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A B S T R A C T   

This paper provides a physics-informed Bayesian machine learning (PIBML) description and case study. The 
PIBML approach applies three physics-based models to establish the initial beliefs before testing to determine the 
probability of milling stability (or prior). These include: receptance coupling substructure analysis (RCSA) 
prediction for the tool tip frequency response functions; finite element software prediction of the mechanistic 
force model coefficients; and a spindle speed-dependent power law model for process damping. Testing was then 
performed to identify optimal stable machining conditions using an expected improvement in material removal 
rate criterion. The prior probability of stability was updated using the test results to determine the posterior 
probability of stability. The test results were compared to the parameter recommendations provided by the 
endmill manufacturer. A demonstration integral blade rotor was machined at the optimal stable machining 
conditions for 304 stainless steel and 6061-T6 aluminum. The disagreement between manufacturer recom-
mendations and milling performance in both materials tested emphasizes the need for broad implementation of 
PIBML approaches to increase machining productivity and efficiency.   

1. Introduction 

Computer-numerically controlled (CNC) machining is projected to 
be a $129B industry by 2026 with 5.5 % annual growth from 2019 to 
2026 [1]. It is used to produce high value components from not only 
plate stock, forgings, and castings, but also additively manufactured pre- 
forms. Because significant cost is already embedded in the starting 
material and the capital resources and hourly rates are high, it is 
essential that parts are not scrapped and the machine/tooling is not 
damaged. The production of parts that conform to design drawing 
specifications in a first-part-correct, high-profit scenario requires that 
the machining parameters, including depths of cut, spindle speed, and 
feed rate, as well as the material removal strategy embedded in the 
computer-aided manufacturing (CAM) tool path, are optimized. 

While CNC machining has largely moved from an analog to a digital 
approach due to advances in process planning software and machine 
tool controllers, the selection of machining parameters remains an 
experience-based, trial-and-error process in many cases. This is pri-
marily due to the large number of potential combinations for tools, 
holders, machines, and work materials. For example, 1000 stock keeping 
units (SKUs) from 50 tool providers, 500 SKUs from 50 holder 

manufacturers, 50 machine tool models, and 160 different metal alloys 
represent 1 × 1013 (or 10 million-million) different combinations. 
Without optimization, the outcome is reduced productivity and 
increased cost. 

In machining, chatter (unstable machining) is caused due to the 
regeneration of surface waviness [2]. The information can be presented 
as stability maps, which separate stable and unstable combinations of 
axial depth of cut and spindle speed [2]. Using the stability maps, 
optimal stable axial depth-spindle speed pairs may be selected with the 
highest material removal rate. Many physics-based models are available 
for predicting stability, including the frequency-domain average tooth 
angle method [3], frequency-domain mean force approach [4], time- 
domain simulation [5,6], and semi-discretization method [7]. Howev-
er, uncertainty in the model predictions is present due to uncertainties in 
the model inputs (tool tip frequency response functions, cutting force 
coefficients, and process damping coefficients), model assumptions, or 
factors that are not included in the model. Alternatively, data-driven 
methods can be applied to determine the stability boundary using 
experimental results. There have been multiple studies on the applica-
tion of machine learning (ML) to machining stability. For example, 
Cherukuri et al. used an artificial neural network (ANN) to model 
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turning stability [8]. Denkena et al. applied support vector machines and 
ANNs [9]. Bergmann and Reimer implemented Regularized Kernel 
Interpolation for a learning stability lobe diagram to enable autonomous 
online parameter optimization [10]. Data-driven methods, such as 
ANNs, generally require many data points to accurately learn the sta-
bility boundary, do not provide information on the underlying tool tip 
frequency response function (FRF) and cutting force model, and may 
identify local, rather than global, optimized parameters [11]. Bayesian 
ML methods, on the other hand, enable updating the initial probabilistic 
stability boundary (or the prior) with each cutting test. However, recent 
Bayesian ML efforts [12–16] have still required significant data because 
the priors have not been defined based on physics-based models. 

Previous work from the authors described a Bayesian learning 
method to update the probability of stability given test results [14]. 
However, the method did not use the stability model to define the prior 
probability of stability, but instead only applied the knowledge that it is 
more likely to observe an unstable cut at higher axial depths of cut. To 
advance the state of the art, this paper presents a systematic approach 
for including various process uncertainties through modeling. It builds 
on the approach in [14] by describing a method to define an informed 
prior using physics-based models to establish the initial stability beliefs. 

