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Introduction

In the field of high-speed machining with processes like 
milling, turning, and drilling, simultaneous achievement of 
the performance targets of part accuracy, high surface finish 
and productivity is often constrained by the occurrence of 
dynamic instability of the machining process, referred to as 
chatter. Improvements in process control due to new machin-
ing technologies have typically improved one or more of 
these metrics, but often at the expense of deterioration in 
the other(s) reflecting a trade-off between process control 
and productivity. Over the last 50 years, many new tech-
nologies such as computer numerically controlled (CNC) 
machining have allowed greater process control while 
increasing the capability and flexibility of the process itself. 
Computer-aided design/computer-aided manufacturing 
(CAD/CAM) software has enabled digital representation of 
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Abstract
Physics-guided machine learning (PGML) offers a new approach to stability modeling during machining that leverages 
experimental data generated during the machining process while incorporating decades of theoretical process modeling 
efforts. This approach addresses specific limitations of machine learning models and physics-based models individually. 
Data-driven machine learning models are typically black box models that do not provide deep insight into the underlying 
physics and do not reflect physical constraints for the modeled system, sometimes yielding solutions that violate physi-
cal laws or operational constraints. In addition, acquiring the large amounts of manufacturing data needed for machine 
learning modeling can be costly. On the other hand, many physical processes are not completely understood by domain 
experts and have a high degree of uncertainty. Physics-based models must make simplifying assumptions that can com-
promise prediction accuracy. This research explores whether data generated by an uncertain physics-based milling stabil-
ity model that is used to train a physics-guided machine learning stability model, and then updated with measured data, 
domain knowledge, and theory-based knowledge provides a useful approximation to the unknown true stability model for 
a specific set of factory operating conditions. Four novel strategies for updating the machine learning model with experi-
mental data are explored. These updating strategies differ in their assumptions about and implementation of the type of 
physics-based knowledge included in the PGML model. Using a simulation experiment, these strategies achieve useful 
approximations of the underlying true stability model while reducing the number of experimental measurements required 
for model update.
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part geometries and the subsequent generation of computer 
instructions to command the machine motions required to 
remove material and leave the desired part geometry. While 
these technologies have increased the spindle speed range 
due to new spindle designs, as well as improved tool mate-
rials and coatings, the machining parameters are still typi-
cally selected based on manufacturer recommendations or, 
in most cases, operator experience. In practice, operators 
typically adjust spindle speeds downwards when encounter-
ing chatter, reducing productivity. However, in many cases 
increasing spindle speeds can return stability to the process 
and improve productivity. Knowledge of the true, as opposed 
to physics-based or manufacturer-provided, stability model 
would enable operators to better select initial machining 
parameters to both maintain dynamic stability and improve 
part quality without compromising productivity.

Knowledge of the true operational stability model would 
also enable operators—and ultimately the machines them-
selves—to make in-process optimum parameter adjust-
ments during production. As machines become more 
intelligent, self-knowledge of the true stability model is the 
foundation for self-aware operations. Self-aware machines, 
as their name suggests, exhibit self-awareness of both their 
operational health and machining status and, as required, 
self-control to perform parametric adjustments that main-
tain continued performance to target levels. For example, 
self-aware machines can make parametric adjustments to 
keep themselves operational while waiting for service; can 
adjust their machining parameters to assure process stabil-
ity during machining; and can adjust their load to balance 
production yields in their cell in the event of excess demand 
or machine downtime. This level of machine intelligence 
has considerable potential to enhance productivity in the 
manufacturing environment and to maintain optimal oper-
ational performance for maximum efficiency. New sensor 
technologies and machine learning (ML) methods are build-
ing the foundations for self-awareness that would enable the 
machining process to identify those combinations of spindle 
speed and axial depth-of-cut needed to maintain dynamic 
stability of the process and, in the case of approaching chat-
ter, identify the adjustments in these parameters that allow 
the process to quickly return to stability.

This research builds on a recent trajectory of research 
in machine learning referred to as physics-informed or 
physics-guided machine learning (PGML). To implement 
the PGML approach, a machine learning model is trained 
with stability data simulated using a physics-based model 
built on the well-known receptance coupling substructure 
analysis (RCSA), a mechanistic force model, and Fourier 
analysis to generate the stability lobe diagram (SLD). The 
SLD defines regions of stability and instability as a function 
of spindle speed and depth of cut, described in more detail 

later. This pre-trained model is then updated with experi-
mental measured data, along with domain knowledge, to 
enable the convergence of the physics-based model to the 
true operational model. Physics-based theory also informs 
the updating strategies by guiding the sampling of measure-
ment points prior to retraining the PGML. A major con-
tribution of this paper is the exploration of measurement 
strategies that increase predictive accuracy of the PGML 
model while minimizing measurement cost. Experiments 
are implemented within a simulation framework that pro-
vides a common benchmark for evaluating the updating 
strategies. The research goal is to develop guidelines for 
sampling that promote fast and inexpensive convergence 
of the physics-based model to the true operational stability 
model suitable for use within a production environment.

This paper proceeds as follows. Sect. 2 introduces PGML 
and reviews recent literature in this area. Sect. 3 provides a 
perspective on the challenge of maintaining dynamic stabil-
ity during machining motivating this work. Sect. 4 describes 
the development of the physics-based dynamic stability 
model and discusses model uncertainties that motivate the 
PGML approach. Sect. 5 introduces the PGML approach 
implemented in this research. Sect. 6 presents the research 
framework including machine learning methods and mea-
surement updating strategies. Sect. 7 describes the methods 
for both training and updating the PGML model with simu-
lated measurement data, domain knowledge and physical 
theory. Numerical results are presented in Sect. 8. Impli-
cations of this research for implementation in a production 
environment and as a step towards self-aware machining are 
discussed in Sect. 9 followed by conclusions in Sect. 10.

Physics-guided machine learning

When modeling complex machining processes, the practical 
choice—and associated best practice—has been to choose 
between physics-based or data-driven models for prediction. 
Both approaches have distinct advantages when applied to 
complex systems with integrated mechanical, electrical, 
and software components. However, individually, they 
fall short of delivering the broad capability and accuracy 
needed for chatter-free high precision machining. Informed 
machine learning is part of an emerging trend to embed 
domain knowledge, broadly defined, into ML models. This 
approach use physical principles to inform and guide the 
search for the best data-driven model, thereby capturing the 
best attributes of both physics-based and data-learning mod-
els, as shown in Fig. 1 (Greis et al., 2020).

Given the diverse scientific and other disciplines in 
which these techniques are being applied, this approach has 
been referred to by several names such as physics-guided 
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ML, physics-informed ML, physics-based ML, physics-
aware ML—or simply informed ML. A number of review 
papers have appeared in the last several years that offer vari-
ous frameworks for organizing the theory and practice of 
informed machine learning (Kim et al., 2021). Willard et 
al. (2020) offer a taxonomy of physics-based modeling with 
machine learning techniques by application area and class of 
methodology. von Rueden et al. (2021) offer a taxonomy that 
considers the source of the knowledge (i.e., natural science, 
expert knowledge, or accepted physical law), its representa-
tion (i.e., algebraic equations, simulation results, or logical 
rules), and how it is integrated into the machine learning 
pipeline. Roscher et al. (2020) approach informed machine 
learning from the perspective of its ability to extract and 
explain novel scientific results. More recently, Karniadakis 
et al. (2021) offer a broad review of prevailing trends in 
informed machine learning, including capabilities and limi-
tations. In addition, a growing body of research on physics 
informed neural networks (PINNs) focus on integration of 
physical knowledge that can be described as partial deriva-
tive equations directly in the neural network structures 
or their loss functions (Cuomo et al., 2022; Raissi et al., 
2017a, b, 2019). As is evident from the current literature, a 
definitive nomenclature has not yet emerged. This research 
implements three approaches to incorporate physics-based 
knowledge into the model. A physics-based stability model 
generates the simulation data that determine the baseline 
machine learning model. Domain knowledge that can be 
considered to be expert knowledge captured in logical rules 
informs the determination of non-measured stability value 
during updating. And mathematical expressions of the sta-
bility model guide the measurement sampling process dur-
ing updating. Given these different approaches, the overall 
method proposed herein is referred as PGML, recognizing 

that the naming choice is not straightforward given research 
streams in the current literature.

Data-driven approaches are built on large sets of histori-
cal data and can learn directly from real-time sensor data 
(e.g. vibration, temperature, acoustic emissions, etc.) col-
lected during machining. Advantages include the ability to 
model highly complex physical systems for which there is 
no underlying physical model that completely defines the 
system, or where the relationships between the input and 
output variables are difficult to describe using simple math-
ematics, or when the ability to include contextual data (e.g. 
environmental conditions, changes in operating regime, 
etc.) is important. A challenge with black box data-driven 
models is that they are agnostic to physical law because they 
rely only on data and not theory. They are, also, therefore 
dependent on the available data for training which can lead 
to relationships that do not generalize beyond the range of 
the training dataset. Since data-driven model predictions 
are generally limited to what the training set has seen, these 
models are not always useful for generating new scientific 
knowledge. Physics-based models are still preferred for 
scientific discovery. However, PGML models have been 
shown to be capable of revealing new knowledge. These 
insights can be attributed in part to the inclusion of domain 
knowledge of the underlying physics explicitly into the 
PGML modeling process.

The application of machine learning to stability predic-
tion in milling, in particular, has been an area of keen and 
accelerating interest (Sharp et al., 2018; Oleaga et al., 2018; 
Cherukuri et al., 2019; Tao et al., 2018) and several excel-
lent review papers have been published (Kim et al., 2018; 
Wang et al., 2018). In addition, Karandikar et al. (2020) 
describe a novel Bayesian learning approach for stability 
boundary and optimal parameter identification in milling 
without the knowledge of the underlying tool dynamics or 
material cutting force coefficients using a limited number 
of data points. Cornelius et al. (2021) introduce a Bayes-
ian framework for identifying the milling stability boundary 
and system parameters for reverse parameter identification 
through iterative testing. Several recent papers incorporate 
data collected during simulation and real-time operations 
to the creation and adaptation of stability models. Friedrich 
et al. (2017; 2018) implement machine learning to predict 
chatter using scenario-specific milling data obtained from a 
simulation model, and then extend that model to allow for 
continuous learning and time-variant systems using mea-
sured acceleration signals. Saadallah et al. (2018) imple-
ment a machine learning framework based on results of a 
geometric physically-based simulation with varied pro-
cess parameter values and refined using an active learning 
approach.

