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Abstract
Machining chatter is a phenomenon resulting from self-oscillation between a machining tool and workpiece. This self-
oscillation results in variation on the machined product that reduces the ability to meet desired specifications. Chatter is a
widely studied topic as it directly relates to the quality of machined products. This study details the application of a Random
Forest (RF) classifier with Recursive Feature Elimination (RFE) to machining audio collected by a single microphone during
down-milling operations. This approach allows straightforward feature elimination that results in an easily understood set of
analyzed dimensions. Stability is predicted solely based on the classification output of the RF classifier. Our approach proves
highly predictive with consistent machining setup and a small sample set. We also review transferability between machining
setups and present key findings. Our RF approach demonstrates the ability to analyze and classify chatter through a low-
cost approach with limited training data required. The motivation for using a single microphone is to enable detection on
machines without other sensors, such as accelerometers, present in the machining setup. The value of the in-process sensor
and chatter classifier is highlighted because the machining setup included asymmetric dynamics that reduced the accuracy
of the traditional analytical stability solution. We see a natural progression to deploying this audio-only methodology with
real-time processing and classification using either a laptop or smartphone. This progression will allow visual indicators
during the machining process that can alert machinists of progression into unstable machining processes.

Keywords Machine learning · Random forest · Recursive feature elimination · Chatter · Stability ·
Advanced manufacturing · Low-cost sensors

1 Introduction

Chatter identification and remediation is a long-standing
research topic [1, 2] that has resulted in common approaches
for detection of chatter. A common approach for online
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detection of chatter uses a Fast Fourier Transform (FFT)
of an audio signal. The FFT results allow comparison with
the calculated Tooth Passing Frequency (TPF). Significant
peaks not aligned with the TPF or its harmonics (multiples)
indicate chatter [3]. A common analytic approach is the
creation of stability lobe diagrams. These diagrams illustrate
the relationship between spindle speed, typically on the
horizontal axis, and depth of cut, typically on the vertical
axis. Stability lobe diagrams reveal an area of expected
chatter above the stability boundary and an area of expected
stability below the boundary [2–6]. Figure 1 provides an
example of a stability lobe diagram. Machinists can use
stability lobe diagrams to select parameters that avoid
chatter given the machining system’s dynamic response
and the cutting force model. The traditional stability lobe
diagram is deterministic and does not include uncertainties
in the diagram inputs, however, stability lobe diagrams
are not definite [7]. These diagrams include a region of
uncertainty in the transition between stable and unstable
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Fig. 1 Example stability lobe diagram

areas and may include lenses and islands of chatter within
stable areas [5, 6]. Researchers have attempted to address
this through the use of a reliability zone that can confidently
describe where chatter will be absent [8]. Even with
this advance, machining configuration based on stability
lobe diagrams and reliability zones requires calculation in
advance of machining with detailed knowledge of the tool
setup.

Chatter detection is expanding beyond peak analysis and
stability lobe diagrams. Significant research is available
regarding the use of sensors and associated calculations
to detect chatter either during or after the machining
process. In the review article [9], the authors classify
sensor-based methods based on data acquisition and
signal processing methods. Data acquisition methods
include the use of acceleration, force, sound, current, and
image signals. Processing methods include time domain,
frequency domain, and time-frequency domain methods.

The ability to collect rich signal information during the
machining process is driving further research leveraging
machine learning and deep learning techniques. The sig-
nals used align with data acquisition methods previously
described. Key examples of data acquisition for chatter
detection include the use of accelerometers [10], dynanome-
ters [11, 12], acoustic emission sensors [13–15], micro-
phones [16], drive current derived from CNC commands
[17], and online image capture [18]. Although all data
acquisition methods provide benefits, the use of micro-
phones is comparably inexpensive and unobtrusive. Key
advantages for microphone capture are sensitivity to chat-
ter in low-force situations and ability to isolate the sensor
from machining structure. Limitations include microphone
bandwidth and environmental noise [19].

Data-driven methods for these signal types represent a
broad research topic. Researchers have applied Support
Vector Machine (SVM) [10], Extra Trees Classifier (ETC)
[20], and Deep Multi-Layer Perceptron (DMLP) [21]
approaches to accelerometer data for detecting chatter.
A Perceptron Artificial Neural Network (ANN) classifies
chatter with acoustic emission data [22]. Researchers have
applied statistical variance analysis [19], as well as Hidden
Markov Model (HMM) and SVM [23] approaches with
microphone data. K-means clustering [24] and Long Short-
Term Memory (LSTM) [25] identify milling conditions
using drive current signals [24].

Microphone data has been combined with image
processing by displaying and interpreting microphone data
with spectrogram images. An example of this is [16],
in which the authors compare a back propagation neural
network (BP-NN) and convolutional neural network (CNN)
based on the ability to classify chatter. The BP-NN is
based on traditional sound signals, including amplitude,
frequency and power coefficients. The CNN analysis is
based on a spectrogram image that is a visual interpretation
of the sound signal including details regarding frequency,
time domain and magnitude of signal at frequency and
time domain combinations. Popular CNN projects for
handwriting recognition and image processing use relatively
small image sizes, such as 32x32 pixels. This results in
loss of detail in the features for chatter detection. To avoid
this loss, the authors use image sizes of 150x150 pixels.
Both BP-NN and CNN classification results show high
predictability with accuracy above 90%. Overall, the CNN
model performs better than the BP-NN model.

In [26], the authors provide another example of
the convergence of microphone signal data and image
processing techniques. Similar to the prior CNN work, this
study uses a spectrogram derived from audio signals. This
approach differs from the previously described work in the
application of an autoencoder to remove noise from the data
and reduce dimensionality. The researchers show an ability
to reduce the number of required predictive dimensions
to two derived dimensions. Once the autoencoder reduces
dimensionality, the researchers use a SVM to classify the
presence of chatter. The resulting data shows a delineation
between audio files with chatter and without. This study
indicates that the image data derived from audio signals is
highly compressible and this compressed data is viable for
the classification of chatter.

Although the prior data-driven approaches to chatter
identification represent important advances, they also have
limitations. Each approach represents a “black box” method
with limited interpretability. Interpretability of machine
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learning algorithms is a topic receiving significant focus
[27]. This concept of interpretability attempts to balance
predictability of models with the ability to provide insights
to understand the basis of prediction. Interpretability allows
experts in a given field to validate the methods and/or
features applied within the algorithm.

