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ABSTRACT 
We apply receptance coupling techniques to predict the tool-
point frequency response for high-speed machining 
applications.  Building on early work of Duncan [4], Bishop 
and Johnson [2], and more recent work of Ewins, et al. 
[5],[6], we develop an analytic expression for the frequency 
response at the free end of the milling cutter from: 1) an 
analytic model of the tool; 2) an experimental measurement 
of the holder/spindle sub-assembly; and 3) a set of empirical 
connection parameters.  These parameters are extracted 
from a single measurement of the tool/holder/spindle 
assembly at a known tool overhang length using nonlinear 
least squares estimation.  The assembly model can then be 
used to predict changes in the tool-point receptance for 
setup variations, such as tool length.  The resulting tool-point 
frequency response is used to calculate the associated 
stability lobe diagram, which defines regions of stable and 
unstable cutting zones as a function of chip width and 
spindle speed and is used to select appropriate machining 
parameters.  A description of the receptance coupling 
method, as well as a discussion of the system model and 
selected connection parameters, are provided.  Extensive 
experimental results are also presented. 
 
1. Introduction 
The implementation of high-speed machining for the 
manufacture of discrete parts, especially in the aerospace 
industry, has led to the replacement of complicated 
assemblies of fastened sheet-metal pieces by stronger, 
lighter, monolithic aluminum parts, at a considerable cost 
savings [10]. Here, following Smith and Tlusty [9], we mean 
by high-speed machining a cutting operation that takes place 
at a tooth-engagement frequency that is close to the 
vibration frequency (or a substantial integer fraction thereof) 
of the most flexible mode of the machine/tool system. To use 
high-speed machining to manufacture monolithic parts with 
deep pockets out of aluminum, long, slender, fluted cutting 
tools are required, causing a lack of stiffness that can lead to 
unwanted self-excited vibrations in the system, known as 
regenerative tool chatter. 
 
For such processes, an accurate frequency response 
function is required for the prediction of the deflection of the 
assembly at the tool point and, subsequently, chatter 

avoidance [1],[3]. Referring to Figure 1, suppose the tool 
point is subjected to harmonic vertical forcing with frequency 
ω and amplitude F. The response of the structure is 
assumed to be linear elastic. Hence, its vertical deflection 
due to the forcing will also have frequency ω. If the amplitude 
of the deflection at the tool point is  so that the steady-
state harmonic motion at the tip is given by

X,
ti exp X ω , then 

what is required is the direct receptance G(ω)=X/F, over the 
frequency interval of interest. Using the negative real part of 
this receptance function, optimal cutting parameters can be 
determined that will maximize the chatter-free material 
removal rate (see for example, Tlusty, et al. [11], Davies, et 
al. [3]). For example, the stability lobe diagram giving the 
limiting stable depth of cut as a function of frequency is 
determined by the formula  

( )[ ]{ } ,
zGReminK

1b
s

critical ωµ
−

=  

where  and sK µ  are constants, and z is the number of 
flutes on the tool.  
 
A direct experimental approach to this problem is simply to 
excite the tool point for each tool/holder/spindle assembly 
using, for example, an instrumented hammer, and then 
record the frequency response of the combined system over 
the range of interest. This can be time-consuming, and many 
manufacturers lack the equipment and qualified personnel to 
obtain the necessary information. 

 F exp iωt 

Figure 1. Spindle/holder/tool assembly. Frequency 
response function is needed to predict deflection at 
tool point.  
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In the work we present here, we continue the development 
of a new alternative approach to the determination of the 
tool-point response, using receptance coupling substructure 
analysis (RCSA) [2],[4],[5],[6]. Our method combines limited 
experimental displacement frequency response 
measurements of the holder/spindle substructure, which 
need to be performed only once, with closed-form analytical 
expressions for the deflection and slope frequency response 
functions of the tool, modeled as a free-free beam using 
elementary beam theory (see Duncan [4], Bishop and 
Johnson [2]). A long-term goal of this approach is to create a 
database of the required tool-point frequency response 
information for each commercial holder/spindle assembly. 

θ2    

z

A 
    x1   θ1      

The basic outline of the paper is as follows. In Section 2, we 
present our combined analytical-experimental method, 
together with some essential approximations, for receptance 
coupling applied to a spindle/holder/tool system. In Section 
3, we present a justification for the approximations we make. 
Section 4 contains an application of our method.  We 
demonstrate its usefulness in a typical example involving 
tool tuning, where we consider the tool-point dynamics of a 
system with a Tribos tool holder and six long-overhang 
endmills, each with the same diameter, but with successively 
increasing length-to-diameter ratios.  In the final section, we 
present some concluding remarks. 

x2Figure 3. Schematic of tool modeled as a free-free 
beam, showing positive tip forces and moments.  
 