Fig. 1 Physics-Guided Data Learning
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Challenges of dynamic stability modeling 
for chatter detection

Dynamic stability of cutting processes such as milling is a 
function of the dynamic behavior of the tool and the work-
piece during cutting. CAD/CAM software generally treats 
machining as a geometric effort. As long as the cylindrical 
tool follows the required path through the prismatic work 
material imparting the desired geometry, it is assumed that 
the machining process is acceptable. This approach does 
not consider constraints imposed by machining dynamics. 
For example, some combinations of spindle speed and axial 
depth-of-cut will exhibit self-excited vibrations, or chatter, 
which produce large forces, vibrations, unacceptable sur-
face finish, and potential damage to the tool, part, and spin-
dle. Additionally, even if stable behavior is obtained, the 
geometric accuracy of the machined part may or may not 
satisfy design tolerances, again depending on the selected 
spindle speed and axial depth-of-cut combination. Stabil-
ity models that capture the true machining dynamics on 
the shop floor are desired to select spindle speed and axial 
depth-of-cut combinations that avoid chatter, while provid-
ing the required geometric accuracy.

Combinations of spindle speed and axial depth-of-cut 
that result in a stable machining process are represented by a 
stability lobe diagram (SLD) which defines stable and unsta-
ble stability regimes as a function of these two machining 
parameters. SLDs can be computed analytically or experi-
mentally. In order to determine the SLD experimentally, a 
large number of combinations of spindle speed and axial 
depth-of-cut must be tested for chatter which is time-inten-
sive, as well as materially and computationally expensive. 
Analytical and physics-based models rely on theory derived 
through experiment and expressed notationally. A limitation 
of stability models and SLDs derived analytically is that 
they rarely exactly mirror the SLDs that govern operations 
on the factory floor. The combinations of spindle speed and 
axial depth-of-cut that yield stable dynamics in an opera-
tional environment depend not only on model uncertainties, 
but also the dynamics of the particular milling machine, 
conditions in the ambient operational environment, and also 
conditions such as tool wear.

Further, an SLD calculated once is only true for that 
machine working on that workpiece and in that environ-
ment, and only for that time and not for the whole lifetime 
of that machine. To analyze the underlying, and operational, 
stability model, measurements must be repeated periodi-
cally as operating or machine conditions change over time. 
While a manufacturer may provide operational guidelines 
for initial parameter setting, they are not specific to the par-
ticular production environment, the age of the machine, or 
the acquired skill of the particular operator. Thus, analytical 

PGML offers the next advance by formally incorporating 
physical theory and domain knowledge of the underlying 
physics into the machine learning pipeline. Early work in 
PGML focused on non-manufacturing applications char-
acterized by degrees of complexity that resist capture by 
traditional physical models, but for which large amounts 
of data are available for machine learning (Karpatne et al., 
2017). These include physical phenomena such as turbu-
lent flow (Singh et al., 2017) and geoscience applications 
such as hydrologic modeling and climate change (Karpatne 
et al., 2017; Sheikh & Jahirabadkar, 2018; Faghmous & 
Kumar, 2014). Areas of application have expanded recently 
into other domains including structural dynamics (Yu et al., 
2020), power system management (Wang et al., 2020a), and 
modeling of seismic events (Zhang et al., 2020).

PGML is a relatively newly explored methodology in 
machining. Several recent applications can be noted. Wang et 
al. (2020b) construct a physics-guided gated recurrent units 
(GRU) machine learning model for continuous prediction 
of tool wear that considers complex tool cutting conditions 
and dynamic changes of physical parameters experienced in 
practice. Lee et al., (2018) introduce a physics-based arti-
ficial neural network for online monitoring of steady-state 
tool temperatures at the tool/chip interface. Lu et al. (2017) 
model the electrochemical micro-machining process by 
embedding knowledge about the relationship between the 
input process parameters and intermediate outputs, as well 
as domain knowledge about the mechanisms of the micro-
machining process, into a neural network structure.

Most recently, physics-informed or physic-guided 
approaches for stability modeling during machining opera-
tions have been implemented within a transfer learning 
environment that allows for the effects of the changing 
process dynamics and highly complex cutting operations. 
Postel et al. (2020) utilize deep neural networks pre-trained 
with simulated data to match network predictions with 
experimentally observed stability states acquired under dif-
ferent cutting conditions using ensemble transfer learning 
to combine predictions. Similarly, Unver & Sener (2021) 
combine analytical solutions and convolutional neural net-
works within a transfer learning framework. The primary 
classifier AlexNet is pre-trained on analytically developed 
and labeled stability solutions before being fed experimen-
tal vibration data collected during milling. Yesilli et al. 
(2020) use wavelet packet transform and ensemble empiri-
cal mode decomposition, two well-known chatter detection 
algorithms, to not only classify acceleration signals associ-
ated with chatter, but also to transfer knowledge from one 
cutting configuration to another.
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While the measurement procedure is well-understood, 
the lack of widespread availability of modal testing equip-
ment and associated expertise has hindered the implementa-
tion of machining modeling on the shop floor. This points 
to a second need; the tool tip receptances must be identified 
without physical measurement of each. Because the tool is 
clamped in a holder that is inserted in a spindle attached 
to the machine, tool tip receptance prediction is not trivial. 
Additionally, the tool tip receptance and machining mod-
els are deterministic, but include inherent uncertainties. The 
predicted machining parameters are, therefore, also uncer-
tain. This establishes the need for uncertainty reduction 
through testing. To build the physics-based dynamic stabil-
ity model and its SLD, three physics-based models are used. 
First, receptance coupling substructure analysis (RCSA) is 
used to predict the tool tip receptance. Second, a mechanis-
tic force model is used to relate the cutting force to the com-
manded chip area through cutting force coefficients. Third, 
a mean force frequency domain analysis is used to predict 
the stability limit using the first two models as input. These 
models are briefly described in the following sections.

Receptance coupling substructure modeling

Using three-component RCSA for tool tip dynamics pre-
diction has been previously demonstrated (Schmitz & 
Donaldson, 2000; Schmitz & Duncan, 2005; Schmitz & 
Smith, 2009). In prior efforts, the free-free boundary con-
dition tool and holder were modeled as cylindrical cross-
section Timoshenko beams. These beam receptances were 
coupled analytically to measured receptances of the spindle-
machine. The sequence of steps for tool point receptance 
prediction are: (1) calculate the tool receptances (free-free 
boundary conditions) using the Timoshenko beam model; 
(2) calculate the holder receptances (free-free boundary 
conditions) using the Timoshenko beam model; (3) mea-
sure the spindle-machine receptances using impact testing; 
and (4) couple these receptances to predict the tool-holder-
spindle-machine assembly dynamics using either rigid or 
flexible-damped compatibility conditions. The approach is 
summarized in Fig. 2.

The coupling procedure is described by Fig. 3 and 
Eqs. (1)-(3) below. Figure 3 shows that both linear and 
translational coordinates are required. This leads to four 
receptances that relate displacement, x, and rotation, θ, to 
force, f, and moment, m.

The four direct receptances are shown in Eq. 1 for the 
right end of the cylinder (tool) pictured in Fig. 3. The four 
component receptances are organized into a generalized 
coordinate format in Eq. 2. Using this formulation, the direct 
tool point receptances (uppercase coordinates) are com-
puted for a rigid connection using the component direct and 

models fail to meet the essential criterion for self-aware-
ness—a stability model and associated SLD that have been 
calibrated to the production environment and that can pro-
vide feedback to an operator for manual adjustments in real 
time to regain stability at the onset of chatter and ultimately 
to the machine itself for automatic self-adjustment.

The lack of alignment of the physics-based model and 
true SLD due to its time-varying nature present both compu-
tational and operational challenges for chatter detection in a 
production environment. For setting initial cutting parame-
ters, a method is required that can align the physics-based or 
manufacturer-supplied SLD with the true SLD so the opera-
tor can select initial parameters. As the machine performs 
over time, an automated method is required to update the 
physics-based SLD as conditions change. Thus, the model 
must be capable of handling time-varying conditions. The 
method also has to efficiently accommodate continuously 
collected training data since all the measured data may not 
be collected by experiment at one time, but periodically dur-
ing production. As manufacturers move toward self-aware 
machining, this data may be automatically collected, chat-
ter detected, and the SLD adjusted autonomously, so that 
the machine itself is able to self-adjust cutting parameters to 
maintain stability.

Development of the physics-based dynamic 
stability model

The PGML approach implemented here begins with the 
development of a physics-based model for milling. Mill-
ing is a machining process that uses a rotating cylindri-
cal cutting tool to remove material from the surface of a 
workpiece. During the milling process, the cylindrical tool 
follows a predetermined tool path to achieve the desired 
geometry of the workpiece. As discussed above, under cer-
tain dynamic conditions, the milling process will exhibit 
chatter—a self-excited vibrational state that leads to insta-
bility and uncontrollability of the system. Development of 
physics-based models to predict chatter during milling are 
based on an understanding of the vibrational behavior of 
the tool-holder-spindle-machine assembly (and sometimes 
the part) which imposes specific measurement requirements 
for model-building. First, the vibrational behavior at the 
tool tip is traditionally described by the frequency response 
function (FRF) which is obtained through modal testing. A 
popular approach is to excite the structure in question using 
an instrumented hammer and to use a low mass acceler-
ometer attached to the structure to record the subsequent 
time-domain vibration response. The frequency domain 
displacement-to-force ratio is the FRF, or receptance, for 
the tool tip (or part).
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These coefficients may be determined by experiment where 
the cutting force is measured using a force dynamometer 
and the commanded axial depth-of-cut and chip thickness 
are known. Linear regression over a range of chip thick-
ness values and nonlinear least squares fitting to the time-
domain force have been applied (Rubeo & Schmitz, 2016). 
As an alternative, the material behavior can be defined using 
a constitutive model and the cutting force predicted using 
finite element simulation (Shi & Liu, 2004).

