3(c). To reveal the hollow geometry,
the cone was sectioned using wire electrical discharge machining
(EDM). Fig. 3(d) shows the internal geometry. The additional mate-
rial is flash that was developed on the internal edge of the helical
deposit. The turning operation was completed using a 0.40 mm
nose radius carbide insert with a 0.89 mm depth of cut, 243.8 m/
min cutting speed, 0.13 mm/rev roughing feed rate, 0.05 mm/rev
finishing feed rate, and flood coolant.

Surface finish measurements were completing near the cone tip
using an Alicona 3D measuring system and Mitutoyo SJ-210 pro-
filometer. Measurements were performed perpendicular to the
feed direction at three equally spaced radial locations and aver-
aged. Roughness values were 0.365 lm Ra for the Alicona and
0.369 lm Ra for the Mitutoyo.
4. Hexagon-cylinder

The hexagon-cylinder processing sequence included a two-
sided 6061 aluminum deposition and intermittent machining
approach. The hexagon was deposited first on a square 25 mm
thick, 6061 aluminum build plate (the 6061 alloy was selected to
demonstrate the ability to deposit both 7075 and 6061 aluminum
alloys). The origin was set at the build plate top corner for the heli-
cal interpolation path planning to generate the hexagon shape
using a 2 mm layer height. On the L3 machine, the spindle and
edge finder were used to set the work coordinate system at the
build plate top corner. Deposition then proceeded on the top sur-
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face of the build plate, which was clamped to the machine table
using four toe clamps (one at each corner). The initial layer was
deposited using a spindle speed of 300 rpm, material feed rate of
139.7 mm/min, and tool feed rate of 132.1 mm/min. Subsequent
layers were deposited at 160 rpm with the same feed rates.

After deposition, the hexagon preform and build plate were
scanned. Fig. 4(a) displays the deposited hexagon. The part design
and preform were then aligned using the origin at the build plate
bottom corner and the milling tool paths were generated by CAM
software with the imported scan used as the stock model; see
Fig. 4(b). The build plate was clamped in a pair of pre-aligned vises
on the CNC milling machine table. The machine probing cycle was
used to set the work coordinate system at the build plate bottom
corner and the milling tool paths were completed to produce the
desired hexagon geometry; see Fig. 4(c). Finally, the hexagon was
inverted and the extra build plate material was machined away
to obtain the final hexagon dimensions; see Fig. 4(d). This inversion
and machining step in a second vise setup motivated the location
of the origin at the bottom of the build plate for the first setup.
When turned over, the origin was located at the top of the part
and could conveniently be identified using the machine probing
cycle to set the new work coordinate system. Milling was com-
pleted using a spindle speed of 5115 rpm with a roughing feed rate
of 3302 mm/min and finishing feed rate of 1397 mm/min. Flood
coolant was applied.

Once the hexagon was complete, its base (i.e., the bottom of the
original build plate) served as the build platform for the cylinder.
The origin for the AFSD tool path planning was set at the center
of the hexagon build plate surface, so this location was identified
on the machine using the L3 spindle and edge finder. Deposition
was completed using helical interpolation to generate the cylinder
shape with a 2 mm layer height. The initial layer was deposited
using a spindle speed of 275 rpm, material feed rate of
139.7 mm/min, and tool feed rate of 132.1 mm/min. Subsequent
layers were deposited at 115 rpm with the same feed rates.

The cylinder preform is shown in Fig. 5(a) and the correspond-
ing scan is provided in Fig. 5(b). By setting the scan (which served



Fig. 3. A) Build plate and deposition clamped in lathe spindle. b) cone geometry after rough turning. c) finished cone. d) sectioned cone to show internal geometry. a 150 mm
machinist’s scale is included.

Fig. 4. A) Hexagon preform after afsd.b) Alignment of scan and part design. The origin for both coordinate systems is the build plate corner for convenient identification on
the CNC milling machine using the probe. c) Milling the preform using two-vise setup. d) Removing the build plate using a second vise setup where the part was inverted and
clamped using opposing hexagon surfaces. The same origin was maintained throughout the production sequence.
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Fig. 5. A) Cylinder preform on hexagon base. b) scan of part after cylinder deposition. c) part clamped in lathe using three-jaw chuck on internal surfaces of hexagon. d)
finished part before removal from lathe.
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as the CAM stock model), design, and tool path coordinate systems
at the center surface of the hexagon base, the lathe clamping
requirement was simply to locate the part center on the spindle
centerline. The was accomplished by using the lathe’s three-jaw
chuck to clamp three internal surfaces of the hexagon. This setup
is shown in Fig. 5(c) and the finished part is displayed in Fig. 5
(d). The facing, turning, and boring operations were completing
after touching off the hexagon base surface. The operating param-
eters were 243.84 m/min cutting speed, 0.89 mm, roughing depth
of cut, 0.25 mm/rev roughing feed rate, 0.13 mm finishing depth of
cut, 0.051 mm/rev finishing feed rate. The carbide insert nose
radius 0.40 mm.

5. Conclusions

This paper demonstrated the combination of additive friction
stir deposition (AFSD), turning, milling, and structured light scan-
ning in a hybrid manufacturing scenario. Structured light scanning
was used to generate stock models for tool path generation that
incorporated coordinate systems that could be realized physically
on the machining systems. The approach was shown by two
selected part geometries. First, a cone geometry was selected to
demonstrate AFSD for a hollow, non-vertical wall geometry and a
cylindrical build plate was used to provide convenient coordinate
system transfer and part clamping between the AFSD and turning
processes. Second, a hexagon-cylinder geometry was fabricated
using intermittent deposition and machining operations. The coor-
dinate systems for the two-sided part (i.e., deposition was com-
pleted on both surfaces of the original build plate) were
connected using structured light scanning and origins that could
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be identified on the machining systems using standard probing
routines. Both turning and milling operations were used to pro-
duce the final geometry and surface finish.

While microstructure and associated material properties of the
deposited material were not the focus of this paper, these are
important considerations for any additive manufacturing process,
including AFSD. For the aluminum alloys studied in this paper,
the strength and ductility depend on the deposition temperature.
It has been shown that wrought-like material properties can be
obtained for 7075 aluminum with appropriate solution treatment
and peak aging [33]. These studies will be continued in parallel
with the process planning efforts described here to arrive at an
effective hybrid manufacturing approach.
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