 
2. Tool-Point Receptance 
Our combined analytical/experimental approach to the 
prediction of the deflection/force frequency response of the 
combined structure at the tool point is as follows. Referring 
to Figure 2, the basic idea, following Duncan [4] and Bishop 
and Johnson [2], is to consider the entire spindle/holder/tool 
structure to be an assembly of two linear elastic 
substructures, that are linked at their ends by two 
coordinates. In the present application, the tool is essentially 
a free-free beam in flexure (see Figure 3).  
 
To model the tool, we use the analytic, closed-form 
expressions for the tip receptances of a uniform Euler-
Bernoulli beam that are tabulated in the text of Bishop and 
Johnson [2, Table 7.1(c)]. These receptances give the 
deflections and slopes at each tip of the free-free beam in 
response to harmonic virtual forces and moments applied at 
the tips. For  where m is the coordinate 
and n is the location of force application, let 

,2..1n,2..1m ==

  .
)(P)(N
)(L)(H

mnmn

mnmn








=

ωω
ωω
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It is straightforward to translate from the Bishop and Johnson 
notation to our notation; for example,  
 

.NL,P,H 0l12l021ll11ll11 ′′′′ ===== αααα  
 
The coordinate responses to virtual forces and moments are 
then given as follows. 

fb3 fa2 fa1  
 
 
  
                                     (1) 
 
 
 
 

On the other hand, to determine the frequency response of 
the spindle/holder assembly, we rely on experimental 
measurements. For the moment, assume that we can 
determine the entire spindle/holder B frequency response 
experimentally. Like a beam (see Figure 4), at the 
connection with the tool, there are two coordinates, ( )33x θ  
corresponding to vertical deflection (slope).  

 

Figure 2. Schematic of the two substructures, 
spindle/holder (B) and tool (A). 
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Figure 4. Schematic of spindle/holder, indicating 
tip coordinates where joint is made with tool.
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If the system is excited at its tip with frequency ω by a force 
(moment ), then by the assumption 

of linear elasticity, the system exhibits a linear, harmonic 
response with the same frequency,  

tiexpf 3b ω tiexpm 3b ω

 
  
 
 
 

Dropping the time-dependent exponential terms, we thus 
have that the deflection (slope) of the spindle/holder 
structure in response to a force (moment) are given by the 
linear relationship 

 
    (2) 
 
 

Referring to Figure 5, what we want to determine is the 
direct deflection receptance G 1111 F/X)( =ω  for the 
combined spindle/holder/tool structure C.  
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2. That is, we cannot simply join the two substructures at 
locations 2 and 3 by assuming that 2a3b2a3b ,xx θθ ==  in 
Figure 2, and that the forces and moments balance at these 
junctions, because there are complicated contact conditions 
in the overlap region where the holder fastens the tool. 
Following some of our previous work on the development of 
the method presented here [8], we make the assumption that 
the connection between the tool and holder can be modeled 
adequately by coupling the deflection (slope) of the two 
subsystems together using a viscously damped linear 
(torsional) spring. Thus, we assume the virtual 
force f tiexp2b ω (moment tiexpm 2b ω ) is applied through 
the springs, so that 
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The spring (damping) parameters k  must still 
be determined. Our method for estimating the values of the 
connection coefficients will be discussed below. 

)c,c(k, xx θθ
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Once again assuming harmonic excitation of the structure at 
a fixed frequency, the connection constraints (4) can be 
written in terms of a “complex coupling” matrix as follows.  
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Figure 5. Schematic of combined spindle/holder/tool 
structure. 
sing the same kind of reasoning as before, when subjected 
 harmonic disturbances, the combined structure C will 
spond elastically with the same frequency, 
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 is the first entry in the first column of the receptance matrix 
11  that is required for a tool chatter stability analysis.  

here are two fundamental difficulties with making the 
ssumption of two independent substructures and then 
imply using classical receptance coupling to predict the 
equency response of the tool-point deflection. First, the 
nly measurement we can make with confidence at the tool 
sertion location 3 is the direct receptance H33(ω). This 
eans that the other receptances P33(ω), L33(ω), and N33(ω) 
re unavailable. In the following section, we present an 
rgument that it is a good approximation in the coupled 
ystem to set  .0LNP 333333 ===

he second fundamental difficulty with our method is that we 
annot assume that subsystems A and B are directly linked 
t the two sets of coordinates at locations 2 and 3 in Figure 
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we solve for G in several steps.  11
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and by (2)  and (4), 
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Using (1), (6), (7) and (8), we get  
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To proceed further, we require that the matrix T be invertible. 
This is equivalent to the following condition on the 
determinant of T,  
 