The case study presented here addresses existing industry challenges 
using a combination of physics-based models, machine learning, and in- 
process data to provide physics-informed Bayesian machine learning 
(PIBML) that improves the accuracy of stability model predictions over 
traditional machine learning or physics-based methods individually. 
The application is integral blade rotors (IBRs), or blisks, machined from 
wrought aluminum and stainless steel prismatic stock. The machine 
learning approach builds on recent efforts for applying data-driven 

artificial intelligence to machining operations. The remainder of the 
paper is organized as follows. In Section 2, the Bayesian learning 
methodology described in [14] is shown, followed by a description of 
the improved method to define an informed prior using physics-based 
models. Section 3 describes the experimental setup and results for IBR 
machining. Section 4 compares updating results using informed and 
uninformed priors. Conclusions are provided in Section 5. 

2. Modeling 

2.1. Bayesian machine learning 

Bayesian machine learning (BML) defines a probabilistic model of 
the milling stability map given test results (stable or unstable) over a 
spindle speed-axial depth of cut domain. Eq. (1) shows Bayes' rule for 
updating the probability of stability at a selected spindle speed-axial 
depth combination using the stability result from a test point [14]. 

p
(
sg|rt

)
=

p
(
rt|sg

)
p
(
sg
)

p(rt)
(1) 

In Eq. (1), p denotes probability, s denotes stability, r denotes the test 
result, and subscript g and t denote a selected and test point combination 
of spindle speed and axial depth, respectively. A test result at t can either 
be stable or unstable. From Bayes' rule, the posterior probability of 
stability at g given the test result at t is the product of the prior proba-
bility of stability at g, and the likelihood probability of the experimental 
result given g is stable, divided by the marginal probability of the result. 

The prior probability of stability is determined using all available 
information (e.g., analytical models, theoretical constraints, stability 

Fig. 1. (a) Prior distribution of milling stability. (b) Posterior probability of stability for a stable test at {15,000 rpm, 10 mm}. (c) Posterior probability of stability for 
an unstable test at {15,000 rpm, 10 mm} [14]. (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.) 
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knowledge, and/or user experience). Fig. 1 illustrates the BML approach 
described in [14]. Fig. 1(a) displays the prior (or the initial probability of 
stability), which assumes that the probability of stability (shown in 
greyscale) reduces with an increasing axial depth of cut; white is likely 
to be unstable/chatter, while black is likely to be stable. In Fig. 1(a), the 
reduction in probability of stability with axial depth is linear. The prior 
is updated using experimental data, where the outcome is binary: the cut 
is labeled as either stable or unstable. The binary label is automatically 
assigned using the frequency content of the milling sound (obtained 
using a microphone), where the content at frequencies other than the 
tooth passing frequency and its multiples indicate chatter [2]. When the 
chatter peak is 50 % or higher than the tooth passing frequency peak, the 
cut is considered unstable (chatter). 

The test result is used to update the prior using Bayes' rule to 
determine the posterior probability of stability (Eq. (1)) [14]. To illus-
trate, consider a test at {15,000 rpm, 10 mm}. Fig. 1(b) shows the 
updated probability of stability if the test at {15,000 rpm, 10 mm} was 
stable (denoted by a blue dot). Fig. 1(c) shows the updated probability of 
stability if the test at {15,000 rpm, 10 mm} was unstable (denoted by a 
red cross). As seen in Fig. 1, a stable or unstable experimental result 
modifies the probability of stability over the entire spindle speed-axial 
depth domain. This is achieved by capturing how knowledge of the 
stability limit at a single point affects the stability knowledge at other 
locations [14]. The reader is referred to [14] for the mathematical de-
tails of the BML procedure. Note that the selected test point at {15,000 

rpm, 10 mm} is for illustrative purposes only. 
The test parameters for stability can be selected to identify the 

optimal stable combination of spindle speed and axial depth using a 
minimum number of tests. One criterion is to test where the expected 
improvement in material removal rate, MRR, is maximum. The expected 
improvement in MRR at a selected spindle speed-axial depth combina-
tion is given by Eq. (2). 

E[I(MRR) ]g = p
(
sg
)
×

(
MRRg − MRRprior

)

MRRprior
(2) 

In Eq. (2), E denotes the expected value, I denotes improvement, the 
subscript g denotes an arbitrary grid point at a spindle speed-axial depth 
combination, MRRprior is the optimal MRR based on the prior probability 
of stability, and MRRg denotes the MRR at the grid point. MRRprior is 
determined as the highest MRR among parameters that are stable with 
certainty in the domain. Results show that using the maximum expected 
improvement in MRR strategy, the optimal stable parameter can be 
determined in 10 to 15 tests [14]. 