A research gap exists for chatter detection based on easily
understood machine learning techniques and audio data
features (e.g., amplitude, frequency and power coefficients).
Our study attempts to mitigate this gap by implementing
a Random Forest (RF) algorithm with feature reduction to
classify audio data features based on presence of chatter.
RF is a “black box” method, but the approach is conducive
to increased understanding. Experimental approaches using
feature reduction increase this interpretability [28]. Our
study applies a combination of RF and Recursive Feature
Elimination (RFE) to address this research gap. Researchers
have extensively utilized RF algorithms and RFE to increase
the ease of understanding of results [29, 30]. However, to
our knowledge, the research community has not yet applied
this approach in the detection of chatter based on audio data
features.

This is significant in the ability to leverage such an
approach to provide feedback during the machining process.
The data utilized in our research is approximately 2 s per
machining operation. Rapid analysis through methods such
as RF with RFE can provide real-time feedback on the
stability of a machining operation. This can enable both a
validation of expert machinist views as well as assist new
machinists in the determination of cut stability.

2Methodology

In this study we use a RF algorithm to classify machining
audio data as stable or unstable (indicating moderate to
severe chatter). RF is a “black box” approach that uses
multiple decision trees to categorize based on features. This
approach is capable of classification based on very large sets
of features [31, 32]. In addition to RF, we use RFE to both
reduce the number of features necessary for prediction and
improve model performance. RFE is an iterative approach
that removes the least important feature in classification
and can improve predictor selection [29]. An advantage of
using RF and RFE is the ease of understanding results. By
leveraging this approach, we can convey both the predictive
features and their relative importance.

Stability prediction within this research is solely based on
the classification output of an RF classifier. Our approach
extracts many features and then iteratively reduces the
feature data set to both improve prediction accuracy and
reduce processing requirements for feature extraction and
prediction. This aligns with our vision of progression into

real-time classification using a portable device such as a
laptop or smartphone.

2.1 Data description

The source data for this study is comprised of audio
files collected by a single microphone during down-milling
operations by a single machine at TUWien, Vienna, Austria.
We have categorized these audio files into three groups, as
shown in Table 1. Specific details on the configuration of
each down-milling operation, including spindle speed, axial
depth, tooth passing frequency, and feed rate, are included
in Table 2 (for set A only) and Table 8 in Appendix A (for
all down-milling operations).

Sets A and A′ have the same tool setup. Both set A

and set A′ tests are completed using a four-flute, 10-mm-
diameter end mill that was clamped in a sensory tool holder.
This tool holder included machined pockets that contained
sensors and electronics. These pockets caused asymmetry
in the dynamics between the two directions. Specifically,
the dynamic response was stiffer in the direction without
the pockets and more flexible in the direction aligned with
the pockets. The feed per tooth is 0.1 mm/tooth, and the
radial depth of cut is 2 mm. The cuts are down-milling.
The machine tool is a DMG Mori DMU 75 monoBlock.
The workpiece is Aluminum 6060-T66. All operations are
carried out with flood coolant. The tool is re-assembled
between set A and set A′ using the same configuration. Set
B utilizes a different tool setup. A stability lobe diagram for
set A is presented in Fig. 2. This diagram was calculated
using the stiff direction dynamics only. The disagreement
between the stability lobe diagram and stable/unstable
points occurs because the model does not incorporate the
asymmetric rotating dynamics.

Set B tests are completed using a four-flute, 12-mm-
diameter end mill. The feed per tooth is 0.1 mm/tooth,
and the radial depth of cut is 3 mm. The cuts are down-
milling. The machine tool is a DMG Mori DMU 75
monoBlock. The workpiece is Aluminum 6060-T66. All

Table 1 Audio file groups

TPF Classification

% Group Machine Similarity Stable Unstable

Set A Set A′ 5 6

Set A′ Set A 5 12

Set B N/A 4 3

Note: TPF classification represents physics-aware frequency analysis
and classification. This classification uses a 50% threshold, meaning if
the chatter frequency peak is greater than 50% of the peak of the TPF
or its harmonics, the audio is classified as chatter
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Table 2 Audio file machining
parameters from set A Audio Group Spindle Speed Axial Depth Tooth Passing Frequency Feed Rate Classification

Set A 9000 4.0 600 3600 Stable

Set A 9000 5.2 600 3600 Stable

Set A 9000 6.1 600 3600 Unstable

Set A 9000 5.5 600 3600 Stable

Set A 9000 5.9 600 3600 Unstable

Set A 8510 6.9 567.3 3404 Unstable

Set A 8170 7.0 544.7 3268 Unstable

Set A 8700 6.3 580 3480 Stable

Set A 8700 6.7 580 3480 Stable

Set A 8700 7.2 580 3480 Unstable

Set A 8710 6.9 580.7 3484 Unstable

Note: TPF classification represents physics-aware frequency analysis and classification. This classification
uses a 50% threshold, meaning if the chatter frequency peak is greater than 50% of the peak of the TPF or
its harmonics, the audio is classified as chatter

operations are carried out with flood coolant. A physics-
aware frequency analysis leveraging the machining spindle
speed and the number of cutting teeth, resulting in the Tooth
Passing Frequency (TPF), provides initial classification of
audio files. Content at frequencies other than the TPF
and its multiples indicates the potential for chatter. This
information provides the classification of each audio file as
either stable or unstable that we use as training data for the
RF model.

Sets A and A′ include all audio files collected during the
machining execution in early 2021. Set B includes a sub-
set of audio files collected during execution in late 2021.
We selected specific audio files from the set B execution

based on our ability to leverage common pre-processing
techniques, aligned with those used with sets A and A′, to
determine the time period between when the tool becomes
fully engaged in the cut and starts to exit the cut.

2.2 Data pre-processing

To prepare the data for analysis, we pre-process each
individual audio file using Python scripts [33] with the
librosa [34, 35] and peakutils [36] packages. The first stage
of pre-processing identifies the time period between the
tool fully engaging in the cut and exiting the cut based on
amplitude, percussion, and harmonic variations. Figure 3

Fig. 2 Set A stability lobe
diagram based on the two stiff
directions of the sensory tool
holder. Stable points are
represented by open circles.
Unstable points are represented
by x-marks. Specific data point
parameters are detailed in
Table 2. The presence of
different stiffness directions
causes inaccurate stability lobe
diagrams
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Fig. 3 Machining spectrogram and waveplot: (a) illustrates the fre-
quency variation over the audio capture timeframe with the tool
becoming fully engaged at approximately 6 s; (b) illustrates the ampli-
tude over the audio capture timeframe with spindle startup noted by the

vertical green line, the tool becoming fully engaged noted by the ver-
tical blue line, and the tool starting to exit the cut noted by the vertical
red line

provides spectrogram and waveplot images that illustrate
this timeframe. The second stage of pre-processing extracts
features for analysis. Figure 4 illustrates the extraction of
peak magnitudes for the top 10 peak features.