.0det ≠T                                                                           (10)                     

A second observation about T is the following. Because 
matrix addition is associative, we can imagine that the 
viscous springs are first attached to the tool; that is, we may 
assume that ,3322 BAT +=  where  

 
By (1) and (6), 
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so using (3) and (9), and assuming (10), we get the desired 
receptance matrix for the spindle/holder/tool modeled as two 
subsystems linked by linear viscous springs,        
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It is now straightforward to determine the desired tool point 
receptance )(G11 ω . To simplify the notation, let 
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3. Frequency Equation of the Composite System 
We note that the determinant of the matrix )(ωT

(11

 appears 
twice in the denominator of the expression forG )ω . Thus 
the requirement (10) that this determinant be nonzero over 
the frequency range of interest is important. Because of this, 
in this section, we examine the matrix T more closely. In 
addition, we derive some approximations for use in 
applications of the tool-point receptance formula (13) in the 
next section. 
 
By (9), . The first observation we make 
about T is that it is the sum of properties of three 
“substructures” that make up the spindle/holder/tool 
assembly. The latter two terms comprise properties of the 
tool and the spindle/holder system, respectively, while the 
first term is the inverse of the complex coupling matrix K, 
defined in (5). The nonzero entries of K determine the 
stiffness and viscous damping properties that join the tool to 

the holder. We could have chosen to treat the springs and 
dashpots as a third substructure, but we have used a simpler 
coupling approach instead, as described by Ewins [5] and 
Ewins and Ferreira [6]. It is easy to see that, over a finite 
interval of frequencies, if we hold the viscous damping 
coefficients constant but increase the stiffness of the two 
springs, then in the limit as the stiffnesses go to infinity, 

 In this case, receptance coupling reduces to 
connecting the two structures by rigid joints at the two 
adjacent sets of deflection and slope coordinates, as 
depicted in Figure 5.  
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By (15), it follows that, as  
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So far, we have not assumed that there is any dissipation in 
the free-free beam model of the tool. This means that the 
receptance matrix )(ω22A  is real, and the values of ω at 
which all of its entries simultaneously become infinite 
correspond to the resonant frequencies of the free-free 
beam. Furthermore, the values of ω that satisfy the equation 
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determine the cantilever frequencies of beam A. Thus, if we 
set the viscous damping coefficients equal to zero, 

 the beam changes from free-free to 
clamped-free as the stiffnesses of the connecting springs 
become infinitely large. In the more realistic case in which 
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Once again, for large spring constants relative to the 
damping coefficients, we see that, over a finite frequency 
range, θθ kK,kK xx ≈≈ , so in this case we expect the 
frequencies of the beam to be close to those of the 
undamped clamped-free beam. 
 
Now, we use these two observations about T to draw some 
useful conclusions.  If we expand the determinant of T using 
the notation in (12), we get that  
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because these terms do not appear in (22). In the next 
section, we use (23) in the formula for G )(11 ω given by (15) 
to estimate the tool-point response for a specific 
spindle/holder/tool system. 
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−+++=

θ
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Expanding the last two terms in (17), we find that 

  
4. Method for Determining Coupling Parameters and an 
Application 
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By reciprocity, and for the free-free beam model 
of the tool, we can show that, over the frequency interval of 
interest,  

,NL 2222 =
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In this section, we assume (23) and apply the approximate 
expression (15) for the tool tip receptance derived in the 
preceding section to the problem of tool tuning [11],[3],[8]. 
The basic idea of this method is to change the tool point 
dynamics, in order to avoid chatter at a given maximal 
machining center rpm, for example, by adjusting the 
parameters that define the tool; in the present case, tool 
length is the single adjustable parameter. As will be 
demonstrated, both the frequency and amplitude of the tool-
point receptance vary significantly with the tool length. We 
include comparisons between predicted and experimentally 
measured results for a given spindle with a Tribos tool holder 
and six tools with length/diameter ratios that vary from 6:1 to 
11:1. We also demonstrate that the receptance modeling 
approach can be used in the present application to predict 
the tool tip deflection given only the connection parameters 
for the shortest and longest tools in the six tool set, thus 
reducing by two thirds the amount of work required for the 
complete range of tool lengths. Additional examples of the 
application of receptance coupling to tool tuning may be 
found in the paper by Schmitz, et al. [8]. 