To advance the approach described in [14], an informed prior that 
uses physics-based models to establish the initial stability beliefs is 
described here, unlike the uninformed prior in Fig. 1(a). Two primary 
inputs are required for the frequency-domain milling stability solution 
[2,3]. These include a cutting force model that relates the milling pa-
rameters to the cutting force components [2] and the tool tip FRFs that 

Fig. 2. (a) Tool scan using GOM ATOS Q scanner. (b) Tool edge cross-section. (c) Tool cutting edge imported in AdvantEdge™.  
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describes the vibration behavior of the tool-holder-spindle-machine as-
sembly selected for the milling process [17,18]. Additionally, process 
damping is incorporated using a spindle speed-dependent power law 
model. These models and inputs are described in the following three 
sections. An informed prior results in an improved prior, which reduces 
the number of experiments required to identify the optimal stable 
parameters. 

2.2. Finite element force modeling for cutting force coefficients 

As noted, one of the primary inputs to the stability model is the 
cutting force coefficients [2]. The cutting force coefficients depend on 
the tool-material combination and may be determined using a linear 
regression to the mean force values measured over a range of feed per 
tooth values [2,3]. In this paper, a digital method to determine the 
cutting force coefficients using finite element simulations is presented. 
The commercially-available, finite element software AdvantEdge™ 
from Third Wave Systems was used to model the cutting force [19]. The 
procedure is as follows. First, the cutting tool was scanned using a GOM 
ATOS Q structured light scanner; the scan was used to obtain the cutting 
edge cross-section. Second, the cross-section was imported into the 
AdvantEdge™ software. Third, orthogonal cutting was simulated for a 
fixed chip width, b, and variable chip thickness, h. Fourth, the mean 
forces in the x-direction and y-direction were recorded from the finite 

element simulations at different chip thickness values and used to 
calculate the force coefficients by the linear regression method [2,3]. 

For 304 stainless steel, a 12.7 mm diameter endmill with four teeth 
and a 0.38 mm corner radius was selected. Fig. 2(a) shows the scanned 
tool model. Fig. 2(b) shows the tool edge cross-section. The tool edge 
cross-section was imported in AdvantEdge™ as shown in Fig. 2(c). 

Orthogonal simulations were completed at different chip thickness 
values for 304 stainless steel and 6061-T6 aluminum. For the finite 
element simulations, the embedded power viscosity model from 
AdvantEdge™ was used. An adaptive remeshing scheme was used where 
the maximum element size was 0.1 mm and the minimum element size 
was 0.01 mm (default settings in AdvantEdge™). The top boundary and 
side boundary of the tool (shown highlighted in black) in Fig. 2(c) were 
fixed. The workpiece length was 12 mm. The depth of cut was 1 mm. 
Fig. 3 shows an example simulation results for 304 stainless steel at a 
0.043 mm chip thickness and a cutting speed of 107.7 m/min. The 
cutting force values from the simulation were taken as the average value 
in the steady-state portion of the cut. In Fig. 3, the x-direction force gives 
the tangential force component and the y-direction force gives the 
normal force component. 

For the simulations, the cutting speed for 304 stainless steel was 
107.7 m/min. Five simulations were completed at chip thickness values 
of {0.023, 0.028, 0.033, 0.038, and 0.043} mm. A linear regression was 
then performed for the chip thickness versus mean force to identify the 
slope and intercept values [2,3]. These values provided the mechanistic 
force model coefficients in Eqs. (3) and (4), where the slopes provided 
the cutting coefficients (c subscripts) and the intercepts provided the 
edge coefficients (e subscripts). 

Ft = ktcbh+ kteb (3)  

Fn = kncbh+ kneb (4) 

Fig. 3. Orthogonal turning simulation using AdvantEdge™.  

Table 1 
Cutting coefficients for mechanistic force models.  

Material Coefficients 

ktc (N/mm2) knc (N/mm2) kte (N/mm) kne (N/mm) 

304 stainless steel  1618  792  138  76 
6061-T6 aluminum  556  225  41  19  
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The procedure was repeated for 6061-T6 aluminum. The tool was a 
12.7 mm diameter, square endmill with three teeth. The coefficient 
values determined using the finite element simulation are listed in 
Table 1. 