Frequency domain stability analysis

The analytical stability limit may then be determined using 
Fourier force analysis to transform the dynamic mill-
ing equations into a time-invariant, but radial, immersion 
dependent system (Altintas & Budak, 1995). This analysis 
expands the frequency domain dynamic milling equations 
into a Fourier series. The series is then truncated to include 
only the mean component. The tool point receptance and 
force model are inputs to the analysis. The dynamic mill-
ing process model is derived by considering the Fourier 
series expansion of the time-varying milling force coeffi-
cients. The eigenvalues of the dynamic milling expression 
are calculated analytically by selecting a chatter frequency 
around the dominant structural modes. Noting that the axial 
depth-of-cut is always a real quantity, the chatter free axial 
depths-of-cut and spindle speeds are analytically formulated 
as a function of the tool tip receptances, the cutting force 
coefficients, the number of teeth, milling orientation (up and 
down), and radial depth-of-cut.

The individual stability lobes that determine the SLD 
are computed by, first, selecting a chatter frequency near 
a dominant mode from the tool tip receptances and solv-
ing the eigenvalue equation. The critical axial depth-of-cut 
and spindle speed are calculated for each stability lobe. This 
procedure is repeated by scanning the chatter frequencies 
around all dominant modes from the tool tip receptance. The 
final output is the limiting axial depth-of-cut as a function of 
spindle speed for a selected radial depth-of-cut, milling ori-
entation, and number of teeth on the endmill. The graphical 

cross receptances (lowercase coordinates) in Eq. 3. Flex-
ible/damped connections may also be selected. In Eq. 3, the 
displacement-to-force H11 receptance provides the input to 
machining simulations.

 

h11 = x1
f1

l11 = x1
m1

n11 = θ1
f1

p11 = θ1
m1

 (1)

 

{
x1

θ1

}
=

[
h11 l11
n11 p11

] {
f1

m1

}
, {u1} = [R11] {q1}  (2)

 
G11 = R11 − R12a(R2a2a + R2b2b)

−1R2a1 =
[

H11 L11

N11 P11

]
 (3)

Force model

In mechanistic force modeling for milling, the cutting force 
coefficients, k, are calculated using the commanded axial 
depth-of-cut, b, and chip thickness, h. The model described 
in Eq. 4 includes force components that are tangential, t, and 
normal, n, to the rotating cutting edge. Force coefficients 
that relate the force to chip area, bh, are identified by a c 
subscript (cutting or shearing force). Those that relate the 
force to axial depth alone have an e subscript (edge or rub-
bing force).

 
Ft = ktcbh + kteb

Fn = kncbh + kneb
 (4)

Fig. 3 RCSA Coordinates

 

Fig. 2 Summary of RCSA Procedure
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PGML model is retrained at each iteration. The points to 
be sampled for measurement at each iteration are selected 
according to novel updating strategies. As the updating pro-
cess proceeds iteratively, the PGML SLD is hypothesized 
to converge toward the SLD of the true stability model. As 
convergence occurs, the predictive accuracy of the PGML 
model increases proportionately.

Physics-based knowledge is incorporated by three mech-
anisms shown by shaded red boxes in Fig. 4 with the solid 
outline. First, the physics-based stability model on the left 
generates an initial physics-based training dataset composed 
of physics-based stability values for combinations of spindle 
speed and axial depth-of-cut. The baseline PGML stability 
model is trained using this baseline training dataset. Sec-
ond, selection of points to be measured experimentally or 
on the production floor is guided by the physics-based SLD. 
Third, non-measured data points that are known to have true 
stability (stable or unstable) are updated by domain knowl-
edge. Consistent with the framework in Fig. 4, numerical 
simulation experiments were performed to test whether a 
physics-based stability model, with associated operational, 
model and measurement uncertainty, can be updated with 
measured data and domain knowledge to better approximate 
the true underlying stability model and, thus, improve pre-
dictions of instability.

Since the true underlying stability model and its SLD are 
typically unknown in practice, both physics-based and true 
stability models are simulated for these experiments. For the 
physics-based model described in Sect. 4, errors are inten-
tionally introduced into the model inputs so that the pre-
dicted stability limit used to train the PGML model includes 
uncertainty. However, because the input errors are known, it 
is possible to determine the true (zero uncertainty) stability 
limit as well. This error-free stability model is used to gen-
erate true experimental data, which replaces the uncertain 
stability limit defined in the uncertain initial training dataset 
during updating.

For the purposes of these numerical experiments, the 
physics-based SLD is simulated as follows. Errors are intro-
duced to both the RCSA tool tip receptance prediction and 

representation of this output is the SLD that defines the sta-
bility boundary that is the subject of this research.

In addition to the operational and model uncertainties 
noted earlier, the deterministic models described in the pre-
vious section also include measurement uncertainty. For 
example, the actual extension length of the endmill from the 
holder is subject to set-up and measurement uncertainties. 
This results in uncertainty in the tool tip receptance which, 
in turn, leads to uncertainty in the stability limit. Propaga-
tion of uncertainties in the tool and holder models, spindle 
receptances, and cutting force coefficients to uncertainty 
in the stability limit may be computed using Monte Carlo 
simulation (Karandikar et al. 2010). This provides a predic-
tive model, where a probabilistic, rather than deterministic, 
stability limit is presented. However, if a test is performed 
to determine the actual stability behavior of a spindle speed-
axial depth combination, there is no straightforward map-
ping between this result and input parameters.

PGML approach to stability modeling

The PGML approach developed herein is described concep-
tually in Fig. 4. The approach combines two models. First, 
a PGML model is created from the physics-based dynamic 
stability model described in the previous section. The phys-
ics-based stability model is used to generate an initial train-
ing dataset that is comprised of three parameters, the target 
stability state—unstable (or chatter) and stable (or no chat-
ter)—and two physics-based input parameters spindle speed 
and axial depth-of-cut. A machine learning method then 
“fits” a baseline PGML model to this initial physics-based 
training dataset. The baseline PGML model should have 
good fit with the physics-based data to serve as a benchmark 
for determining predictive accuracy improvements dur-
ing updating with measured data and domain knowledge. 
Then, in an iterative process, points in the initial physics-
based training dataset are updated with measured (off-line 
or in-process) stability values; points whose true stability 
state is known by domain knowledge are also updated. The 

Fig. 4 Physics-Guided Machine 
Learning Approach
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Because there is uncertainty in these inputs, errors were 
introduced to define the starting SLD displayed on the left in 
Fig. 5. Errors were introduced for the tool extension length 
and force model coefficients. These erroneous values were: 
(1) tool with 50 mm extension from the holder; and (2) force 
model coefficients ktc  = 649.0 N/mm2, knc  = 262.2 N/mm2, 
kte  = 0, and kne  = 0. The same spindle and holder recep-
tances were used in both cases and the same stability algo-
rithm was applied (with modifications to the tool geometry 
and force model). Up milling with a radial depth of 2 mm 
was selected.

Research framework

Simulation experiments were conducted over a 2-dimen-
sional grid of 2,020 points described by spindle speed and 
axial depth-of-cut space as illustrated in Fig. 6. Spindle 
speeds ranged from 1.0 × 104 to 2.0 × 104 rpm along the hori-
zontal x-axis, in increments of 100.0 rpm; axial depth-of-cut 
values ranged from 0 to 20 mm along the vertical y-axis, 
in increments of 1.0 mm. The training dataset is shown as 
solid circles. For testing the PGML models, another dataset 
of points was created using the midpoints of alternate x-axis 
and y-axis intervals in the training grid, also illustrated in 
Fig. 6. This out-of-sample test set includes 500 points shown 
by the open circles in the figure. Each combination of axial 
depth-of-cut and spindle speed in both the training and test 
sets is associated with two physics-based stability values 
(physics-based or true) computed as described in Sect. 5.

For baseline training of the PGML model prior to updat-
ing, each spindle speed and axial depth-of-cut point in the 
training set of 2,020 points is associated with a physics-based 
stability value. During training, the PGML model is “fit” to 
this baseline training dataset of 2,020 points using three dif-
ferent machine learning methods and then tested against the 
test set of 500 points. To update the PGML model, the true 
stability states of measured points are sampled from a set 
of true stability values, computed as previously described, 
and their values updated in the PGML training dataset. In 

the force model to incorporate uncertainty. These errors 
include the extension length of the tool inserted in the holder 
for the RCSA model and the cutting force coefficients for 
the force model. The SLD is defined with and without these 
errors, where the SLD provides the limiting axial depth-of-
cut as a function of spindle speed for a given radial depth-
of-cut, milling orientation, and number of endmill teeth.

The two SLDs generated for the following experiments 
are shown in Fig. 5. The SLD on the left has been gener-
ated from the physics-based stability model with introduced 
errors; the true SLD on the right has been generated from 
the physics-based stability model without errors. As can 
be seen, there is a wide divergence between the SLD with 
errors and the SLD without errors (i.e., the true SLD). For 
this exercise, the correct values for the milling setup are: (1) 
12 mm diameter tool with 4 teeth and a 53 mm extension 
length from the holder; and (2) a force model with coef-
ficients ktc  = 692.8 N/mm2, knc  = 400.0 N/mm2, kte  = 0, 
and kne  = 0. These parameters were used to define the right 
SLD in Fig. 5.

Fig. 6 Grid Design for Simulation Experiments

 

Fig. 5 Comparison of SLD with 
errors (left) and true SLD (right)
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unlike linear regression; (2) performs especially well under 
the infinite sample set assumption, with less probability of 
error than any other decision rule; and (3) does not produce 
a generalized rule over the dataset, which means it requires 
less training time—an advantage for in-process sampling 
and measurement. However, it stores all training data during 
the validation phase which requires more memory. Hyper-
parameters for the KNN model are provided in Table 1.