 
To proceed further, we make the following assumption: the 
tool (substructure A) is much more flexible than the 
spindle/holder (substructure B). Mathematically, this 
assumption can be written in terms of the complex moduli, 
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The measured frequency response of the spindle/holder 
system is shown in Figure 6, which gives plots of the real 
and imaginary parts of the direct deflection tip receptance 

)(H33 ω  as functions of the frequency.  
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Dividing (21) through by , we have, by (19) and (20), for 
the last four terms that 
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Figure 6. Measured frequency response of tip of 
spindle/holder system. Therefore, we have that 
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22AT                                       (22) As discussed by Bishop and Johnson [2], it is straightforward 

to add uniform hysteretic damping ζ to the free-free beam 
model of the tool. This can be done by changing the elastic 
modulus for carbide, E = 585.3 GPa, to the complex 
modulus E(1+iζ), and then using the same closed-form 
analytic free-free beam tip receptance expressions. For the 
work we present here, however, we have found that it is 

 
Thus we may make the approximation that  
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adequate to make the assumption that ζ= 0.  In each case, 
the carbide tool diameter is D=12 mm, and the six overhang 
lengths vary from 72 mm to 132 mm, so that the length-to-
diameter ratios vary in whole numbers from 6:1 to 11:1.  
Because the tools are fluted, we have calculated that they 
have an effective diameter of D=11.8 mm; this is the value 
used for D to compute the cross-sectional second moment of 
inertia I for the six tools tested.  
 
The four spring (damping) connection parameters 

 must still be determined for each tool. 
Our current approach to estimating these constants for a 
given system is as follows. First, for each tool length we 
utilize the nonlinear least-squares software lsqnonlin in the 
Matlab Optimization Toolbox [7] to determine real parameter 
fits that minimize the residual to within10

)θc,x(cθk,xk

-12; call these six 
sets of parameter values the best fits. Comparisons between 
the experimentally measured spindle/holder/tool direct 
deflection tip receptance and that obtained using Equation 
(15) derived above are given for the shortest and longest 
tools in Figures 7 and 8, respectively; comparisons for the 
remaining four tools are similar. In addition to observing that 
our four-parameter model based on RCSA gives reasonable 
approximations for the measured frequency response 
behaviors, we note the increased flexibility and lower-
frequency resonance of the longest, most flexible tool, and 
also the contribution of the spindle/holder mode near 1500 
Hz to the response of the shortest (6:1) overhang tool.

 
Hz to the response of the shortest (6:1) overhang tool.
  
To demonstrate the predictive value of our modeling 
approach, we use logarithmic interpolation of the best-fit 
parameters for the longest and shortest tools (Figure 9) to 
predict the direct tool-point deflection receptances of the 
remaining four tools; see Figure 10. We note that, for all 
six tools, the dominant frequency decreases with 
increasing tool length. However, in the case of the 9:1 
overhang tool, there is an interesting “dynamic absorber” 
effect arising from the interaction between the 
spindle/holder system dynamics and the tool dynamics. 
This decreased flexibility response could be usefully 
exploited to maximize the material removal rate in some 
industrial high-speed machining applications requiring 
longer-overhang tools. 
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effect arising from the interaction between the 
spindle/holder system dynamics and the tool dynamics. 
This decreased flexibility response could be usefully 
exploited to maximize the material removal rate in some 
industrial high-speed machining applications requiring 
longer-overhang tools. 
  
5. Concluding Remarks 5. Concluding Remarks 
We have presented a receptance coupling method for 
predicting the tool-point frequency response of a long-
overhang high-speed machining structure consisting of a 
spindle, holder, and tool. Even though the method entails 
a number of approximations, the predictions made by the 
resulting model in a tool tuning application, using only two 
sets of experimental measurements for the composite 
system together with a single measurement of the 
deflection response of the spindle/holder subsystem, show 
that our approach provides useful predictions of the 
dynamic tool-point response of the combined system.  
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predicting the tool-point frequency response of a long-
overhang high-speed machining structure consisting of a 
spindle, holder, and tool. Even though the method entails 
a number of approximations, the predictions made by the 
resulting model in a tool tuning application, using only two 
sets of experimental measurements for the composite 
system together with a single measurement of the 
deflection response of the spindle/holder subsystem, show 
that our approach provides useful predictions of the 
dynamic tool-point response of the combined system.  
  
  
  
Figure 8. Comparison between measured frequency 
response and predicted response using Equation 
(15) for longest overhang tool with best-fit 
connection parameters. 
Figure 7. Comparison between measured frequency 
response and predicted response using Equation 
(15) for shortest overhang tool with best-fit 
connection parameters. 
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