2.3. Process damping 

Process damping is a phenomenon observed in machining where the 
limiting depth of cut to avoid chatter is increased at low spindle speeds 
(cutting speeds). Many authors have studied process damping and have 
described it as energy dissipation due to interference between the cut-
ting tool clearance face and machined surface during relative vibrations 
between them [20–40]. There have been efforts to experimentally 
determine the process damping coefficients [35,36]. Budak et al. used an 
indentation force coefficient to identify the process damping coefficient 
[35]. Altinas et al. used orthogonal cutting tests with a fast servo tool to 
vary the phase between inner and outer modulations [36]. In this work, 
process damping was added using a spindle speed-dependent power law. 
See Eq. (5), where the increase in stability due to process damping was 
added to the stability boundary predicted by the frequency-domain 
stability solution [2,3]. 

bpd = DΩd (5) 

In Eq. (5), bpd is the limiting axial depth of cut for process damping, 
where Ω is the spindle speed vector (rpm) and D and d are constants. The 
values for D and d were selected as 5 × 105 (mm/rpm) and 1.8, 
respectively, based on experience. 

2.4. Receptance coupling substructure analysis 

Receptance coupling substructure analysis (RCSA) is applied here to 
predict the tool tip receptance, or FRF. In the RCSA approach, a simple 
geometry artifact is first clamped in the spindle and measured by tap 
testing, where an instrumented hammer is used to excite the assembly 

and a low-mass accelerometer is used to measure the vibration response. 
Second, the spindle-machine FRF is calculated by decoupling the artifact 
in simulation (i.e., inverse RCSA). Third, the tool and holder models are 
coupled to the spindle-machine FRF to predict the tool tip FRF [17,18]. 

The RCSA model includes: 1) transverse deflections, xi and Xi, for the 
components (lower case variables) and assembly (upper case variables) 
due to internal and external forces, fj and Fj; and 2) rotations about lines 
perpendicular to the beam axis, θi and Θi, and bending moments (or 
couples), mj and Mj, to completely describe the transverse dynamic 
behavior of beams. To describe the procedure, consider the cylinder- 
prismatic cantilever beam assembly displayed in Fig. 4. This is repre-
sentative of a tool (cylinder) rigidly attached to a holder-spindle- 
machine (prismatic cantilever beam). 

To calculate the assembly receptances, all four bending receptances 
are included in the component (i.e., cylinder and prismatic cantilever 
beam) descriptions. These four bending receptances include 
displacement-to-force, hij, displacement-to-couple, lij, rotation-to-force, 
nij, and rotation-to-couple, pij, where i is the displacement/rotation co-
ordinate location and j is the location where the force/couple is applied. 
There are three primary steps followed to predict Fig. 4 assembly 
receptances.  

1. Define the components and coordinates for the model. In this 
example, there are two components: a prismatic beam with fixed-free 
(or cantilever) boundary conditions and a cylinder with free-free (or 
unsupported) boundary conditions; see Fig. 5.  

2. Determine the component receptances. In this work, the Timoshenko 
beam model was applied [41].  

3. Based on the model from step 1, express the assembly receptances as 
a function of the component receptances from step 2. Determine the 
assembly receptances using the component displacements/rotations, 
compatibility conditions, and equilibrium conditions. 

The procedure for coupling the components in Fig. 5 to form the 
assembly in Fig. 4 requires the component receptances. In Fig. 5, co-
ordinates are placed at the prediction location (1) and coupling locations 
(2a and 2b) on the two components. For the cylinder, the direct recep-
tances at the coordinate 1 end are shown in Eq. (6). 

h11 =
x1

f1
l11 =

x1

m1
n11 =

θ1

f1
p11 =

θ1

m1
(6) 

The cross receptances are given by Eq. (7). 

h12a =
x1

f2a
l12a =

x1

m2a
n12a =

θ1

f2a
p12a =

θ1

m2a
(7) 

At coordinate 2a on the cylinder, the direct and cross receptances are 
provided in Eqs. (8) and (9). 

h2a2a =
x2a

f2a
l2a2a =

x2a

m2a
n2a2a =

θ2a

f2a
p2a2a =

θ2a

m2a
(8) 

Fig. 4. RCSA example for a cylinder rigidly coupled to a prismatic cantilever 
beam to form an assembly. 