Support Vector Machine (SVM)

SVM (Peng et al., 2015; Wan et al., 2021) is a supervised 
machine learning method that is used largely for classifica-
tion, but also prediction. Like ANNs, SVMs infer a func-
tion from labeled training data consisting of a set of training 
examples of paired inputs and outputs. The objective of the 
SVM algorithm is to find a hyperplane in an N-dimensional 
space where N is the number of input features that distinctly 
classifies the data points. For example, binary classification 
is performed by finding the hyperplane that best differenti-
ates between two classes, i.e. maximizes the margin between 
the hyperplane and the support vectors, or closest values to 
the classification margins. The use of kernels can transform 
linearly inseparable problems into linearly separable ones. 
Given the highly nonlinear SLD, SVM’s ability to transform 
linearly inseparable problems may be an advantage. Hyper-
parameters for the SVM model are provided in Table 2.

Artificial neural network with Nesterov-Accelerated 
Adaptive Moment Estimation (NADAM)

NADAM is a type of gradient descent optimizer used in 
neural network models that minimizes the cost function by 
finding the optimized values for the weights during updat-
ing. NADAM is typically used in the case of noisy gradients 
or gradients with high curvatures. One limitation of gradient 
descent is that a single learning rate (i.e. step size) is used 
for all input variables. Extensions to gradient descent like 
the Adaptive Moment Estimation (ADAM) algorithm add a 
first and second moment of the gradient and automatically 
adapt the learning rate for each parameter that is being opti-
mized. This approach may result in a step size that rapidly 
decreases to very small values. NADAM is an extension of 
ADAM that incorporates Nesterov momentum (NAG) and 

practice, as discussed earlier, the true states are unknown. 
For the purposed of this simulation, true stability values 
are defined by the physics-based model without errors, as 
described earlier. Thus, for each combination of spindle 
speed and axial depth-of-cut in both the training data set of 
2,020 points and the test dataset of 500 points, there are two 
associated stability states, the simulated physics-based value 
and the simulated true stability value. Over the sequence 
of iterations, as more points are sampled, measured, and 
updated, the baseline PGML training dataset contains fewer 
physics-based stability values and an increasing number of 
true or validated stability values.

Training the physics-guided machine learning 
model

To evaluate the performance of the proposed approach, 
PGML models for each updating strategy were imple-
mented using three machine learning methods: (1) K-Near-
est Neighbors (KNN), (2) Support Vector Machines (SVM), 
and (3) Artificial Neural Networks with Nesterov-Acceler-
ated Adaptive Moment Estimation (ANN-NADAM). Each 
reflects a different learning approach that captures different 
characteristics of the stability data being modeled. Four 
updating strategies are evaluated: (1) Random Sample with-
out Domain Knowledge (RAN), (2) Random Sample with 
Domain Knowledge (RAN-DK), (3) Climb-the-Hill with 
Domain Knowledge (CTH-DK), and (4) Follow-the-Curve 
with Local Search and Domain Knowledge (FTC-LS-DK). 
In total, 12 experimental designs were created.

K-Nearest Neighbors (KNN)

KNNs (Tran et al., 2021; Deshmukh & Bhosle, 2018) are a 
non-parametric supervised machine learning method used 
largely for classification but also regression. Also known 
as “lazy learner”, KNN makes decisions by referring to the 
K data points closest to the data point of interest. The dis-
tance between any two data points is calculated by using 
any of several metrics. Common choices are Manhattan, 
Euclidean, and Minkowski distances. KNN (1) does not 
make strict assumptions over the distribution of the dataset, 

Table 1 K-Nearest Neighbors Hyperparameters and Value Ranges
K-NEAREST NEIGHBORS
Hyperparameter Value Range
# K-neighbors 1–50, step = 2
Weights Uniform, Distance
Metric Euclidean, Manhattan
# Stratified CV Folds 5
Scoring Accuracy
Selected: K = 3, weights = uniform, metric = Euclidean, CV = 5, 
scoring = accuracy

Table 2 Support Vector Machine Hyperparameters and Value Ranges
SUPPORT VECTOR MACHINE
Hyperparameter Value Range
Kernels RBF, Linear
C range [1, 1.25, 1.5, 1.75, 2, 3, 5, 10, 25, 50, 100, 1000]
Gamma range [0.00001, 0.0001, 0.001, 0.01, 0.1, 1, 10, 100, 1000]
Stratified CV Folds 5
Selected: Kernel = RBF, C = 1000, Gamma = 1.0, CV = 5, scoring = accuracy
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iteration. The dashed red line represents the physics-based 
simulated PGML SLD, while the solid black line is the 
true simulated SLD. For the purpose of determining effi-
ciency of convergence, we distinguish between points that 
are measured—points that are, in practice, experimen-
tally determined during production and for which there is 
an acquisition cost in terms of production interruption or 
downtime—and points that do not have any associated cost 
because they are determined by domain knowledge rather 
than experiment. Points can be measured or updated only 
once to avoid double counting although there is no cost 
associated with updating a domain knowledge point. All 
measured points are updated unless they have been updated 
by domain knowledge in a previous iteration.

Random sample without domain knowledge (RAN)

Random Sample without Domain Knowledge assumes no a 
priori theory-based or expert domain knowledge to guide 
selection of measured points and, thus, provides a bench-
mark against which the information value of prior knowl-
edge can be evaluated. Points are sampled randomly across 
the experimental grid without replacement. No points are 
updated by domain knowledge. To start the updating pro-
cess, 1,000 points are randomly sampled from the grid. 
At each of 10 update iterations, 100 points are randomly 
selected from the initial sample set of 1,000 points. The true 
stability states of these points are measured and their respec-
tive values are updated in the PGML training dataset. When 
all 100 sample points in each iteration have been measured 
and updated, the PGML model is retrained. Figure 7 illus-
trates the RAN updating strategy for a small set of 13 ran-
domly sampled points. In the left-hand figure, solid red 
points that lie above the PGML SLD, shown as a red dashed 
line, are unstable prior to updating. Conversely, solid green 
points below the PGML SLD are stable prior to updating. 
After measuring the true states of all 13 points, four points 
have been updated, as shown in the grid on the right. Two 
unstable points have been updated to stable, indicated by 
the arrows and light green outlined points; similarly, two 
stable points have been updated to unstable, indicated by 
arrows and light red outlined points. No points have been 
updated by domain knowledge. After 10 iterations, all 1,000 
sampled points have been measured and their stability states 
updated in the PGML training dataset.

Random sample with domain knowledge (RAN-DK)

Random Sample with Domain Knowledge leverages domain 
knowledge, or physics-based knowledge, to update addi-
tional grid points to their true value, but without measure-
ment. The addition of domain knowledge points increases 

can result in better performance of the optimization algo-
rithm. NAG is an extension to classical momentum where 
the update is performed using the gradient of the projected 
update to the parameter rather than the actual current vari-
able value. This has the effect of slowing down the search 
when the optimum is located rather than overshooting. 
Thus, ANN-NADAM may have an advantage when fitting 
SLDs with large numbers of lobes and associated optima. 
Recent applications of ANN to machining include chatter 
prediction in milling (Mishra & Singh, 2022) and a forward 
prediction model for electrochemical micro-machining with 
knowledge embedded into an ANN (Lu et al., 2017). Hyper-
parameters for the ANN model are provided in Table 3.

Updating the physics-guided machine learning 
stability model

The PGML model is updated with simulated true stability 
states that would be measured in an operational environ-
ment, as described earlier. At each iteration, the replace-
ment of the baseline physics-based (and uncertain) stability 
values with true stability values will force convergence of 
the physics-based SLD towards the true SLD for that par-
ticular milling machine, operational environment, and status 
of tool wear. By updating the PGML model with measured 
points, augmented by domain knowledge points, the pro-
cess by which measurement data is captured on the factory 
floor can be simulated. An important question, then, is how 
to sample points for measurement to promote fast and effi-
cient convergence of the PGML SLD to the true underly-
ing SLD—and thus achieve the highest predictive accuracy 
with the fewest measured points.

Four updating strategies are implemented, as described 
and illustrated below, to evaluate the speed and efficiency 
of convergence of the PGML SLD to the true SLD at each 

Table 3 Artificial Neural Network with NADAM Hyperparameters 
and Value Ranges
ARTIFICIAL NEURAL NETWORK WITH NADAM
Hyperparameter Value Range
# Input Features 2
# Output Targets 1
ANN Configuration [20-14-8-1]
# Hidden Layers 3
# Neurons in Hidden Layers [20-14-8]
# Neurons in Output Layer 1
Hidden Layer Activation Function ReLu
Output Layer Activation Function Sigmoid
Loss Function Binary 

Crossentropy
Optimizer NADAM
Metric Accuracy
# Epochs for Training 1000
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to 2.0 × 104 rpm. At each subsequent iteration, as samples 
“climb-the-hill,” the axial depth-of-cut is incremented one 
unit. In the following experiments, each incremental unit 
equals 2 mm. All points at the incremented depth-of-cut 
that lie above a point measured to be stable in the previ-
ous iteration are measured and updated. Further, since all 
points above a measured unstable point are unstable, all 
points above a measured unstable point are also updated 
as unstable in the PGML training dataset through domain 
knowledge. As illustrated in Fig. 9, on the left, all points at 
1.0 mm axial depth-of-cut are measured to be stable dur-
ing the first iteration and are shown in solid dark green. 
Therefore, at the second iteration on the right, all points are 
measured at axial depth-of-cut equal to 3.0 mm. During the 
second iteration, five points are measured to be unstable and 
are shown outlined in light red. Their values are updated 
to unstable in the PGML training dataset, along with all 
points above it by domain knowledge. Domain knowledge 
points are shown in light gray. Similarly, at the third itera-
tion at axial depth-of-cut of 5.0 mm, only points above a 
stable point in the previous iteration are measured. Seven 
additional points are measured as unstable and their values 
are updated to unstable in the PGML training dataset, along 

the information content of the training set and speeds con-
vergence to the true SLD. It is known from theory (and 
practice) that all values of axial depth-of-cut above those 
that have been measured to be unstable must also be unsta-
ble—assuming constant spindle speed. Similarly, all points 
below the axial depth-of-cut of a measured stable point must 
also be stable—assuming constant spindle speed. The addi-
tion of domain knowledge points also reduces the number 
of points that need to be measured to achieve target con-
vergence. In Fig. 8, the domain knowledge points that have 
been updated to stable below a measured stable point—or 
unstable above a measured unstable point—are shown in 
light gray without an outline.

