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Abstract

Physics-guided machine learning (PGML) offers a new approach to stability modeling during machining that leverages
experimental data generated during the machining process while incorporating decades of theoretical process modeling
efforts. This approach addresses specific limitations of machine learning models and physics-based models individually.
Data-driven machine learning models are typically black box models that do not provide deep insight into the underlying
physics and do not reflect physical constraints for the modeled system, sometimes yielding solutions that violate physi-
cal laws or operational constraints. In addition, acquiring the large amounts of manufacturing data needed for machine
learning modeling can be costly. On the other hand, many physical processes are not completely understood by domain
experts and have a high degree of uncertainty. Physics-based models must make simplifying assumptions that can com-
promise prediction accuracy. This research explores whether data generated by an uncertain physics-based milling stabil-
ity model that is used to train a physics-guided machine learning stability model, and then updated with measured data,
domain knowledge, and theory-based knowledge provides a useful approximation to the unknown true stability model for
a specific set of factory operating conditions. Four novel strategies for updating the machine learning model with experi-
mental data are explored. These updating strategies differ in their assumptions about and implementation of the type of
physics-based knowledge included in the PGML model. Using a simulation experiment, these strategies achieve useful
approximations of the underlying true stability model while reducing the number of experimental measurements required
for model update.

Keywords Physics-guided machine learning - Informed machine learning - Stability modeling - Milling - Machine
learning

Introduction

In the field of high-speed machining with processes like
milling, turning, and drilling, simultaneous achievement of
the performance targets of part accuracy, high surface finish
and productivity is often constrained by the occurrence of
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dynamic instability of the machining process, referred to as
chatter. Improvements in process control due to new machin-
ing technologies have typically improved one or more of
these metrics, but often at the expense of deterioration in
the other(s) reflecting a trade-off between process control
and productivity. Over the last 50 years, many new tech-
nologies such as computer numerically controlled (CNC)
machining have allowed greater process control while
increasing the capability and flexibility of the process itself.
Computer-aided  design/computer-aided manufacturing
(CAD/CAM) software has enabled digital representation of
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part geometries and the subsequent generation of computer
instructions to command the machine motions required to
remove material and leave the desired part geometry. While
these technologies have increased the spindle speed range
due to new spindle designs, as well as improved tool mate-
rials and coatings, the machining parameters are still typi-
cally selected based on manufacturer recommendations or,
in most cases, operator experience. In practice, operators
typically adjust spindle speeds downwards when encounter-
ing chatter, reducing productivity. However, in many cases
increasing spindle speeds can return stability to the process
and improve productivity. Knowledge of the true, as opposed
to physics-based or manufacturer-provided, stability model
would enable operators to better select initial machining
parameters to both maintain dynamic stability and improve
part quality without compromising productivity.

Knowledge of the true operational stability model would
also enable operators—and ultimately the machines them-
selves—to make in-process optimum parameter adjust-
ments during production. As machines become more
intelligent, self-knowledge of the true stability model is the
foundation for self-aware operations. Self-aware machines,
as their name suggests, exhibit self-awareness of both their
operational health and machining status and, as required,
self-control to perform parametric adjustments that main-
tain continued performance to target levels. For example,
self-aware machines can make parametric adjustments to
keep themselves operational while waiting for service; can
adjust their machining parameters to assure process stabil-
ity during machining; and can adjust their load to balance
production yields in their cell in the event of excess demand
or machine downtime. This level of machine intelligence
has considerable potential to enhance productivity in the
manufacturing environment and to maintain optimal oper-
ational performance for maximum efficiency. New sensor
technologies and machine learning (ML) methods are build-
ing the foundations for self-awareness that would enable the
machining process to identify those combinations of spindle
speed and axial depth-of-cut needed to maintain dynamic
stability of the process and, in the case of approaching chat-
ter, identify the adjustments in these parameters that allow
the process to quickly return to stability.

This research builds on a recent trajectory of research
in machine learning referred to as physics-informed or
physics-guided machine learning (PGML). To implement
the PGML approach, a machine learning model is trained
with stability data simulated using a physics-based model
built on the well-known receptance coupling substructure
analysis (RCSA), a mechanistic force model, and Fourier
analysis to generate the stability lobe diagram (SLD). The
SLD defines regions of stability and instability as a function
of spindle speed and depth of cut, described in more detail
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later. This pre-trained model is then updated with experi-
mental measured data, along with domain knowledge, to
enable the convergence of the physics-based model to the
true operational model. Physics-based theory also informs
the updating strategies by guiding the sampling of measure-
ment points prior to retraining the PGML. A major con-
tribution of this paper is the exploration of measurement
strategies that increase predictive accuracy of the PGML
model while minimizing measurement cost. Experiments
are implemented within a simulation framework that pro-
vides a common benchmark for evaluating the updating
strategies. The research goal is to develop guidelines for
sampling that promote fast and inexpensive convergence
of the physics-based model to the true operational stability
model suitable for use within a production environment.
This paper proceeds as follows. Sect. 2 introduces PGML
and reviews recent literature in this area. Sect. 3 provides a
perspective on the challenge of maintaining dynamic stabil-
ity during machining motivating this work. Sect. 4 describes
the development of the physics-based dynamic stability
model and discusses model uncertainties that motivate the
PGML approach. Sect. 5 introduces the PGML approach
implemented in this research. Sect. 6 presents the research
framework including machine learning methods and mea-
surement updating strategies. Sect. 7 describes the methods
for both training and updating the PGML model with simu-
lated measurement data, domain knowledge and physical
theory. Numerical results are presented in Sect. 8. Impli-
cations of this research for implementation in a production
environment and as a step towards self-aware machining are
discussed in Sect. 9 followed by conclusions in Sect. 10.