The feature extraction results in a total of 152
features from each audio file. We group these features
as spectral, harmonic, and peak features. Spectral features
include 64 descriptive statistics within the categories of
spectral centroids, spectral rolloff, and spectral bandwidth.
Harmonic features include 24 descriptive statistics within
the categories of harmonics, beat track, and perpetual shock.
Peak features include 50 direct measurements from the ten
peaks with greatest magnitude and 24 descriptive statistics
derived from the direct measurements.

2.3 Model development

Our overall research approach includes feature pruning,
feature elimination, and cross-group analysis. We present an
overview of our approach in Fig. 5.

Feature pruning includes removal of non-predictive fea-
tures and consolidation of features that were highly cor-
related. Some features have no variation across individual
audio files within specific audio file sets, regardless of
whether the audio feature represents a stable or unstable
cut. These features are non-predictive. Other features are
highly correlated and are redundant within individual audio
file sets. We perform correlation analysis to identify non-
predictive features and features correlated at or above 95%.
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Fig. 4 Our approach further analyzes the machining timeframe to determine magnitude of the top 10 peak features

We then remove all non-predictive features and all but one
feature from highly correlated groups. This results in a
smaller set of features that have potential for prediction.

Feature elimination focuses on identifying the top
features within categories of spectral, harmonic, and peak
features. RFE identifies the least important feature within
a given RF model and then removes this feature for
subsequent iterations. We perform RFE through each
feature category and note the top five features from each
category.

Core to our approach is the utilization of Leave-One-Out
Cross Validation (LOOCV). This method is effective for
data sets with small numbers of samples. LOOCV utilizes
one observation from a data set as a testing component and
the remaining observations as training components. This
generates a k-fold model with a fold size of one [37].
Figure 6 illustrates LOOCV data segmentation. LOOCV
was utilized based upon the small number of samples.

2.4 Evaluationmetrics

Our investigation includes multiple studies to determine the
consistency of key features across data sets, predictability
of RF models within data sets, and generalizability of RF
models.

We will evaluate the consistency of key features across
data sets through the cardinal number derived from the
intersection of key features identified through RFE. The
cardinal number represents the number of key features
in common across sets. Additionally, we will explore the
specific features included in that intersection.

We will evaluate RF models both within audio file groups
(i.e., a single setup) and across audio file groups (i.e., mul-
tiple setups). The evaluation within audio file groups will
provide insights into the ability to predict chatter within a
single machining setup. The evaluation across audio groups

will provide insights into the generalizability of RF mod-
els across varying machining setups. Evaluation metrics for
RF models will include Receiver Operating Characteristics
(ROC) Area Under Curve (AUC), sensitivity, and speci-
ficity. The ROC curve is a plot with the true positive rate
on the vertical axis and the false positive rate on the hori-
zontal axis. Each axis has a range from 0 to 1. The AUC
metric calculates the area under this curve. The maximum
area possible is 1, and the minimum area possible is 0. Ran-
dom guessing results in an AUC value of 0.5; values above
0.5 indicate greater predictability than random guessing.
Equation (1) details the sensitivity calculation. Equation (2)
details the specificity calculation.

Sensitivity = True Positive

True Positive + False Negative
(1)

Specificity = True Negative

True Negative + False Positive
(2)

AUC can be explained as the “probability that a
randomly chosen negative example will have a smaller
estimated probability of belonging to the positive class
than a randomly chosen positive example,” providing
both discrimination and consistency. This combination is
advantageous over other metrics such as accuracy [38].
Therefore, the primary evaluation metric for our study is
AUC.

3 Investigation

This paper includes four studies to determine the consis-
tency of key features across data sets, predictability of RF
models within data sets, and generalizability of RF models.
These studies include use of the top five important features
in each feature category. The quantity of top features was
selected based on a review of overall feature importances
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Fig. 5 The research approach includes feature pruning, recursive feature elimination, and cross-group analysis. Steps in this approach are provided
with a generalized flow from top to bottom. The application of Random Forest Leave-One-Out Cross Validation is noted as RF LOOCV

and the AUC values across the three data sets. The peak
AUC was typically achieved with between one and eight
features included.

Study 1: Compare features across set i ∈ {A, A′} to
determine if there is consistency of important features in
machining audio with the same tool setups.

Step 1: Evaluate top 5 important features, which we
denote by set Fc

i , for set i ∈ {A, A′} and feature
category c ∈ {spectral, harmonic, peak}

Step 2: Determine intersection Fc
A ∩ Fc

A′
Step 3: Determine cardinal number n(F c

A ∩ Fc
A′)

Study 2: Compare features across set i ∈ {A, A′} and set
j ∈ {B} to determine if there is consistency of important
features in machining audio with differing tool setups.

Step 1: Evaluate top 5 important features, which we
denote by set Fc

i , for set i ∈ {A, A′} and feature
category c ∈ {spectral, harmonic, peak}

Step 2: Evaluate top 5 important features, which we
denote by set Fc

j , for set j ∈ {B} and feature
category c ∈ {spectral, harmonic, peak}

Step 3: Determine intersection Fc
A ∩ Fc

B

Step 4: Determine cardinal number n(F c
A ∩ Fc

B)
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Step 5: Determine intersection Fc
A′ ∩ Fc

B

Step 6: Determine cardinal number n(F c
A′ ∩ Fc

B)

Study 3: Evaluate RF model performance across set i ∈
{A, A′} to determine if there is generalizability of models in
machining audio with the same tool setups.

Step 1: Create RF models for set i ∈ {A, A′} and
feature category c ∈ {spectral, harmonic, peak,
top 15 combined}

Step 2: Evaluate model performance within each set
utilizing LOOCV, expressed as AUCc

A,A and
AUCc

A′,A′ , with the model generating set followed
by evaluation set in the sub-script

Step 3: Evaluate model performance across sets i ∈
{A, A′} utilizing LOOCV, expressed as AUCc

A,A′
and AUCc

A′,A, with the model generating set
followed by evaluation set in the sub-script

Study 4: Evaluate RF model performance across set
i ∈ {A, A′} and set j ∈ {B} to determine if there is
generalizability of models in machining audio with differing
tool setups.