Fig. 5. Cylinder and prismatic cantilever beam components for RCSA example.  
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h2a1 =
x2a

f1
l2a1 =

x2a

m1
n2a1 =

θ2a

f1
p2a1 =

θ2a

m1
(9) 

Similarly, for the prismatic cantilever beam, the direct receptances at 
the coupling location 2b are given by Eq. (10). 

h2b2b =
x2b

f2b
l2b2b =

x2b

m2b
n2b2b =

θ2b

f2b
p2b2b =

θ2b

m2b
(10) 

To simplify notation, the component receptances may be represented 
in matrix form as shown in Eqs. (11) through (14) for the cylinder and 
Eq. (15) for the prismatic cantilever beam. In Eqs. (11)–(15) Rij is the 
generalized receptance matrix that describes both translational and 
rotational component behavior and ui and qj are the corresponding 
generalized displacement/rotation and force/couple vectors. 

{
x1
θ1

}

=

[
h11 l11
n11 p11

]{
f1
m1

}

or {u1} = [R11]{q1} (11)  

{
x2a
θ2a

}

=

[
h2a2a l2a2a
n2a2a p2a2a

]{
f2a
m2a

}

or {u2a} = [R2a2a]{q2a} (12)  

{
x1
θ1

}

=

[
h12a l12a
n12a p12a

]{
f2a
m2a

}

or {u1} = [R12a]{q2a} (13)  

{
x2a
θ2a

}

=

[
h2a1 l2a1
n2a1 p2a1

]{
f1
m1

}

or {u2a} = [R2a1]{q1} (14)  

{
x2b
θ2b

}

=

[
h2b2b l2b2b
n2b2b p2b2b

]{
f2b
m2b

}

or {u2b} = [R2b2b]{q2b} (15) 

The component receptances are written using the generalized nota-
tion: u1 = R11q1 + R12aq2a and u2a = R2a1q1 + R2a2aq2a for the cylinder 
and u2b = R2b2bq2b for the prismatic cantilever beam. For a rigid 
connection between the two components, the compatibility condition is 
u2b − u2a = 0. This indicates there is no relative motion at the coupling 
location. Additionally, if the component and assembly coordinates are at 
the same physical locations, then u1 = U1 and u2a = u2b = U2 (due to the 
rigid coupling). The assembly receptances are written as shown in Eq. 
(16), which again incorporates the generalized notation. 
{

U1
U2

}

=

[
G11 G12
G21 G22

]{
Q1
Q2

}

,where Ui =

{
Xi
Θi

}

,Gij =

[
Hij Lij
Nij Pij

]

, and Qj

=

{
Fj
Mj

}

(16) 

To determine the four assembly receptances at the free end of the 
cylinder, G11, the generalized force Q1 is applied to assembly coordinate 
U1 as shown in Fig. 6, where the generalized Ui and ui vectors are shown 
schematically as “displacements”, although they describe both trans-
verse deflection and rotation. The associated equilibrium conditions are 
q2a + q2b = 0 (i.e., the internal forces/couples are balanced) and q1 = Q1 
(because the component and assembly generalized forces are located at 
the same spatial location). 

By substituting the component displacements/rotations and equi-
librium conditions into the compatibility condition, the expression for 
q2b shown in Eq. (17) is obtained. The component force q2a is then 
determined from the equilibrium condition q2a = − q2b. 

U1

U2

u1

u2b u2a

Q1

q1

q2aq2b

Fig. 6. Receptance coupling model for determining G11 using a rigid connec-
tion. (Top) assembly. (Bottom) components. 

Fig. 7. (a) Tool tip FRFs predicted by RCSA for the x (red) and y (blue) directions including connection parameter uncertainty (k and c). (b) Stability limits calculated 
using the uncertain FRFs, uncertain force model coefficients (ktc and knc), and process damping effects. (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.) 
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u2b − u2a = 0
R2b2bq2b − R2a1q1 − R2a2aq2a = 0
(R2a2a + R2b2b)q2b − R2a1Q1 = 0
q2b = (R2a2a + R2b2b)

− 1R2a1Q1

(17) 

The expression for G11 is given by Eq. (18). The (1, 1) location, H11, 
in the 2 × 2 matrix, G11, is the displacement-to-force receptance 
required for milling stability prediction. 

G11 =
U1

Q1
=

u1

Q1
=

R11q1 + R12aq2a

Q1
=

R11Q1 − R12a(R2a2a + R2b2b)
− 1R2a1Q1

Q1

G11 = R11 − R12a(R2a2a + R2b2b)
− 1R2a1 =

[
H11 L11

N11 P11

]

(18) 

For a non-rigid coupling with energy dissipation (damping) between 
the tool and holder, Eq. (19) is modified to include a connection stiffness 
matrix, [K], as shown in Eq. (18). 