Climb-the-Hill with domain knowledge (CTH-DK)

Climb-the-Hill with Domain Knowledge leverages a strategy 
that discovers the unknown (in practice) underlying SLD by 
systematically measuring points at the lowest depth-of-cut 
and incrementing upward until chatter is observed. The pro-
cess is analogous to how many manufacturers develop their 
guidelines for parameter selection. The process is initiated 
by measuring and updating all points with axial depth-of-cut 
equal to 1.0 mm and spindle speeds ranging from 1.0 × 104 

Fig. 8 Random Sample with 
Domain Knowledge. Measured 
stable and unstable points (left) 
and updated domain knowledge 
points (right)

 

Fig. 7 Random Sample. Sampled 
points at first iteration (left) and 
measured and updated points 
(right)
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As shown in Fig. 10, Follow-the-Curve begins by 
selecting points at regular intervals of spindle speed along 
the x-axis. The sample point to be measured is the point 
on the bsaeline PGML SLD associated with the selected 
value of spindle speed on the x-axis. For example, at the 
first iteration, 11 points are selected at equal increments of 
1.0 × 103 rpm along the spindle speed axis from 1.0 × 104 
to 2.0 × 104 rpm. The corresponding points on the PGML 
SLD are initially assumed to be stable. After measurement 
three points, shown in red, are unstable while eight points, 
shown in green, are confirmed stable. Measured values are 
updated in the PGML training dataset. At each subsequent 
iteration, midpoints for each of the spindle speed intervals 
on the x-axis, shown as outlined white circles on the right, 
are measured and updated, as necessary. The process con-
tinues until a final interval size of 100 rpm at Iteration 6, at 
which point every spindle speed value along the x-axis in 
the training dataset has been measured.

After each sample point on the baseline PGML SLD 
is measured, a local search is implemented around that 
point. Adjacent points in each of the four compass direc-
tions (north, south, east and west) are sequentially measured 
and their values updated. The local search in each direc-
tion stops when the measured state matches the value in the 
PGML training dataset. Local search is illustrated in Fig. 11. 

with all domain knowledge points above them. The process 
continues similarly at each iteration.

Follow-the-Curve with local search and domain 
knowledge (FTC-LS-DK)

Follow-the-Curve with Local Search and Domain Knowl-
edge guides the process of selecting points for measurement 
along the physics-based SLD where the information value 
of the measured points is hypothesized to be highest due to 
its likely proximity to the true underlying SLD. The selec-
tion strategy is completed by domain knowledge and a local 
search process which also focuses measurement in the area 
of highest information value. Points are measured at equal 
intervals of spindle speed along the baseline PGML SLD and 
in increasingly smaller increments of spindle speed at each 
iteration. Follow-the-Curve also includes a local search rou-
tine that measures points around the sample points in a pre-
scribed way. The strength of the Follow-the-Curve strategy 
is that the local search allows it to gain more information, 
more quickly, about the location of the true SLD. Domain 
knowledge is implemented for both measured sample and 
for local search measured points around the sample points 
on the SLD.

Fig. 10 Follow-the-Curve. Sam-
pled points at first iteration (left) 
and at second iteration (right)

 

Fig. 9 Climb-the-Hill. Measured 
stable points at first iteration 
(left) and updated measured and 
domain knowledge points at sec-
ond and third iterations (right)
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measured local search point to the west is measured as stable 
which matches the value in the PGML training dataset and 
the local search in that direction stops. Domain knowledge 
points below that point are updated as stable. Search in the 
north (Step 6) and east (Step 7) directions proceed similarly.

Experimental design for training and 
updating the PGML model

The workflow for implementing PGML model training and 
updating in each of the experiments is provided in Fig. 12. 
Each of three machine learning methods was paired with 
each of the four updating methods and metrics for evalu-
ating their respective predictive accuracies and stability 
convergence scores according to the performance metrics 
described below. As illustrated in the flowchart in Fig. 12, 
three physics-based models are used to analytically deter-
mine the physics-based dynamic stability model and its 
associated SLD. This model informs the creation of two 
simulated datasets. The first is the physics-based dataset 
for baseline training of the PGML and the second is the 
true dataset from which the measurement values are sam-
pled (simulating experimental data collection on the fac-
tory shop floor) for updating the PGML model. Values of 
these datasets populate a 2-dimensional experimental grid 
over the experimental domain of interest where the x-axis 
is spindle speed (rpm) and the y-axis is depth-of-cut (mm). 

Following the numbering, at Step 1 the sample point on the 
curve at spindle speed 1.4 × 104 rpm, indicated as a solid 
light green circle, is measured as stable and its stability 
value in the PGML training dataset is updated. At Step 2, 
proceeding in the south direction, all points below the mea-
sured stable point are updated as stable by domain knowl-
edge without measurement. In all cases, if a sample point is 
measured to be stable, no further measurement is performed 
in the south direction and all points below are updated as 
stable without measurement. Similarly, no further measure-
ment is performed in the north direction if a sample point is 
measured to be unstable and all points above that point are 
updated as unstable without measurement. Domain knowl-
edge points are updated above or below the sampled point, 
but never in both directions.

Continuing with Step 3, to the west we measure the next 
adjacent point as stable which does not match the value 
in the PGML training dataset, and its value is updated in 
the PGML training dataset. All points below that point are 
updated as stable without measurement by domain knowl-
edge and the local search to the west continues. An addi-
tional point is measured. Its stability state does not match 
the value in the PGML training dataset and is also updated. 
In Step 4, the next point measured is unstable and does not 
match the value in the PGML training dataset, indicated by 
a solid red circle. All points above that point are updated as 
unstable without measurement by domain knowledge and 
the local search to the west continues. Finally, at Step 5, the 

Fig. 11 Follow-the-Curve with Local Search and Domain Knowledge

 

1 3



Journal of Intelligent Manufacturing

 
ATRAIN(%) = ATEST(%) =

CP

P
∗ 100  (5)

Stability convergence, CSLD, expresses the percent of points 
for which the PGML-predicted stability value matches the 
true stability state at each iteration. Changes in the mag-
nitude of CSLD from iteration to iteration reflect the speed 
with which the PGML SLD gets closer and closer to, or 
converges to, the true SLD. A high stability convergence 
value means that the PGML model agrees more closely with 
the true stability model and that the number of correct sta-
bility predictions by the PGML model is high. Similarly, 
increasing convergence scores at each iteration indicate 
that the PGML SLD curve is converging towards the true 
SLD curve and that the predictive capability of the PGML 
model is increasing. Stability convergence CSLD is formally 
defined as the number of points in the test set for which 
a correct prediction (CP) is obtained by the PGML model 
when compared with the true value, divided by the total 
number of predictions (P), as follows in Eq 6:

 
CSLD(%) =

CP

P
∗ 100 (6)

F1Score. The F 1 score, also called F -measure, is the har-
monic mean between recall and precision where precision 
is the number of true positive (TP) results determined by 
the model divided by the number of all positive (TP + FP) 
results, and recall is the number of true positive (TP) results 
divided by the number of all samples that should have been 
identified as positive (TP + FN). The F1 score takes both pre-
cision and recall into account at equal weights and generates 

A baseline PGML model is fit to the initial physics-based 
training dataset and predictions of the stability states are 
produced for the test set. Model accuracy and stability con-
vergence are computed to serve as a benchmark for evaluat-
ing the convergence of the updated PGML models to the 
true underlying SLD. In an iterative fashion, measurements 
of true stability states are sampled from the simulated true 
dataset as specified by the updating strategy and the PGML 
dataset is updated. At each iteration, the stability states are 
predicted for the test set and performance metrics are com-
puted to track convergence of the physics-based SLD to the 
true underlying SLD.

Performance metrics ATRAIN and ATEST express the per-
cent of the points for which the predicted PGML stability 
value matches the stability value in the training dataset, and 
the percent of points for which the predicted PGML stability 
value matches the stability value in the test dataset, respec-
tively. Training and testing accuracy are computed in the 
conventional way. Training accuracy, ATRAIN, is defined as 
the number of points in the training set for which a cor-
rect prediction (CP) is obtained by the PGML model when 
compared with the training dataset values, divided by the 
total number of predictions (P). Testing accuracy, ATEST, is 
defined as the number of points in the test set for which 
a correct prediction (CP) is obtained by the PGML model 
when compared with the test dataset values, divided by the 
total number of predictions (P). The general expression of 
accuracy, for both training and testing, with respect to their 
training and test datasets, is provided in Eq. 5 below:

Fig. 12 Process for Training, 
Testing and Updating PGML 
Model at Each Iteration
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domain knowledge, and which updating strategy provides 
the best convergence (i.e. predictive accuracy); and (3) Can 
predictive accuracy be further improved using physics-
based knowledge of the SLD by implementing local search 
around measured points. Results for each of the 12 experi-
ments are presented. Results from each experiment are aver-
ages of 100 runs. Reference to the physics-based and true 
SLDs in the following discussion of experimental results 
refers to the simulated SLDs, respectively.

Accuracy and convergence during baseline PGML 
model fitting

A first question is whether the baseline PGML model, with-
out updating, adequately fits the physics-based data and 
which machine learning method provides the best fit. To 
compare methods, the baseline PGML model was trained 
using KNN, SVM and ANN-NADAM and metrics ATRAIN 
and ATEST were computed. Typically, ATRAIN results are 
higher than ATEST results because the points in the test data-
set have not been evaluated or seen by the PGML model 
during training. Note that model fit here refers to the fit with 
the baseline physics-based dataset and does not reflect how 
well the PGML model predicts the true stability states. To 
evaluate how well the PGML model predicts true stability 
states, stability convergence CSLD is computed. Both accu-
racy and convergence results can help assess which of the 
machine learning methods will perform best when retrain-
ing the PGML model during updating.