Step 1: Create RF models for set i ∈ {A, A′} and
feature category c ∈ {spectral, harmonic, peak,
top 15 combined}

Step 2: Create RF models for set j ∈ {B} and
feature category c ∈ {spectral, harmonic, peak,
top 15 combined}

Step 3: Evaluate model performance within each set
utilizing LOOCV, expressed as AUCc

B,B , with the
model generating set followed by evaluation set in
the sub-script

Step 4: Evaluate model performance across sets i ∈
{A, A′} and set j ∈ {B} utilizing LOOCV,
expressed as AUCc

A,B , AUCc
A′,B , AUCc

B,A, and
AUCc

B,A′ , with the model generating set followed
by evaluation set in the sub-script

4 Results

4.1 Features and descriptive statistics

Feature extraction creates 152 features within the spectral,
harmonic, and peak feature groups. Each feature group
includes multiple sub-groups, and each sub-group includes
multiple key features. Descriptive statistics further expand
our understanding of these key features. Table 3 provides
a summary of these feature groups, sub-groups, and key
features. Tables and figures through the remainder of
this document use abbreviations for individual descriptive
statistics. For example, Bandwidth 4 Median represents the
fourth order spectral bandwidth median and Centroids Kurt

Fig. 6 The LOOCVmethod iterates through data selecting one sample
as the test set while retaining other samples as the training set

represents spectral centroids kurtosis. Tables 9, 10, and 11 in
Appendix B provide a listing of all key feature abbreviations
noted in this paper.

4.2 Investigation results

Studies 1 and 2 provide insights into the consistency of
key features across data sets. These studies utilize 10
iterations of feature ranking with randomly generated seeds.
The results of these iterations are averaged for each step
during RFE and the least important feature, based on mean
importance, is removed. Our evaluation focuses on the 5
most important features in each feature category.

Studies 3 and 4 provide insights into the predictability of
RF models within data sets and the generalizability of RF
models across data sets. These studies utilize 10 iterations of
RF models evaluation with randomly generated seeds. The
results of these iterations produce mean and 95% confidence
intervals for AUC, sensitivity and specificity.

4.2.1 Study 1 results

Study 1 results reveal a varying level of alignment of key
features within sets A and A′. The cardinal number for
spectral features is 0. The cardinal number for harmonic
features is 1, with perpetual shock maximum present as
a key feature in both sets. The cardinal number for peak
features is 3, with peak magnitude skew, peak 2 normalized
magnitude, and peak 3 normalized magnitude present as key
features in both sets. Figure 7 details the top features for sets
A and A′ for each feature category.

4.2.2 Study 2 results

Study 2 results reveal a varying level of alignment of key
features between sets A and A′ and set B. The cardinal
number for spectral features across sets A and B is 0. The
cardinal number for spectral features across sets A′ and B is
1, with spectral centroids bandwidth 2 minimum present as
a key feature in both sets. The cardinal number for harmonic
features across sets A and B is 0. The cardinal number for
harmonics features across sets A′ and B is 0. The cardinal
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Table 3 Feature groups and
key features Feature Group Feature Sub-group Description

Spectral Centroids Centroids describe the center of mass for a sound.
Key features related to spectral centroids include spec-
tral centroids, spectral centroids delta, and spectral
centroids accelerate.

Rolloff Rolloff is the frequency below which a set percentage
of spectral energy exists.

Bandwidth Bandwidth provides the pth order spectral bandwidth.
Key features include spectral bandwidth 2, spectral
bandwidth 3, and spectral bandwidth 4.

Harmonic Harmonics Harmonics represent the harmonic class of sound
extracted from an audio file through harmonic-
percussive separation.

Beat Track Beat track describes the tempo of sound.

Perpetual Shock Perpetual shock represents the percussive class of
sound extracted from an audio file through harmonic-
percussive separation.

Peak Peak Magnitude Peak magnitude is the amplitude associated with
specific audio peaks. Key features related to peak
magnitude are associated with the top 10 frequency
peaks in a sound file, such as peak 2 magnitude.

Peak Frequency Peak frequency is the frequency associated with
specific audio peaks. Key features related to peak
frequency are associated with the top 10 frequency
peaks in a sound file, such as peak 2 frequency.

Peak Normalized
Magnitude

Peak normalized magnitude is a normalized amplitude
associated with specific audio peaks. Key features
related to peak normalized magnitude are associated
with the top 10 frequency peaks in a sound file, such
as peak 2 normalized magnitude.

Peak Frequency Gap Peak frequency gap is the frequency distance between
a given peak and the highest amplitude peak. Key
features related to peak frequency gaps are associated
with the top 10 frequency peaks in a sound file, such
as peak 2 frequency gap.

number for peak features across sets A and B is 1, with peak
3 normalized magnitude present as a key feature in both sets.
The cardinal number for peak features across sets A′ and
B is 1, with peak 3 normalized magnitude present as a key
feature in both sets. Figure 8 details the top features for set
B in each feature category.

4.2.3 Study 3 results

Study 3 results reveal high predictability for RF models
within data sets. Set A results are included in Table 4. For
this set, all AUC values are above 0.95. Set A′ results are
included in Table 5. This set does not demonstrate as high of
predictability across all feature groups, but many are highly
predictive.

AUC
peak
A,A , which describes predictability of peak fea-

tures within set A, is 1.000. AUC harmonics
A,A , which describes

predictability of harmonic features within set A, is 0.992.

AUC
spectral
A,A , which describes predictability of spectral fea-

tures within set A, is 0.950. Set A’s combined top 15 feature
predictability, AUC

top 15
A,A , is 1.000.

AUC
spectral
A′,A′ , which describes predictability of spectral

features within set A′, is 0.997. AUC
peak
A′,A′ , which describes

predictability of peak features within set A, is 0.935.
AUC harmonics

A′,A′ , which describes predictability of harmonic
features within set A, trails at 0.669. Set A′’s combined top
15 feature predictability, AUC

top 15
A′,A′ , is 0.983.