G11 = R11 − R12a
(
R2a2a + R2b2b + K− 1)− 1R2a1 =

[
H11 L11
N11 P11

]

(19) 

The complex-valued, frequency-dependent connection stiffness ma-
trix is defined in Eq. (20), where k indicates stiffness, c represents 
viscous damping, and ω is frequency. 

[K] =

[
0 k + iωc

k + iωc 0

]

(20)  

2.5. Physics-informed Bayesian machine learning (PIBML) 

A physics-informed prior was generated by propagating un-
certainties in the stability model inputs (ktc and knc from Eqs. (3) and (4), 
k and c from Eq. (20)) to uncertainty in the stability limit using Monte 
Carlo simulation. In each iteration, a random sample was selected from 
the {ktc, knc, k, c} normal distributions. For ktc and knc, the standard 
deviations were 25 % of the mean values from Table 1. The 25 % value 
was based on the authors' experience in using orthogonal turning finite 
element simulations for the coefficient determination. For example, 
smaller uncertainty values may be chosen if the force coefficients are 
determined using experimental results. For k and c, the mean values 
were 6 × 106 N/rad and 26 N-s/rad (based on prior modeling efforts for 

Fig. 8. Prior probability of stability for 304 stainless steel using the physics- 
informed method. 

Fig. 9. Prior probability of stability for 6061-T6 aluminum using the physics- 
informed method. 

Fig. 10. IBR geometry (dimensions in mm).  

Fig. 11. Experimental setup for stability testing.  
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ER32 collet holders). The standard deviations were again 25 % of the 
mean values. The stability limit was then calculated using these inputs. 
Fig. 7 displays the variation in tool tip FRFs in the x (feed) and y di-
rections and corresponding distribution in stability limits for slotting in 
304 stainless steel, where process damping is included using Eq. (5). 
Fig. 7 shows 500 stability samples for 304 stainless steel. 

The spindle speed-axial depth of cut domain was divided into a grid 
of points. At each grid point, the prior probability of stability was 
determined by calculating the fraction of the number of stability 
boundaries where the predicted stable axial depth is greater than the 
grid point axial depth at the same spindle speed. This is shown in Eq. 
(21). The prior probability of stability was used in the PIBML approach 
to calculate the posterior probability of stability after new information 
was obtained from test results. 

p
(
sg
)
=

1
N

∑N

i=1
bg < blimi (21) 

In Eq. (21), p(sg) is the prior probability of stability at a selected grid 
point, N is the total number of stability samples, bg is the selected axial 
depth at grid point g, and blim is the limiting axial depth of cut at the 
selected spindle speed, denoted by Ωg. To illustrate, all 500 stability 
samples shown in Fig. 7 predict stable conditions at {5000 rpm, 0.2 
mm}. Therefore, the prior probability of stability at {5000 rpm, 0.2 mm} 
is 1. The prior probability of stability is 0 at {5000 rpm, 5.1 mm} since 
all stability samples predict {5000 rpm, 5.1 mm} as unstable. The 

probability of stability at all intermediate axial depths of cut at 5000 
rpm can be calculated using Eq. (21). Fig. 8 shows the prior probability 
of stability for 304 stainless steel. Fig. 9 shows the prior probability of 
stability for 6061-T6 aluminum calculated using the same procedure. 
Note that the spindle speed range for 6061-T6 aluminum is higher than 
304 stainless steel. 

3. Results 

3.1. Experimental setup 

Fig. 10 shows the selected IBR geometry. Three blades were 
machined to represent an IBR. Fig. 11 shows the experimental setup. The 
cuts were recorded using a microphone to determine the stability. 

3.2. 304 stainless steel IBR 

The manufacturer recommended an axial depth of 6.35 mm and 
spindle speed range of 2215 rpm to 2674 rpm for slotting. The recom-
mended axial depth was predicted to be unstable for all spindle speeds 
according to the prior probability of stability (see Fig. 8). Testing was 
completed to identify optimal stable machining parameters. Because the 
stability limit is lowest for slotting, this radial depth dictated the axial 
depth for each layer (the blades were fully machined one axial layer at a 
time from tip to root). Testing was therefore performed at slotting 
conditions to identify the optimal stable machining parameters. The test 

Fig. 12. Posterior probability of stability for 304 stainless steel. (a) Two tests. (b) Four tests. (c) Six tests. (d) Seven tests. The optimal parameters {5000 rpm, 1.0 
mm} were identified in seven tests using the maximum expected improvement in MRR criterion. 
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parameters were selected using the maximum expected improvement in 
MRR criterion (shown in Eq. (2)). The spindle speed and axial depth of 
cut range were divided into gird points with 10 rpm and 0.1 mm spacing, 

respectively. The test procedure follows.  