Table 4 compares the training and testing accuracies for 
the three machine learning methods KNN, SVM, and ANN-
NADAM, as well as two other useful metrics for classifi-
cation problems with class imbalance, F1 and AUC scores. 
KNN provides the best training accuracy, correctly predict-
ing all stability values in the training dataset. All methods, 
however, exhibit ATRAIN scores of 97.2% or higher. Perfor-
mance against the test dataset is comparably good, with 
ATEST scores between 95.6% and 97.0% for all methods. 
Thus, all machine learning methods provide overall good 
fit with the physics-based model and presage good predic-
tive accuracy during updating. Stability convergence CSLD 
results are also provided in Table 4 and range between 81.0% 
and 81.5%. ANN-NADAM achieved the highest CSLD score 
at 81.5%. All three methods provide a comparable base-
line for evaluating predictive accuracy improvements due 

a high score only if the number of true positives obtained is 
high compared to the other prediction outcome categories. 
The F 1 score, computed as shown in Eq. 7, ranges from 0.0 
to + 1.0 (expressed as a percentage) where a higher score 
indicates a better classifier performance.

 
F1 = 2 ∗ precision ∗ recall

precision + recall
=

2 ∗ TP

2 ∗ TP + FP + FN
 (7)

Area Under the Curve (AUC). The AUC measures the abil-
ity of a classifier to distinguish between classes. The AUC 
equals the probability that the classifier will rank a randomly 
chosen positive example higher than that of a randomly 
chosen negative example. The AUC, ranging between 0.0 
and + 1.0 (expressed as a percentage), is typically used for 
binary classification problems. The higher the AUC, the bet-
ter the model is at distinguishing between classes.

In addition to computing performance metrics ATRAIN, 
ATEST, CSLD, F1 and AUC, the number of measured points 
and domain knowledge points that are validated as stable or 
unstable at each iteration are also counted. Tracking point 
counts, especially counts of measured points that incur cost, 
provides insight into the information value of measurement 
and domain knowledge with respect to predictive accuracy. 
Depending on updating strategy, different numbers and loca-
tions of points will be measured and updated at each itera-
tion. Similarly, different numbers and locations of domain 
knowledge points will be confirmed as stable or unstable at 
each iteration. These different spatial patterns of sampling 
and updating for each strategy drive improvements in con-
vergence to the true SLD and make a particular updating 
strategy better than another from the perspective of predic-
tive accuracy and measurement cost.

Numerical results

Numerical results addressing the following research ques-
tions are provided below: (1) Does the baseline PGML 
model, without updating, adequately fit the physics-based 
data, and which machine learning method provides the best 
fit as a baseline for subsequent updating; (2) Can the predic-
tive ability of the baseline PGML model be improved by 
updating the PGML training dataset with measured data and 

Table 4 Performance Results for Baseline PGML Model Fitting
Machine Learning Model Average Accuracy Average F1 Score Average AUC Score Average Convergence

Train Test Train Test Train Test Fit to True Model
KNN 100.0% 96.7% 99.9% 95.5% 100.0% 99.7% 81.0%
SVM 99.6% 97.0% 99.4% 95.9% 99.0% 100.0% 81.2%
ANN-NADAM 97.2% 95.6% 95.6% 93.8% 99.6% 99.3% 81.5%
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stability convergence scores and point counts for each itera-
tion are provided in Tables 5, 6, 7 and 8 for all experiments. 
Accuracy, F1 and AUC scores, computed for each iteration 
over all experiments, were as expected and are omitted due 
to space limitations.

Stability convergence, CSLD, is expected to increase as 
the PGML training dataset is updated with measured val-
ues and domain knowledge at each iteration consistent with 
the hypothesis that the PGML model is converging to the 
true stability model. Stability convergence, as noted earlier, 
reflects the increasing accuracy of the PGML model in pre-
dicting the underlying true stability values. This hypothesis 
is confirmed by the results in Tables 5, 6, 7 and 8. Con-
versely, and as expected, as stability values in the PGML 
training dataset are updated with measured values, stability 
convergence CSLD improves for all 12 experiments. Again, 
looking at KNN for the random updating strategy (RAN) in 
Table 5, CSLD increases from 81.0% at the baseline iteration 
to 88.3%, or an increase of 9.0% and ANN increases from 
81.5 to 89.0% or an increase of 9.2%. Similar increases in 
CSLD from baseline iteration to final iteration are obtained 
for the other three updating strategies as shown in Tables 6, 
7 and 8. Stability convergence is defined as the percent of 
correct stability predictions achieved during testing. All 
four strategies achieved a predictive accuracy of at least 
88%. The Follow-the-Curve strategy achieved the highest 
predictive accuracy of 95% with KNN.

The comparative gains in predictive accuracy by PGML 
models over physics-based models (equivalent to baseline 
PGML model) are summarized in Fig. 13. The results are as 
expected but contain some surprises. RAN, the benchmark 
against which other updating strategies can be compared, 
had the lowest CSLD improvement of 8.8% averaged over 
the three machine learning methods. RAN can be thought 
of as an uninformed method since no a priori knowledge 

to measurement and domain knowledge updating and were 
retained for further experiments.

However, to account for small differences in perfor-
mance across the methods during updating, each updating 
strategy is paired with each machine learning method in12 
experiments, as noted earlier. Interestingly, ANN-NADAM 
performed least well among the three methods with respect 
to both ATRAIN and ATEST, but slightly better with respect 
to CSLD. Average F1 scores and AUC scores are also pre-
sented for each method in Table 4. Beyond accuracy, the F1 
score takes into account not only the number of prediction 
errors made by a model, but also captures the type of errors 
that are made. A model will obtain a high F1 score only if 
it can predict most of the positive, chatter cases (i.e. high 
precision) and if it can correctly identify most of the posi-
tive, chatter cases (i.e. high recall) in the data. As shown in 
Table 4, the methods have high F1 score varying from 93.8 
to 95.9% for the test dataset. The higher the AUC score the 
better the ability of the method to distinguish between the 
positive and negative classes, i.e. chatter and no-chatter. The 
three methods’ AUC scores exhibit very good performance 
varying from 99.3 to 100% on the test dataset.

Convergence during PGML model updating

A second question is whether the predictive ability of the 
baseline PGML model can be improved by updating the 
PGML training dataset with operational data and domain 
knowledge, and which updating strategy provides the best 
convergence (i.e. predictive accuracy). Having confirmed 
that each machine learning method offers a good fit to the 
physics-based training dataset, and comparable stability 
convergence, all 12 experiments were performed for the 
four updating strategies described in Sect. 6.0 and all perfor-
mance metrics computed for both training and testing. The 

Table 5 Stability Convergence and Point Counts for Random (RAN)
RANDOM
Iteration Sample 

Size
KNN SVM ANN-NADAM Measured 

Points
Domain 
Knowledge 
Points

Validated 
Points

Cum. 
Validated 
Points

Grid 
PointsCSLD CSLD CSLD

Baseline 81.0% 81.2% 81.5%
1 100 81.3% 81.8% 82.4% 100 0 100 100 5.0%
2 100 81.6% 82.2% 83.0% 100 0 100 200 9.9%
3 100 81.9% 81.6% 83.8% 100 0 100 300 14.9%
4 100 82.0% 82.0% 84.3% 100 0 100 400 19.8%
5 100 83.1% 81.2% 85.4% 100 0 100 500 24.8%
6 100 83.9% 82.4% 85.9% 100 0 100 600 29.7%
7 100 85.1% 83.2% 86.6% 100 0 100 700 34.7%
8 100 86.0% 84.6% 87.5% 100 0 100 800 39.6%
9 100 87.1% 86.6% 88.4% 100 0 100 900 44.6%
10 100 88.3% 87.8% 89.0% 100 0 100 1000 49.5%
%Change 9.0% 8.1% 9.2% 1000 0 1000
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increase predictive accuracy. FTC-LS-DK implements a 
priori knowledge of the physics-based PGML SLD to guide 
sampling directly on the physics-based SLD curve. FTC-
LS-DK also has the benefit of local search. Local search 
is hypothesized to add information about the location of 
the true underlying SLD by additional measurement in 

is used to sample points for measurement and no domain 
knowledge is implemented. In contrast, RAN-DK, CTH-
DK, and FTC-LS-DK all implement physics-based theory 
and/or domain knowledge in different ways. While neither 
RAN-DK nor CTH-DK assumes a priori knowledge of the 
physics-based SLD, they do utilize domain knowledge to 

Table 6 Stability Convergence and Point Counts for Random with Domain Knowledge (RAN-DK)
RANDOM WITH DOMAIN KNOWLEDGE
Iteration Sample 

Size
KNN SVM ANN-NADAM Measured 

Points
Domain 
Knowledge 
Points

Validated 
Points

Cum. 
Validated 
Points

Grid 
PointsCSLD CSLD CSLD

Baseline 81.0% 81.2% 81.5%
1 100 84.8% 84.6% 85.1% 85 203 288 288 14.3%
2 100 86.8% 85.2% 86.2% 72 175 247 535 26.5%
3 100 88.3% 88.8% 88.4% 49 205 254 789 39.1%
4 100 89.1% 89.2% 89.5% 48 128 176 965 47.8%
5 100 90.9% 92.0% 90.9% 25 93 118 1083 53.6%
6 100 92.0% 92.6% 91.3% 37 38 75 1158 57.3%
7 100 92.3% 92.6% 91.6% 36 103 139 1297 64.2%
8 100 93.1% 93.2% 92.0% 22 87 109 1406 69.6%
9 100 93.6% 94.0% 91.9% 27 64 91 1497 74.1%
10 100 93.7% 94.4% 92.2% 9 45 54 1551 76.8%
%Change 15.7% 16.3% 13.1% 410 1141 1551

Table 7 Stability Convergence and Point Counts for Climb-the-Hill (CTH-DK)
CLIMB-THE-HILL
Iteration Climbing 