Study 3 results also reveal some generalizability for RF
models across data sets with similar tool setups. Results for
feature model generalizability are included in Table 7. Peak
features provide the highest AUC values, with AUC

peak
A,A′ at

0.891 and AUC
peak
A′,A at 0.980. The combined top 15 features

also provide AUC values that indicate generalizability, with
AUC

top 15
A,A′ at 0.777 and AUC

top 15
A′,A at 0.777. Spectral and

harmonics feature generalizability trails significantly.
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Fig. 7 Set A and A′ feature importances derived from RFE include the
following: (a) top five spectral features of set A; (b) top five spectral
features of set A′; (c) top five harmonic features of set A; (d) top five
harmonic features of set A′; (e) top five peak features of set A; (f) top

five peak features of set A′. Each plot includes five key features with
the relative importance indicated by the horizontal axis. The sum of all
relative importances in each individual plot is equal to one
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Fig. 8 Set B feature importances derived from RFE include the following: (a) top five spectral features of set B; (b) top five harmonic features of
set B; (c) top five peak features of set B

4.2.4 Study 4 results

Study 4 results reveal modest predictability for RF models
within data set B. These results are included in Table 6.
AUC

spectral
B,B , which describes predictability of spectral

features within set B, is 0.958. AUC
peak
B,B , which describes

predictability of peak features within set B, is 0.717.
AUC harmonics

B,B , which describes predictability of harmonic

features within set B, is 0.667. Set B’s combined top 15
feature predictability, AUC

top 15
B,B , is 0.925.

Study 4 results also reveal modest generalizability for RF
models with varying tool setups. These results are included
in Table 7. Generalizability is noted within peak feature
evaluations, where all AUC values are greater than 0.6.
Spectral features provide inconsistent generalizability and
harmonic features are not generalizable.

Table 4 Set A Random Forest
model predictability Model Features AUC Sensitivity Specificity

All pruned features 0.982 ± 0.013 0.959 ± 0.047 0.950 ± 0.044

Top five spectral features 0.950 ± 0.024 0.963 ± 0.065 0.851 ± 0.067

Top five harmonic features 0.992 ± 0.008 0.978 ± 0.039 0.950 ± 0.044

Top five peak features 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000

Combined top 15 features 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000

Note: Evaluation metrics are based on a RF model using LOOCV with set A data. This evaluation includes
10 iterations using random seeds
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Table 5 Set A′ Random Forest
model predictability Model Features AUC Sensitivity Specificity

All pruned features 0.888 ± 0.028 0.778 ± 0.049 0.847 ± 0.002

Top five spectral features 0.997 ± 0.004 1.000 ± 0.000 0.874 ± 0.030

Top five harmonic features 0.669 ± 0.009 0.611 ± 0.049 0.772 ± 0.013

Top five peak features 0.935 ± 0.003 0.972 ± 0.049 0.856 ± 0.002

Combined top 15 features 0.983 ± 0.011 1.000 ± 0.000 0.857 ± 0.000

Note: Evaluation metrics are based on a RF model using LOOCV with Set A′ data. This evaluation includes
10 iterations using random seeds

Table 6 Set B Random Forest
model predictability Model Features AUC Sensitivity Specificity

All pruned features 0.250 ± 0.106 0.489 ± 0.019 0.000 ± 0.000

Top five spectral features 0.958 ± 0.026 0.800 ± 0.000 1.000 ± 0.000

Top five harmonic features 0.667 ± 0.000 0.800 ± 0.000 1.000 ± 0.000

Top five peak features 0.717 ± 0.053 0.667 ± 0.000 1.000 ± 0.000

Combined top 15 features 0.925 ± 0.019 0.800 ± 0.000 1.000 ± 0.000

Note: Evaluation metrics are based on a RF model using LOOCV with Set B data. This evaluation includes
10 iterations using random seeds

Table 7 Random Forest model
generalizability (AUC) Testing Set

Features Training Set Set A Set A′ Set B

All Pruned Features Set A − 0.805 ± 0.014 0.679 ± 0.023

Set A′ 0.813 ± 0.028 − 0.742 ± 0.055

Set B 0.610 ± 0.047 0.798 ± 0.032 −
Top 5 Spectral Features Set A − 0.334 ± 0.014 0.771 ± 0.037

Set A′ 0.622 ± 0.025 − 0.300 ± 0.023

Set B 0.460 ± 0.038 0.313 ± 0.046 −
Top 5 Harmonic Features Set A − 0.609 ± 0.012 0.467 ± 0.036

Set A′ 0.592 ± 0.025 − 0.283 ± 0.034

Set B 0.468 ± 0.092 0.435 ± 0.026 −
Top 5 Peak Features Set A − 0.891 ± 0.011 0.800 ± 0.063

Set A′ 0.980 ± 0.019 − 0.613 ± 0.046

Set B 0.652 ± 0.012 0.822 ± 0.009 −
Combined Top 15 Features Set A − 0.777 ± 0.011 0.800 ± 0.063

Set A′ 0.873 ± 0.022 − 0.475 ± 0.024

Set B 0.610 ± 0.055 0.702 ± 0.058 −

Note: Evaluation metrics are based on a RF model trained on data from sets presented in the “Training
Set” column and tested against data from sets in the “Testing Set” columns. These evaluations include ten
iterations using random seeds
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5 Discussion

As previously noted, RF models with RFE provide an
approach that allows ease of understanding through clear
indication of features utilized in classification. Our studies
reveal significant variance between key features across data
sets. This inconsistency indicates variability of key features
in classification algorithms. Three of five key features align
within the peak feature category across sets A and A′. This
is the only instance where key feature alignment is above
40%.

Our studies show that RF models provide high pre-
dictability within distinct tool setups, with spectral and peak
features providing the highest predictability within indi-
vidual data sets. This predictability is evident from results
within sets A and A′, but somewhat less evident with set B.
The discrepancy noted between sets A/A′ and set B is not
surprising based on the lower number of samples in set B.
Set A has a total of eleven samples, while set B has seven.
We can gather insights into the desired number of samples
to achieve high predictability based on this difference. A
minimum number of samples to drive predictability is likely
between eight and eleven.

Our studies also demonstrate modest generalizability
across similar tool setups. Peak features provide the highest
generalizability across data sets. This generalizability is
reduced when assessed across varying tool setups. Some of
this loss of generalizability may be attributed to the low
sample size within set B. However, it is unclear what impact
the sample size has in comparison with tool setup.