1. Calculate the expected improvement in material removal rate (Eq. 
(2)) at all grid points using the prior probability of stability. The prior 
probability of stability for 304 stainless steel is shown in Fig. 8.  

2. Select test spindle speed and axial depth where the expected material 
removal rate is maximum.  

3. Complete the test at slotting conditions and record the audio signal 
using a microphone. 

4. Determine the cut stability using the ratio of the tooth passing fre-
quency and chatter frequency.  

5. Update the prior probability of stability using the Bayesian learning 
method described in [14] to calculate the posterior probability of 
stability.  

6. Repeat steps 1–5 until the maximum expected improvement in MRR 
is less than 5 %. 

The feed per tooth was selected as 0.06 mm/tooth. The spindle speed 
range was selected as 500 rpm to 5000 rpm and the axial depth of cut 
range was 0 mm to 5 mm. The maximum spindle speed was limited to 
5000 rpm to provide adequate tool life for machining the entire IBR with 
a single endmill. Fig. 12 shows the posterior probability of stability after 
multiple tests. Using the physics-informed prior, seven test cuts were 
required for the PIBML model to identify the optimal combination of 
{5000 rpm, 1.0 mm}. The identified optimal stable parameters were 
used to machine the IBR geometry shown in Fig. 10. The final machined 
IBR is shown in Fig. 13. The stable parameters resulted in a good surface 
finish with no chatter marks. Note that the procedure described in this 
paper applies to roughing of IBR from a prismatic stock. Therefore, a 
quantitative assessment of surface finish and blade dimensions was not 

Fig. 13. Final machined 304 stainless steel IBR using optimal stable parameters 
{5000 rpm, 1 mm}. Note that the manufacturer recommended spindle speed 
range of 2215 rpm to 2674 rpm and 6.35 axial depth of cut for slotting 
was unstable. 

Fig. 14. Posterior probability of stability for 6061-T6 aluminum. (a) Two tests. (b) 4 tests; and (c) 6 tests. The optimal parameters {7360 rpm, 2.3 mm} were 
identified in six tests using the maximum expected improvement in MRR criterion. 
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completed. 
To mimic industrial rough machining operations, the toolpath was 

optimized using Third Wave Systems Production Module™ feedrate 
scheduling software [42]. The feedrate scheduling approach modifies 
the feedrate throughout the tool path, resulting in a user-defined con-
stant force. This provided a 15 % cycle time reduction relative to the 
original CAM tool path. Details on the Production Module™ feedrate 
scheduling software are provided in [42]. Note that modifying the fee-
drate does not influence the stability of the optimal parameters to first 
order. 

3.3. 6061-T6 aluminum IBR 

For 6061-T6 aluminum, the endmill manufacturer recommended an 
axial depth of 6.35 mm and a spindle speed range from 6264 rpm to 
24,828 rpm for slotting. This axial depth was predicted to be unstable for 
all spindle speeds according to the prior shown in Fig. 9. As noted, since 
the stability limit is lowest for slotting, this radial depth dictated the 

axial depth for each layer. Testing was completed using the procedure 
described in Section 3.2. The spindle speed-axial depth of cut domain 
was divided into a grid of points with 10 rpm and 0.1 mm spacing, 
respectively. The feed per tooth was selected as 0.1 mm/tooth. The 
spindle speed range was selected as 4000 rpm to 7500 rpm and the axial 
depth of cut range was 0 mm to 5 mm. Fig. 14 shows the posterior 
probability of stability after two, four, and six tests. Using the physics- 
informed prior, six test cuts were required for the PIBML model to 
converge to the optimal combination of {7360 rpm, 2.3 mm}. Recall that 
testing was terminated when the maximum expected improvement in 
MRR is less than 5 %. The optimal stable parameters were used to ma-
chine the IBR geometry shown in Fig. 10. The final machined IBR is 
shown in Fig. 15. Like the 304 stainless steel IBR, the stable parameters 
resulted in a good surface finish with no chatter marks. The application 
of the feedrate scheduling approach using Production Module™ [42] on 
the toolpath resulted in a time reduction of 35 % versus the original 
toolpath from the CAM software. 

