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This paper describes an approach for authentication of parts produced by additive friction stir deposition
(AFSD) using an embedded QR tag. The manufacturing steps are: produce the QR tag by laser microma-
chining, deposit the base layers for the part using AFSD, machine a pocket in the top layer, insert the tag
with the QR code(s) facing toward the printed material, and deposit the following layers over the QR tag
to embed it within the part. Authentication is then provided using CT scanning to image the QR code at
the known location within the AFSD part.

� 2022 Society of Manufacturing Engineers (SME). Published by Elsevier Ltd. All rights reserved.
1. Introduction

Authentication for computer access is ubiquitous, such as two-
factor authentication for securing online accounts. This require-
ment also extends to manufactured parts. As an example, multiple
efforts have been completed for fiber reinforced composite parts
due to the potential for malicious process modification or substan-
dard materials. Approaches have included inserted radio frequency
identification (RFID) tags [1–2], magnetic inks [3–5], dyes [6–7],
quantum dots [8], and nanoparticles [9]. QR codes has also been
printed on the surface of polymer parts produced by fused filament
fabrication (FFF) and inkjet printing [10–11]. Concerns also exist
for counterfeiting or modification of metal parts, particularly for
defense and human safety applications. Security and tracking using
selective laser sintering (SLS) to print QR codes [12] and surface
application of photoluminescent micropatterned tags have been
studied, for example [13]. In this work we demonstrate embedding
a QR code within an aluminum coupon fabricated using additive
friction stir deposition (AFSD). Prior efforts have demonstrated
the validity of AFSD for metal part fabrication [14–17, for
example].
2. Materials and methods

The approach followed in this study was to laser micromachine
QR codes on the surface of an aluminum tag. This tag was then
embedded in an AFSD part by: 1) depositing several layers of
6061 aluminum; 2) machining a pocket in the top layer; 3) insert-
ing the tag in the pocket with the QR code facing toward the pocket
bottom; and 4) depositing additional layers over the tag using
AFSD. To confirm the results, both optical microscopy and com-
puted tomography (CT) were applied. The procedure is described
in the following sections.

2.1. Micromachining

Six QR code patterns covering a range of sizes were machined
on a 25 mm � 50 mm � 2 mm 6061-T6 aluminum tag that was
pre-sanded using 1200 grit SiC paper to provide a smooth working
surface with randomized residual scratch/dig features; see Fig. 1,
where the dimensions were obtained with an Alicona InfiniteFo-
cusSL 3D measuring system. The tag was seated and leveled on a
positioning stage with 50 mm travel in both transverse axes (X
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Fig. 1. Digital microscope image of six QR codes (labeled 1–6, smallest to largest) and dimensions, including width (mm), height (mm), and depth (lm). Each code is the
same, but the scale changes.
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and Y) and 3 mm travel in the axial direction (Z). A.png file contain-
ing the QR code was read into a custom National Instruments Lab-
VIEW Virtual Instrument and converted into scalable travel-point
coordinates. A pulsed, ultrafast IR laser beam (Amplitude Systèmes
Tangerine, 1030 nm, 8 ps, 7 lJ, 100 kHz) was focused at the tag sur-
face by a 32x microscope objective (Leitz Wetzlar, 0.60NA). The tag
was translated along an alternating X-Y raster path at 10 mm/s to
ablate each QR code. A nitrogen stream was directed over the work
area to clear material and protect the objective from contamina-
tion. To achieve a suitable ablation depth, each pattern was
swabbed with acetone-soaked lens tissue after the first pass to
clear debris and was then exposed a second time, yielding approx-
imately 15 lm deep features. However, during cleaning of code 6
(Fig. 1), the tag was accidently shifted, so a second pass over this
pattern was not completed, leaving it shallower than the other five.
Following laser micromachining, the tag was sonicated in acetone
for 1 min.

2.2. First AFSD

The first AFSD process was completed using a MELD Manufac-
turing L3 machine, where wrought stock (9.53 mm
square � 508 mm long) is forced axially through a rotating spindle
against a build plate (or prior print layer). The frictional heating
and subsequent plastic deformation provided heat to soften the
material and enable layer-by-layer deposition without melting.
In this step, material was deposited in 11 layers that were
2.5 mm thick � 52 mm wide using a spindle speed of 350 rpm1,
stock feed rate of 152 mm/min through the spindle, and traverse
feed rate of 102 mm/min for the rotating tool relative to the 6061-
T6 aluminum build plate.