6 Conclusions

In this study, we demonstrate that a RF classifier can effec-
tively classify microphone-collected machining audio data
as stable or unstable with relatively small sample sets.
We believe a small initial sample of machinist classifi-
cations can result in high predictability for the duration
of a tool-setup operation, resulting in automated chatter
detection. This represents a low-cost and highly understand-
able approach with limited training data required. We also
demonstrate that peak feature evaluation with RF algorithms
has potential for generalizability across tool setups.

This work addresses easily understood classification of
complete audio files, but does not address fully explainable
methods or updated learning within an audio sample. Future
work may expand upon our findings through the use of
explainable artificial intelligence, such as SHapley Additive
exPlanations (SHAP). This may provide insights into the
variability of key features and will increase the ability of
operators to comprehend the methods and basis of decision-
making. Future work may also include methods that learn

through the sequential processing of audio files, such as
LSTM.

Appendix A. Audio file machining
parameters

Table 8 Audio file machining parameters from all data sets

Audio Spindle Axial Tooth Feed Classification

Group Speed Depth Passing Rate

Frequency

Set A 9000 4.0 600 3600 Stable

Set A 9000 5.2 600 3600 Stable

Set A 9000 6.1 600 3600 Unstable

Set A 9000 5.5 600 3600 Stable

Set A 9000 5.9 600 3600 Unstable

Set A 8510 6.9 567.3 3404 Unstable

Set A 8170 7.0 544.7 3268 Unstable

Set A 8700 6.3 580 3480 Stable

Set A 8700 6.7 580 3480 Stable

Set A 8700 7.2 580 3480 Unstable

Set A 8710 6.9 580.7 3484 Unstable

Set A′ 8450 5.3 563.3 3380 Unstable

Set A′ 8320 4.7 554.7 3328 Unstable

Set A′ 8600 4.5 573.3 3440 Unstable

Set A′ 8600 4.5 573.3 3440 Unstable

Set A′ 8440 4.1 562.7 3376 Unstable

Set A′ 8140 4.1 542.7 3256 Unstable

Set A′ 8810 4.1 587.3 3524 Unstable

Set A′ 7920 4.1 528 3168 Unstable

Set A′ 8530 3.6 568.7 3412 Unstable

Set A′ 8700 6.3 580 3480 Stable

Set A′ 8240 3.7 549.3 3296 Unstable

Set A′ 8680 3.3 578.7 3472 Stable

Set A′ 8700 4.0 580 3480 Stable

Set A′ 8710 4.4 580.7 3484 Unstable

Set A′ 7570 5.5 504.7 3028 Unstable

Set A′ 9000 4.0 600 3600 Stable

Set A′ 9000 5.2 600 3600 Stable

Set B 18000 3.0 1200 7200 Stable

Set B 17000 3.0 1133.3 6800 Stable

Set B 16000 3.0 1066.7 6400 Stable

Set B 15000 3.0 1000 6000 Stable

Set B 16000 13.0 1066.7 6400 Unstable

Set B 17000 14.0 1133.3 6800 Unstable

Set B 17000 13.0 1133.3 6800 Unstable

Note: TPF classification represents physics-aware frequency analysis
and classification. This classification uses a 50% threshold, meaning if
the chatter frequency peak is greater than 50% of the peak of the TPF
or its harmonics, the audio is classified as chatter
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Appendix B. Key feature abbreviations

Table 9 Key spectral feature abbreviations

Key Feature Abbreviation Key Feature

Centroids Accelerate
Skew

Spectral centroids accelerate skew;
describing the symmetry of the second
derivative of the spectral centroids

Centroids Delta Std Spectral centroids delta standard devia-
tion; describing the distribution of the first
derivative of the spectral centroids

Centroids Kurt Spectral centroids kurtosis; describing
the tails of the distribution of spectral
centroids

Centroids Skew Spectral centroids skew; describing the
symmetry of the spectral centroids

Bandwidth 2 Median Second order spectral bandwidth median

Bandwidth 2 Max Second order spectral bandwidth maxi-
mum

Bandwidth 2 Min Second order spectral bandwidth mini-
mum

Bandwidth 2 Skew Second order spectral bandwidth skew

Bandwidth 3 Kurt Third order spectral bandwidth kurtosis

Bandwidth 4 Median Fourth order spectral bandwidth median

Bandwidth 4 Min Fourth order spectral bandwidth mini-
mum

Bandwidth 4 Std Fourth order spectral bandwidth standard
deviation

Bandwidth Range
Min

The difference between the fourth order
spectral bandwidth and the second order
spectral bandwidth minimum values

Rolloff Kurt Spectral rolloff kurtosis; describing the
tails of the distribution of spectral rolloff,
which is the frequency below which 85%
of the total spectral energy exists

Table 10 Key harmonics feature abbreviations

Key Feature Abbreviation Key Feature

Beat Track Min Beat track minimum

Harmonics Kurt Harmonics kurtosis

Harmonics Max Harmonics maximum

Harmonics Mean Harmonics mean

Harmonics Skew Harmonics skew

Harmonics Std Harmonics standard deviation

Harmonics Min Harmonics minimum

Perpetual Shock Max Perpetual shock maximum

Perpetual Shock Mean Perpetual shock mean

Perpetual Shock Median Perpetual shock median

Perpetual Shock Min Perpetual shock minimum

Perpetual Shock Skew Perpetual shock skew

Perpetual Shock Std Perpetual shock standard deviation

Table 11 Key peak feature abbreviations

Key Feature Abbreviation Key Feature

Peak Freq Gap Kurt Peak frequency gap kurtosis; peak
frequency gap is the difference
between the frequency peak with
the highest magnitude and other top
peaks

Peak Freq Gap Max Peak frequency gap max; peak fre-
quency gap is the difference between
the frequency peak with the highest
magnitude and other top peaks

Peak Freq Gap Skew Peak frequency gap skew; peak fre-
quency gap is the difference between
the frequency peak with the highest
magnitude and other top peaks

Peak Mag Skew Peak magnitude skew

Peak Norm Freq Gap Var Peak normalized frequency gap vari-
ance; peak normalized frequency gap
is the difference between the normal-
ized frequency peak with the highest
magnitude and other normalized top
peaks

Peak 2 Norm Mag Peak 2 normalized magnitude

Peak 2 Magnitude Peak 2 magnitude

Peak 3 Norm Mag Peak 3 normalized magnitude

Peak 3 Magnitude Peak 3 magnitude

Peak 4 Norm Mag Peak 4 normalized magnitude

Peak 7 Frequency Peak 7 frequency
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4. Altintaş Y, Budak E (1995) Analytical prediction of stability
lobes in milling. CIRP Ann Manuf Technol 44(1):357–362.
https://doi.org/10.1016/S0007-8506(07)62342-7