4. Discussion 

This paper described a physics-informed approach to select the prior 
in Bayesian machine learning. In the absence of information on the 
frequency response function and cutting force coefficients, an unin-
formed prior that only uses the knowledge that it is more likely to obtain 
an unstable cut at higher axial depths of cut may be selected [14]. The 
uninformed prior is defined by assuming that the probability of stability 
linearly decreases from 1 at 0 mm axial depth to 0.05 (near zero) at the 
maximum axial depth of cut; see Fig. 1(a). In this section, the efficiency 
of the physics-informed approach is demonstrated by comparison with 
the uninformed prior. 

Fig. 16 shows the results for 304 stainless steel starting with an un-
informed prior. Fig. 16(a) shows the uninformed prior. Fig. 16(b) dis-
plays the posterior probability of stability and the test sequence. The 
procedure to identify the optimal stable parameters described in Section 
3.2 was applied to select the test parameters starting with the unin-
formed prior. The optimal stable parameters identified were {4680 rpm, 
1 mm} after 25 tests using the maximum expected reduction in MRR 
criterion. For 304 stainless steel, starting with an uninformed prior 
resulted in 18 more tests (25 compared to seven with a physics-informed 
prior) and a 6.4 % reduction in the optimal MRR. Furthermore, after the 
first stable result is identified at {4680 rpm, 1 mm} at test 12, the 
maximum expected reduction in MRR criterion recommends succes-
sively higher axial depths of cut. This can result in multiple unstable cuts 
during testing (as seen from test 14 to test 24), which may damage the 
tool and spindle. 

Fig. 17 shows the results for 6061-T6 aluminum. Fig. 17(a) shows the 

Fig. 15. Final machined 6061-T6 aluminum IBR using optimal stable param-
eters {7360 rpm, 2.3 mm}. Note that the manufacturer recommended spindle 
speed range of 6264 rpm to 24,828 and 6.35 axial depth of cut for slotting 
was unstable. 

Fig. 16. (a) Uninformed prior assuming a linear decrease in probability of stability with axial depth for 304 stainless steel. (b) Posterior probability of stability after 
25 tests. The optimal stable parameters were {4680 rpm, 1 mm} identified at test 12. 
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uninformed prior. Fig. 17(b) displays the posterior probability of sta-
bility and the test sequence. The optimal stable parameters identified 
were {6840 rpm, 2.4 mm} after 13 tests using the maximum expected 
reduction in MRR criterion. For 6061-T6 aluminum, starting with an 
uninformed prior resulted in seven more tests (13 compared to six with a 
physics-informed prior) and a 7.0 % reduction in the optimal MRR. 

As shown in Figs. 16 and 17, the physics-informed prior results in a 
significant reduction in the number of tests required to identify the 
optimal stable parameters. The physics-informed approach described in 
this paper does not need extensive experimental tests for input data. The 
only experimental data needed is the artifact-spindle-machine FRF 
measurement, which can subsequently be used to model any tool- 
holder-spindle-machine combination using the RCSA approach. The 
cutting force coefficients were determined using a finite element 
approach and did not require experimental testing. Furthermore, user- 
defined uncertainties were included for the RCSA and finite element 
methods through Monte Carlo simulation to incorporate modeling un-
certainties. Combining the physics-informed prior with the Bayesian 
learning approach results in rapid identification of the optimal stable 
machining parameters. 

5. Conclusions 

This paper described a physics-informed Bayesian machine learning 
(PIBML) approach that implemented three physics-based models: 1) an 
RCSA prediction for the tool tip FRFs; 2) finite element software pre-
diction of the mechanistic force model coefficients; and 3) a spindle 
speed-dependent power law model for process damping in a Bayesian 
machine learning algorithm. Monte Carlo simulation was used to 
propagate uncertainty in the RCSA and force model physics-based inputs 
into uncertainty in the predicted stability limit. These uncertain stability 
limits were used to generate a probability of stability map that repre-
sented initial knowledge about milling stability, referred to as the prior. 

The probabilistic prior was then compared to machining parameter 
recommendations provided by the endmill manufacturer. For both the 
6061-T6 aluminum and 304 stainless steel workpiece material cases, the 
recommended axial depth of cut was predicted to be unstable over the 
full spindle speed range. Testing was therefore performed to update the 
prior and obtain the posterior probability of stability. The probabilistic 
posterior was used to select optimal machining parameters and the IBRs 
were machined using optimized tool paths. Machining trials confirmed 
stable machining performance. The disagreement between manufac-
turer recommendations and milling performance emphasizes the need 
for broad implementation of PIBML approaches, as demonstrated here, 
to increase machining productivity and efficiency. 
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