Increment
KNN SVM ANN-NADAM Measured 

Points
Domain 
Knowledge 
Points

Validated 
Points

Cum. 
Validated 
Points

% of 
Grid 
Points

CSLD CSLD CSLD

Baseline 81.0% 81.2% 81.5%
1 1 mm 81.0% 81.2% 81.4% 101 0 101 101 5.0%
2 3 mm 81.8% 81.6% 82.6% 101 199 300 401 19.9%
3 5 mm 87.8% 88.0% 86.7% 91 298 389 790 39.1%
4 7 mm 91.6% 91.8% 90.4% 53 194 247 1037 51.3%
5 9 mm 94.0% 92.8% 92.3% 29 121 150 1187 58.8%
6 11 mm 94.9% 94.0% 93.0% 19 108 127 1314 65.0%
7 13 mm 95.1% 94.8% 93.0% 14 67 81 1395 69.1%
8 15 mm 95.0% 94.6% 93.0% 8 28 36 1431 70.8%
9 17 mm 95.0% 94.6% 93.1% 4 0 4 1435 71.0%
10 19 mm 94.9% 94.6% 93.2% 2 18 20 1455 72.0%
%Change 17.2% 16.5% 14.4% 422 1033 1455

Table 8 Stability Convergence and Point Counts for Follow-the-Curve (FTC-LS-DK)
FOLLOW-THE-CURVE
Iteration Omega Step KNN SVM ANN-NADAM Measured 

Points
Domain 
Knowledge 
Points

Validated 
Points

Cum. 
Validated 
Points

% of 
Grid 
Points

CSLD CSLD CSLD

Baseline 81.0% 81.2% 81.5%
1 1000 89.2% 88.0% 87.9% 109 360 469 469 23.2%
2 800 91.0% 91.0% 90.3% 63 143 206 675 33.4%
3 600 92.7% 93.4% 91.8% 45 37 82 757 37.5%
4 400 94.0% 93.8% 92.4% 28 89 117 874 43.3%
5 200 94.5% 94.6% 92.9% 48 34 82 956 47.3%
6 100 95.0% 94.8% 92.9% 39 13 52 1008 49.9%
%Change 17.3% 16.8% 14.0% 332 676 1008
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preferred updating strategy is the one that maximizes CSLD 
with minimal investment in measurement, the desired sig-
nature is a rapid increase in CSLD at early iterations when 
cumulative measurement costs are still low. As expected, 
RAN underperforms the other three strategies, achieving 
less than 90% convergence after 10 iterations. When equal 
numbers of points are selected at random without a priori 
theoretical knowledge, improvements from iteration to 
iteration can be expected to be approximately uniform, as 
observed by the linear signature. Any variability across ML 
methods for RAN can be explained by different spatial posi-
tioning of the measured points with respect to the PGML 
SLD at each of 100 repetitions of the experiment. RAN-DK 
approaches 95% stability convergence by the 10th itera-
tion which can be explained by the influence of additional 
domain knowledge points. Declining CSLD improvement 
for RAN-DK at later iterations reflects fewer numbers of 
measured points since points in the sample to be measured 
have been already updated by domain knowledge at previ-
ous iterations.

In particular, very different behaviors can be observed 
for the CTH-DK and FTC-LS-DK strategies. While both 
achieve CSLD of 95%, the trajectories are quite different. 
With CTH-DK, stability convergence starts off slowly for 
the first two iterations and then increases rapidly before 
flattening after the fifth iteration. In contrast, FTC-LS-DK 
stability convergence increases sharply from baseline to the 
first iteration, then shows smaller increases at subsequent 
iterations. As reported in Tables 5, 6, 7 and 8, and illus-
trated graphically in Fig. 13, the percent increase in CSLD 
across the iteration cycles ranges between 8.1% and 9.2% 
for RAN, between 13.1% and 16.3% for RAN-DK, between 

close proximity to the true SLD. RAN-DK, which builds in 
domain knowledge, increased the percent improvement in 
CSLD over baseline to 15.0%. Surprisingly, RAN-DK, CTH-
DK and FTC-LS-DK obtain equivalent results, as seen in 
Fig. 13. All three strategies improved CSLD over baseline by 
(on average) 15.0%, 15.9% and 16.0%, respectively, after a 
complete iteration cycle. Local search did not add substan-
tially to improvements in CSLD when comparing FTC-LS-
DK and CTH-DK strategies.

More important, while RAN-DK, CTH-DK and FTC-
LS-DK produced comparable improvement in CSLD over 
their respective complete iteration cycles, the trajectories 
of improvement at each iteration are very different. Itera-
tive improvements in CSLD for the four updating strategies 
are compared in Fig. 14. As can be observed in the figure, 
each strategy has a unique signature. Recognizing that the 

Fig. 14 Stability Convergence 
CSLD by Updating Strategy and 
Iteration

 

Fig. 13 Percent Improvement in Stability Convergence Over Baseline 
After Updating
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Domain knowledge points are updated above or below 
the measured local search points, as appropriate.
Stopping Rule 3: Stop on Measured Sample Point 
Mismatch. The local search in each compass direc-
tion stops when the measured value does not equal the 
stability value of the measured sample point (the local 
search original starting point) and the local search 
measured point is updated. Domain knowledge points 
are updated above or below the measured local search 
points, as appropriate.

Figure 16 illustrates the different search behaviors of each 
stopping rule and allows visual comparison of the relative 
performance of each with respect to convergence. Graphs in 
the left column illustrate local search mechanics for Stop-
ping Rule 1, Stopping Rule 2, and Stopping Rule 3, all at 
iteration 1. Graphs in the right column compare the con-
vergence of the final PGML SLD to the true SLD after all 
six iterations. Stopping Rule 1 offers the best performance 
with fewer regions of prediction error after the last itera-
tion. As previously, sample measured points are outlined 
in red; local search measured points in the four compass 
directions are shown in solid green; domain knowledge 
points are shown in light gray. Also, as previously, the base-
line PGML model prior to Iteration 1 was trained using the 
physics-based training dataset. At subsequent iterations, the 
PGML model was retrained with updated training datasets. 
ANN-NADAM was used to train the PGML model at all 
iterations—the best performing of the three methods during 
baseline testing.

The mechanics of local search are easily seen in the top 
left in Fig. 16. Stopping Rule 1 measures points in each com-
pass direction until the measured local search point matches 
the value in the PGML training dataset. Sample point A, 
indicated in the figure by the shaded red circle, is predicted 
by the baseline PGML model to be stable, but is measured 
in Iteration 1 as unstable. Since the point is measured to be 
unstable, all points to the north are updated as unstable, as 
shown. Moving to the east, the point to the right is measured 
as unstable, which matches the PGML model value and the 
local search in that direction ends. Next, a local search in the 
south direction is conducted measuring stable points until 
it hits Point B which measures stable, as predicted by the 
PGML model. Finally, local search turns to the west direc-
tion, measuring stable points until the measured value is 
equal to PGML predicted value of stable which stops the 
local search to the west.

The superior performance of Stopping Rule 1, and the 
reason for its selection as the local search stopping rule, can 
be seen by comparing the regions of prediction error in the 
graphs on the right. All three stopping rules result in regions 
of prediction error on the far right and left of the graph. 

14.4% and 17.2% for CTH-DK, and between 14.0% and 
17.3% for FTC-LS-DK.

Convergence of the PGML SLD to the true underlying 
SLD at each iteration can be visualized graphically for FTC-
LS-DK in Fig. 15. The true SLD is shown by a solid black 
line and the PGML SLD by a dashed red line. The darkly 
shaded areas between the true SLD and the PGML SLD, as 
well as the lightly shaded gap areas below the true SLD are 
regions of prediction error. The dark pink shaded areas indi-
cate regions where unstable stability states are incorrectly 
predicted as stable by the PGML. The light pink shaded 
areas below the true SLD define regions in which the sta-
bility states are correctly predicted as stable; similarly, the 
white areas above both curves define regions where unstable 
states are correctly predicted as unstable. And lightly shaded 
areas between the two curves define regions where stable 
states are incorrectly predicted as unstable. At the baseline 
iteration a number of regions of prediction error, noted by 
dark shaded regions above the true SLD and lightly shaded 
regions below the true SLD, can be seen. As more measured 
points are updated in the training dataset, these regions 
decrease in size. By the last iteration, the updated PGML 
SLD has substantially converged to the true SLD with a few 
exceptions, e.g. in particular, the large area to the right side 
of the figure at high spindle speeds and a small lobe to the 
left size of the figure at low spindle speeds.

Local search stopping rules for Follow-the-Curve

To further improve the performance of the Follow-the-
Curve strategy (FTC-LS-DK), three stopping rules that con-
trol the pattern local search around sampled points on the 
physics-based SLD were investigated. Local search gathers 
information of higher value in areas that are hypothesized to 
be close to the true underlying SLD. As described in Sect. 6, 
each local search point, is measured and updated in the four 
compass directions until the process is halted by the stop-
ping rule in effect. For each measured local search point, 
domain knowledge points are also updated, without mea-
surement. Stopping Rule 1 was implemented in the previous 
experiments.

Stopping Rule 1: Stop on Match. Local search in 
each compass direction stops when the measured 
value equals the value in the PGML training data-
set and the local search measured point is updated. 
Domain knowledge points are updated above or below 
the measured local search points, as appropriate.
Stopping Rule 2: Stop on Mismatch. Local search 
in each compass direction stops when the measured 
value doesnotequal the value in PGML training data-
set and the local search measured point is updated. 
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Fig. 15 Convergence of PGML SLD to True SLD with FTC-LS-DK Updating Strategy
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The superior performance of Stopping Rule 1, as well 
as Stopping Rule 3 can be explained by the larger numbers 
of grid points that are validated as true by measurement or 
domain knowledge. A reasonable expectation is that a stop-
ping rule that maximizes the number of measured points 
that are updated, as well as domain knowledge points, 
would have an advantage. The number of points validated 
as to their true state by measurement and domain knowl-
edge, shown in Table 10, also support the superior perfor-
mance of Stopping Rule 1 and Stopping Rule 3. Table 10 
compares the total points validated for each stopping rule 
over all six iterations, broken down into measured points 
(both on the curve and by local search) and unmeasured 
domain knowledge points. As shown in Table 10, Stopping 
Rule 1 achieves the highest convergence (92.1%) with the 
fewest measured points (332) and the most domain knowl-
edge points (676), for a total of 1008 validated points. Stop-
ping Rule 3 achieves comparable convergence (91.5%) with 

However, Stopping Rule 2 fails to correctly predict stability 
in three additional regions, two of which are around the tall 
stability lobes. In two of the three regions the PGLM model 
predicts unstable states when the true states are stable while, 
in the third, the PGML model predicts stable states when the 
true states are unstable. Stopping Rule 3 reduces prediction 
errors around the tall lobes, but the third region of prediction 
error is only slightly reduced.