5. Szalai R, Stepan G (2006) Lobes and lenses in the stability chart
of interrupted turning. J Comput Nonlinear Dyn 1(3):205–211.
https://doi.org/10.1115/1.2198216

6. Mann B, Edes B, Easley S, Young K, Ma K (2008) Chat-
ter vibration and surface location error prediction for heli-
cal end mills. Int J Mach Tools Manuf 48(3-4):350–361.
https://doi.org/10.1016/j.ijmachtools.2007.10.003

7. Duncan G, Kurdi M, Schmitz T, Snyder J (2006) Uncertainty
propagation for selected analytical milling stability limit analyses.
34: 17–24

8. Liu Y, Li T, Liu K, Zhang Y (2016) Chatter reliability prediction
of turning process system with uncertainties. Mech Syst Sig Pro-
cess 66-67:232–247. https://doi.org/10.1016/j.ymssp.2015.06.030

9. Wang W, Wan M, Zhang W, Yang Y (2022) Chatter detection
methods in the machining processes: a review. J Manuf Process
77:240–259. https://doi.org/10.1016/j.jmapro.2022.03.018

10. Yao Z, Mei D, Chen Z (2010) On-line chatter detection and
identification based on wavelet and support vector machine. J
Mater Process Technol 210(5):713–719. https://doi.org/10.1016/j.
jmatprotec.2009.11.007

11. Yang K, Wang G, Dong Y, Zhang Q, Sang L (2019)
Early chatter identification based on an optimized variational
mode decomposition. Mech Syst Sig Process 115:238–254.
https://doi.org/10.1016/j.ymssp.2018.05.052

12. Dun Y, Zhu L, Yan B, Wang S (2021) A chatter detection
method in milling of thin-walled TC4 alloy workpiece based
on auto-encoding and hybrid clustering. Mech Syst Sig Process
158:107,755. https://doi.org/10.1016/j.ymssp.2021.107755

13. Diniz A, Liu J, Dornfeld D (1992) Correlating tool life, tool wear
and surface-roughness by monitoring acoustic-emission in finish
turning. Wear 152(2):395–407. https://doi.org/10.1016/0043-1648
(92)90135-U

14. Beggan C, Woulfe M, Young P, Byrne G (1999) Using acoustic
emission to predict surface quality. Int J Adv Manuf Technol
15(10):737–742. https://doi.org/10.1007/s001700050126

15. Kishawy H, Hegab H, Umer U, Mohany A (2018) Application
of acoustic emissions in machining processes: analysis and
critical review. Int J Adv Manuf Technol 98(5-8):1391–1407.
https://doi.org/10.1007/s00170-018-2341-y

16. Yang RY, Rai R (2019) Machine auscultation: enabling
machine diagnostics using convolutional neural networks and

large-scale machine audio data. Adv Manuf 7(2):174–187.
https://doi.org/10.1007/s40436-019-00254-5

17. Aslan D, Altintas Y (2018) On-line chatter detection in milling
using drive motor current commands extracted from CNC.
Int J Mach Tools Manuf 132:64–80. https://doi.org/10.1016/j.
ijmachtools.2018.04.007

18. Szydlowski M, Powalka B (2012) Chatter detection algorithm
based on machine vision. Int J Adv Manuf Technol 62(5-8):517–
528. https://doi.org/10.1007/s00170-011-3816-2

19. Schmitz T, Medicus K, Dutterer B (2002) Exploring once-per-
revolution audio signal variance as a chatter indicator. Mach Sci
Technol 6(2):215–233. https://doi.org/10.1081/MST-120005957

20. Bleicher F, Ramsauer C, Oswald R, Leder N, Schoerghofer P
(2020) Method for determining edge chipping in milling based on
tool holder vibration measurements. CIRP Ann Manuf Technol
69(1):101–104. https://doi.org/10.1016/j.cirp.2020.04.100

21. Sener B, Serin G, Gudelek MU, Ozbayoglu A, Unver H (2020)
Intelligent chatter detection in milling using vibration data fea-
tures and deep multi-layer perceptron. In: 2020 IEEE international
conference on big data, IEEE international conference on big
data, pp 4759–4768. https://doi.org/10.1109/BigData50022.2020.
9378223

22. Sestito G, Venter G, Barros R, Kandice S, Rodrigues A,
da Silva M (2022) In-process chatter detection in micro-
milling using acoustic emission via machine learning classifiers.
International Journal of Advanced Manufacturing Technology.
https://doi.org/10.1007/s00170-022-09209-w

23. Jiang Y, Zhang C (2006) Hybrid HMM/SVM method for
predicting cutting chatter. In: 3rd international symposium
on precision mechanical measurements, vol 6280. Inter-
national Society for Optics and Photonics, pp 396–403.
https://doi.org/10.1117/12.716150

24. Wang R, Song Q, Liu Z, Ma H, Gupta M, Liu Z (2021) A
novel unsupervised machine learning-based method for chatter
detection in the milling of thin-walled parts. Sensors 21(17).
https://doi.org/10.3390/s21175779

25. Vashisht R, Peng Q (2021) Online chatter detection for milling
operations using LSTM neural networks assisted by motor current
signals of ball screw drives. J Manuf Sci Eng Trans ASME 143(1).
https://doi.org/10.1115/1.4048001

26. Kvinevskiy I, Bedi S, Mann S (2020) Detecting machine chatter
using audio data and machine learning. Int J Adv Manuf Tech-
nol 108(11-12):3707–3716. https://doi.org/10.1007/s00170-020-
05571-9

27. Carvalho D, Pereira E, Cardoso J (2019) Machine learning
interpretability: a survey on methods and metrics. Electronics 8(8).
https://doi.org/10.3390/electronics8080832

28. Wang X, Guo B, Shen Y, Zhou C, Duan X (2019) Input feature
selection method based on feature set equivalence and mutual
information gain maximization. IEEE Access 7:151,525–151,538.
https://doi.org/10.1109/ACCESS.2019.2948095

29. Gregorutti B, Michel B, Saint-Pierre P (2017) Correlation and
variable importance in random forests. Stat Comput 27(3):659–
678. https://doi.org/10.1007/s11222-016-9646-1