2.3. First machining

After AFSD, a 26.2 mm � 51.6 mm � 3.2 mm pocket was
machined in the top layer of the printed aluminum. The dimen-
sions were selected based on the micromachined QR tag (Sec-
tion 2.1). To connect the AFSD and machining coordinate
1 The spindle speed was reduced layer-by-layer as more process heat was retained
in the part. The starting spindle speed was 350 rpm and the final spindle speed was
200 rpm.
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systems, the AFSD part and build plate were measured by struc-
tured light scanning (GOM ATOS Q). The subsequent 3D mesh
was imported into the computer-aided manufacturing (CAM) soft-
ware as the stock model, where the measurement origin was
selected to be the build plate’s top corner; see Fig. 2. The tool paths
were then generated in this coordinate system. When the part was
placed in the Haas VF-4 computer numerical control (CNC) milling
machine, on-machine probing was used to locate the build plate
corner and transfer the coordinate system origin [18]. Orientation
was ensured by clamping the build plate in a pre-aligned vise.
While a preferred solution may be to deposit and machine using
the same system, the MELD Manufacturing L3 does not have a
milling spindle; the tool-spindle connection is not compatible with
traditional milling spindle-holder connections (such as CAT-40 or
HSK-63A).

After machining, the pocket was measured using a coordinate
measuring machine to identify its location relative to the build
plate; the measurement origin was again selected to be the build
plate’s top corner for the Section 2.5 s machining step after mate-
rial was printed over the QR tag. Prior to the second printing step
(Section 2.4), the QR tag was inserted in the machined pocket with
the QR code facing the pocket bottom away from the second AFSD
step.

2.4. Second AFSD

After the QR tag was inserted in the pocket, three new layers
were deposited over the top of the pocket and first 11 layers. The
QR tag was then embedded within the aluminum part and not vis-
ible from the outside; see Fig. 2.

2.5. Second machining

To enable convenient manipulation for follow-on CT scanning, a
coupon was machined from the AFSD part, where the coupon
dimensions were selected to be 3 mm larger in each Cartesian
direction than the original QR tag that was embedded in the AFSD
part. Using the build plate origin as a reference, the coupon was
released by milling away the surrounding material, where the tool
paths were generated using the pocket location identified by the
CMM in Section 2.3. The complete manufacturing sequence is
displayed in Fig. 2.



Fig. 2. Manufacturing sequence for embedding QR tag (clockwise from top left). (Top left) The AFSD part was scanned to identify the stock model for the first machining
operation. (Top right) The top surface was faced and the pocket was machined to hold the QR tag. (Bottom right) Additional layers were deposited over the QR tag. (Bottom
left) A coupon was obtained for CT scanning by machining material away with a 3 mm perimeter around the embedded QR tag.

Fig. 3. ZEISS VERSA 620 setup. (Left) 90 deg orientation. (Right) 0 deg orientation.
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3. Results

CT scans were completed for the aluminum coupon with the
embedded QR tag. The scans were completed using a ZEISS VERSA
Fig. 4. CT scan of embedded QR tag. In the image field of view, c
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620 with a voxel size of 18 lm. The setup is displayed in Fig. 3 and
an example scan is provided in Fig. 4. For the selected field of view,
codes 6 and 1 are observed. With the 18 lm voxel size, more detail
is seen for the larger code 6 (11.8 mm square). The intent for the
embedded tag is that the CT image can ultimately be scanned with
a smart phone or similar device to confirm the part’s authenticity.
Additional research will fully enable this capability.
4. Conclusions

This paper provided a proof of concept for authentication of
parts produced by additive friction stir deposition (AFSD) using
an embedded QR tag and CT scanning. The selected approach
included laser micromachining to write the QR codes on the sur-
face of an aluminum tag. After depositing several layers using
AFSD, the process was paused and a pocket was machined in the
top layer to accept the tag. The QR codes were oriented so that
the micromachined surface faced away from the next printing
layer so that the severe plastic deformation caused by AFSD did
not disturb the QR codes. After depositing additional layers over
the pocket, the QR tag was embedded in the print in a known loca-
tion. Subsequent CT scanning showed that the QR codes were vis-
odes 1 and 6 are observed. The left inset shows code 1 only.
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ible. Future efforts will advance this initial study to refine the laser
micromachined QR code scale and depth and confirm that the CT
image can obtained with adequate resolution and accuracy to
authenticate the part using a smart phone (or similar device) scan
of the QR code. Application of this approach will be best suited to
high value components that warrant the cost and availability of a
CT scanner.
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