Numerical results in Table 9 comparing accuracy, ATRAIN 
and ATEST, and convergence CSLD for the three stopping rules 
are consistent with the above observations. With respect to 
CSLD, Stopping Rule 1 and Stopping Rule 3 achieve 92.1% 
and 91.5% convergence, respectively, both higher than 
Stopping Rule 2 at 89.4%. When differences in baseline fit 
for each stopping rule are considered, Stopping Rule 1 and 
Stopping Rule 3 report the highest improvements of CSLD 
over baseline of 12.9% and 12.1%, respectively. Stopping 
Rule 2 reports only 9.6% over baseline, respectively.

Fig. 16 Comparison of Local 
Search Stopping Rule Behaviors 
for FTC-DK: Rule 1 (top row), 
Rule 2 (middle row), and Rule 3 
(bottom row)
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432 measured points and 641 domain knowledge points, for 
a total of 1073 validated points. Stopping Rule 2 has the 
fewest validated points (962) and, as observed earlier, the 
domain knowledge points are not in locations that provide 
leverage to reduce the size of the regions of prediction error.

Another factor contributing to the superior performance 
of Stopping Rule 1 is the percent of total points in the 
PGML dataset that have been updated to their true state at 
the end of a complete iteration cycle. A particular stopping 
rule may, by chance, validate more points than another stop-
ping rule that change their state to the true stability value 
since they sample different sets of points. However, at the 
end of the iteration cycle, nearly all grid points are expected 
to have been updated to their true value through measure-
ment or domain knowledge. To confirm this, the number of 
true points as a percent of total points in the grid, is shown 
in Table 9. At the end of the iteration cycle, the percentages 
of validated true points for Stopping Rules 1, 2 and 3 are 
96.1%, 91.6%, and 95.6%, respectively.

Balancing predictive accuracy and 
measurement cost in the factory

Measuring the stability states for combinations of spindle 
speed and axial depth-of-cut can be prohibitively expensive 
for many machine tool companies and job shops. In a pro-
duction environment, keeping manufacturing costs low is a 
priority. And while avoiding chatter both improves surface 
quality and reduces the expense of rework and waste, the 
costs and time needed to implement the PGML approach in 
practice can be sizeable and must also be considered. From 
a practical perspective, then, an important consideration for 
factory floor operations is selection of an updating strat-
egy that balances predictive accuracy (i.e. stability conver-
gence) and measurement cost. Assessing this trade-off is a 
major goal of this research.

Each of the four updating strategies investigated here 
offers a different approach for gathering measurement data 
during machining in order to avoid chatter. In particular, 
numerical experiments were designed to evaluate the ability 
of the PGML approach to locate the true underlying SLD 
with minimal process measurements. Control of the mea-
surement process from iteration to iteration was defined 
by novel updating strategies that update points through 
measurement, physics-based theory or domain knowledge. 
Since the numbers and locations of updated points vary by 
updating strategy at each iteration, it is difficult to compare 
strategies directly by looking at stability convergence CSLD 
and measured point counts separately. While these metrics 
tell us a lot about the predictive accuracy of the PGML 
model overall, they do not provide practical insight for 
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line. The number of measured points required to approach 
95% stability convergence varies greatly by strategy. The 
RAN updating strategy never reaches 95% stability con-
vergence after 1,000 measured points over 10 iterations. 
After 10 iterations, approximately 50% of the grid has been 
validated by measurement but only 89.0% convergence is 
achieved. RAN-DK, CTH-DK and FTC-LS-DK approach 
95% target accuracy with significantly fewer measured 
points, plus contributions by domain knowledge points. The 
addition of (unmeasured and no cost) domain knowledge 
points to the updating strategy enables 92.2% convergence 
after 410 measured points over 10 iterations for RAN-DK, 
93.2% convergence for CTH-DK after 10 iterations with 
422 measured points, and 92.9% convergence for FTC-
LS-DK after only 322 measured points in 6 iterations. The 
trade-off between stability convergence CSLD and number of 

applications that depend on the information efficiency—or 
the information contribution of each measured point to gains 
in predictive accuracy. For decisions on the factory floor, 
then, the critical question is which and how many points 
should be measured to quickly locate the true position of 
the SLD. That is, what is the marginal value of measuring 
an additional point to the convergence of the PGML SLD 
to the true SLD. And additionally, how many points need to 
be measured to achieve a target stability convergence—that 
is, how many points need to be measured if one wants to be 
95% accurate in their predictions of dynamic stability.

This trade-off between stability convergence CSLD and 
number of measured points is provided in Fig. 17 for each 
updating strategy using ANN-NADAM for model fitting 
and updating. Referring to Fig. 17, consider first a target 
of 95% stability convergence shown by the dashed black 

Table 10 Point Counts for Local Search Stopping Rules (FTC-LS-DK with ANN-NADAM)
LOCAL SEARCH STOP-
PING RULE

SAMPLE PTS 
ON CURVE

PTS MEASURED 
ON CURVE

PTS MEASURED 
LOCAL SEARCH

TOTAL MEA-
SURED PTS

DOMAIN 
KNOWLEDGE 
PTS

TOTAL 
VALI-
DATED 
PTS

Rule 1 219 54 278 332 676 1008
Rule 2 219 67 346 413 549 962
Rule 3 219 38 394 432 641 1073

Fig. 17 Trade-Off Between Predictive Accuracy and Measurement Cost – ANN-NADAM
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earlier, can be attributed to the contributions of both mea-
sured points and domain knowledge points located spatially 
in the region of the true SLD due to the sampling strategy 
that is guided by the physics-based model.

Conclusions

This research applies a new approach, physics-guided 
machine learning or PGML, to modeling dynamic stabil-
ity for process control to avoid chatter during milling. The 
simulation experiments performed here address the prob-
lem of estimating the true—and unknown—stability bound-
ary or SLD by updating the physics-based stability model 
with physics-based theory to guide the sampling strategy, 
combined with measurement data and domain knowledge. 
The PGML approach proposed offers the ability to improve 
productivity and part quality by selecting operational 
parameters that avoid chatter while minimizing production 
downtime required for data collection.

Simulation experiments were performed in which the 
PGML stability model was trained using an initial approxi-
mation of the physics-based model (with errors) and then 
updated with simulated measurement data (without errors) 
to approximate the true stability model specific to the oper-
ational environment. Four strategies to update the PGML 
model were explored—each strategy reflecting a different 
approach to incorporating both physics-based theory, real-
time measurements and domain knowledge. All four updat-
ing strategies improved the predictive capability of the 
baseline physics-based model, with improvements ranging 
between 8.1% and 17.3%, depending on the ML method 
used, to achieve prediction accuracy approaching 95%. 
Updating strategies that leveraged both the information 
value of each measured and updated point and non-mea-
sured domain knowledge points, achieved the largest gains 
in predictive accuracy and converged most quickly to the 
underlying true stability boundary.

Further, all four updating strategies demonstrated conver-
gence to the true underlying SLD, even when measurement 
points were selected randomly. The inclusion of domain 
knowledge in addition to measurement data for the Ran-
dom with Domain Knowledge (RAN-DK), Climb-the-Hill 
with Domain Knowledge (CTH-DK) and Follow-the-Curve 
with Domain Knowledge and Local Search (FTC-LS-DK) 
strategies resulted in further improvements in both the mag-
nitude and speed of convergence in all experiments—dem-
onstrating the value of domain knowledge to data-driven 
stability modeling. Further, the choice of updating strategy 
mattered less than the fact that domain knowledge was 
included. Among the three updating strategies with domain 
knowledge, all demonstrated comparable convergence 

measured points with target accuracy of 90% is also shown 
in Fig. 17 by a solid green line. Again, FTC-LS-DK is the 
most efficient updating strategy from a measurement cost 
perspective after 6 iterations, achieving 90% convergence 
with only 180 measured points. Results for a target accuracy 
of 85% are also shown in Fig. 17 by a dashed blue line.

From a practical perspective, the updating strategy of 
choice would provide the most improvement in CSLD with 
the fewest points—and also the most quickly. The speed 
of convergence can be seen in the shapes of the curves in 
Fig. 17. The updating strategies display different geometric 
behaviors as CSLD increases. The RAN and RAN-DK strat-
egies display an approximately linear relationship between 
CSLD and the number of measured points, as expected 
since each iteration starts with a selection of 100 randomly 
sampled points, with RAN-DK measuring fewer points at 
later iterations. The CTH-DK strategy displays a convex 
relationship between CSLD and the number of measured 
points, with small increases in CSLD at early iterations even 
though larger numbers of points are measured. The FTC-
LS-DK strategy, in contrast, displays a concave relationship 
between CSLD and the number of measured points. Stability 
convergence, CSLD, for FTC-LS-DK increases more quickly 
during early iterations with fewer measured points over-
all but including local search points with high information 
value in close proximity to the true SLD—an advantage on 
the factory floor where low costs are a priority.

Finally, the contribution of domain knowledge, in addi-
tion to measured points discussed above, helps to explain 
the comparative performance of the updating strategies. 
Figure 18 summarizes the total numbers of measured 
and domain knowledge points over all iterations for the 
four updating strategies. By design, RAN does not lever-
age domain knowledge. However, each of the three other 
updating strategies benefits from the contribution of domain 
knowledge to the predictive accuracy of the PGML model, 
and the faster convergence of the PGML SLD to the true 
SLD. The superior performance of FTC-LS-DK, discussed 

Fig. 18 Points Validated by Measurement and Domain Knowledge per 
Updating Strategy (All Iterations)
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approach and updating strategies for milling within a time-
varying and continuous learning environment with the goal 
of enabling the capture, characterization, and prediction of 
the machining process in real time for machine-initiated 
chatter avoidance and corrections.
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