30. Sun D, Wen H, Wang D, Xu J (2020) A random forest
model of landslide susceptibility mapping based on hyperparam-
eter optimization using Bayes algorithm. Geomorphology 362.
https://doi.org/10.1016/j.geomorph.2020.107201

31. Breiman L (2001) Random forests. Mach Learn 45(1):5–32.
https://doi.org/10.1023/A:1010933404324

32. Speiser J, Miller M, Tooze J, Ip E (2019) A compari-
son of random forest variable selection methods for classi-
fication prediction modeling. Expert Syst Appl 134:93–101.
https://doi.org/10.1016/j.eswa.2019.05.028

https://doi.org/10.1007/978-3-319-93707-6
https://doi.org/10.1016/S0007-8506(07)62342-7
https://doi.org/10.1115/1.2198216
https://doi.org/10.1016/j.ijmachtools.2007.10.003
https://doi.org/10.1016/j.ymssp.2015.06.030
https://doi.org/10.1016/j.jmapro.2022.03.018
https://doi.org/10.1016/j.jmatprotec.2009.11.007
https://doi.org/10.1016/j.jmatprotec.2009.11.007
https://doi.org/10.1016/j.ymssp.2018.05.052
https://doi.org/10.1016/j.ymssp.2021.107755
https://doi.org/10.1016/0043-1648(92)90135-U
https://doi.org/10.1016/0043-1648(92)90135-U
https://doi.org/10.1007/s001700050126
https://doi.org/10.1007/s00170-018-2341-y
https://doi.org/10.1007/s40436-019-00254-5
https://doi.org/10.1016/j.ijmachtools.2018.04.007
https://doi.org/10.1016/j.ijmachtools.2018.04.007
https://doi.org/10.1007/s00170-011-3816-2
https://doi.org/10.1081/MST-120005957
https://doi.org/10.1016/j.cirp.2020.04.100
https://doi.org/10.1109/BigData50022.2020.9378223
https://doi.org/10.1109/BigData50022.2020.9378223
https://doi.org/10.1007/s00170-022-09209-w
https://doi.org/10.1117/12.716150
https://doi.org/10.3390/s21175779
https://doi.org/10.1115/1.4048001
https://doi.org/10.1007/s00170-020-05571-9
https://doi.org/10.1007/s00170-020-05571-9
https://doi.org/10.3390/electronics8080832
https://doi.org/10.1109/ACCESS.2019.2948095
https://doi.org/10.1007/s11222-016-9646-1
https://doi.org/10.1016/j.geomorph.2020.107201
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1016/j.eswa.2019.05.028


The International Journal of Advanced Manufacturing Technology

33. Van Rossum G, Drake F (2009) Python 3 Reference Manual
(CreateSpace, Scotts Valley CA)

34. McFee B, Raffel C, Liang D, Ellis D, McVicar M, Battenberg E,
Nieto O (2015) librosa: Audio and music signal analysis in python.
In: Proceedings of the 14th Python in science conference, vol 8.
https://doi.org/10.25080/Majora-7b98e3ed-003

35. Librosa. https://doi.org/10.5281/zenodo.6097378. https://librosa.
org/

36. Peakutils. https://doi.org/10.5281/zenodo.887917. https://pypi.
org/

37. Wong T (2015) Performance evaluation of classification algo-
rithms by k-fold and leave-one-out cross validation. Pattern
Recogn 48(9):2839–2846. https://doi.org/10.1016/j.patcog.2015.
03.009

38. Huang J, Ling C (2005) Using AUC and accuracy in evaluating
learning algorithms. IEEE Trans Knowl Data Eng 17(3):299–310.
https://doi.org/10.1109/TKDE.2005.50

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of
such publishing agreement and applicable law.

Affiliations

Sam St. John1 · Matthew Alberts1 · Jaydeep Karandikar2 · Jamie Coble3 · Bradley Jared4 · Tony Schmitz2,4 ·
Christoph Ramsauer5 · David Leitner5 · Anahita Khojandi1

Sam St. John
sstjohn3@vols.utk.edu

Matthew Alberts
malberts@vols.utk.edu

Jaydeep Karandikar
karandikarjm@ornl.gov

Jamie Coble
jcoble1@utk.edu

Bradley Jared
bhjared@utk.edu

Tony Schmitz
tony.schmitz@utk.edu

Christoph Ramsauer
ramsauer@ift.at

David Leitner
leitner@ift.at

1 Department of Industrial and Systems Engineering,
University of Tennessee, 851 Neyland Drive,
Knoxville, 37996, TN, USA

2 Manufacturing Science Division, Oak Ridge National Laboratory,
1 Bethel Valley Road, Oak Ridge, 37830, TN, USA

3 Department of Nuclear Engineering, University of Tennessee,
863 Neyland Drive, Knoxville, 37996, TN, USA

4 Department of Mechanical, Aerospace, and Biomedical
Engineering, University of Tennessee,
1512 Middle Drive, Knoxville, 37996, TN, USA

5 Institute of Production Engineering and Photonic Technologies,
TU Wien, Vienna, Austria

https://doi.org/10.25080/Majora-7b98e3ed-003
https://doi.org/10.5281/zenodo.6097378
https://librosa.org/
https://librosa.org/
https://doi.org/10.5281/zenodo.887917
https://pypi.org/
https://pypi.org/
https://doi.org/10.1016/j.patcog.2015.03.009
https://doi.org/10.1016/j.patcog.2015.03.009
https://doi.org/10.1109/TKDE.2005.50
http://orcid.org/0000-0001-6818-2048
mailto: sstjohn3@vols.utk.edu
mailto: malberts@vols.utk.edu
mailto: karandikarjm@ornl.gov
mailto: jcoble1@utk.edu
mailto: bhjared@utk.edu
mailto: tony.schmitz@utk.edu
mailto: ramsauer@ift.at
mailto: leitner@ift.at

	Predicting chatter using machine learning and acoustic signals from low-cost microphones
	Abstract
	Introduction
	Methodology
	Data description
	Data pre-processing
	Model development
	Evaluation metrics

	Investigation
	Results
	Features and descriptive statistics
	Investigation results
	Study 1 results
	Study 2 results
	Study 3 results
	Study 4 results


	Discussion
	Conclusions
	Appendix  A. Audio file machining parameters
	Appendix B. Key feature abbreviations
	Appendix  B. Key feature abbreviations
	Declarations
	References
	Affiliations