Physics-guided machine learning

When modeling complex machining processes, the practical
choice—and associated best practice—has been to choose
between physics-based or data-driven models for prediction.
Both approaches have distinct advantages when applied to
complex systems with integrated mechanical, electrical,
and software components. However, individually, they
fall short of delivering the broad capability and accuracy
needed for chatter-free high precision machining. Informed
machine learning is part of an emerging trend to embed
domain knowledge, broadly defined, into ML models. This
approach use physical principles to inform and guide the
search for the best data-driven model, thereby capturing the
best attributes of both physics-based and data-learning mod-
els, as shown in Fig. 1 (Greis et al., 2020).

Given the diverse scientific and other disciplines in
which these techniques are being applied, this approach has
been referred to by several names such as physics-guided
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Fig. 1 Physics-Guided Data Learning

ML, physics-informed ML, physics-based ML, physics-
aware ML—or simply informed ML. A number of review
papers have appeared in the last several years that offer vari-
ous frameworks for organizing the theory and practice of
informed machine learning (Kim et al., 2021). Willard et
al. (2020) offer a taxonomy of physics-based modeling with
machine learning techniques by application area and class of
methodology. von Rueden et al. (2021) offer a taxonomy that
considers the source of the knowledge (i.e., natural science,
expert knowledge, or accepted physical law), its representa-
tion (i.e., algebraic equations, simulation results, or logical
rules), and how it is integrated into the machine learning
pipeline. Roscher et al. (2020) approach informed machine
learning from the perspective of its ability to extract and
explain novel scientific results. More recently, Karniadakis
et al. (2021) offer a broad review of prevailing trends in
informed machine learning, including capabilities and limi-
tations. In addition, a growing body of research on physics
informed neural networks (PINNs) focus on integration of
physical knowledge that can be described as partial deriva-
tive equations directly in the neural network structures
or their loss functions (Cuomo et al., 2022; Raissi et al.,
2017a, b, 2019). As is evident from the current literature, a
definitive nomenclature has not yet emerged. This research
implements three approaches to incorporate physics-based
knowledge into the model. A physics-based stability model
generates the simulation data that determine the baseline
machine learning model. Domain knowledge that can be
considered to be expert knowledge captured in logical rules
informs the determination of non-measured stability value
during updating. And mathematical expressions of the sta-
bility model guide the measurement sampling process dur-
ing updating. Given these different approaches, the overall
method proposed herein is referred as PGML, recognizing

that the naming choice is not straightforward given research
streams in the current literature.

Data-driven approaches are built on large sets of histori-
cal data and can learn directly from real-time sensor data
(e.g. vibration, temperature, acoustic emissions, etc.) col-
lected during machining. Advantages include the ability to
model highly complex physical systems for which there is
no underlying physical model that completely defines the
system, or where the relationships between the input and
output variables are difficult to describe using simple math-
ematics, or when the ability to include contextual data (e.g.
environmental conditions, changes in operating regime,
etc.) is important. A challenge with black box data-driven
models is that they are agnostic to physical law because they
rely only on data and not theory. They are, also, therefore
dependent on the available data for training which can lead
to relationships that do not generalize beyond the range of
the training dataset. Since data-driven model predictions
are generally limited to what the training set has seen, these
models are not always useful for generating new scientific
knowledge. Physics-based models are still preferred for
scientific discovery. However, PGML models have been
shown to be capable of revealing new knowledge. These
insights can be attributed in part to the inclusion of domain
knowledge of the underlying physics explicitly into the
PGML modeling process.

The application of machine learning to stability predic-
tion in milling, in particular, has been an area of keen and
accelerating interest (Sharp et al., 2018; Oleaga et al., 2018;
Cherukuri et al., 2019; Tao et al., 2018) and several excel-
lent review papers have been published (Kim et al., 2018;
Wang et al., 2018). In addition, Karandikar et al. (2020)
describe a novel Bayesian learning approach for stability
boundary and optimal parameter identification in milling
without the knowledge of the underlying tool dynamics or
material cutting force coefficients using a limited number
of data points. Cornelius et al. (2021) introduce a Bayes-
ian framework for identifying the milling stability boundary
and system parameters for reverse parameter identification
through iterative testing. Several recent papers incorporate
data collected during simulation and real-time operations
to the creation and adaptation of stability models. Friedrich
et al. (2017; 2018) implement machine learning to predict
chatter using scenario-specific milling data obtained from a
simulation model, and then extend that model to allow for
continuous learning and time-variant systems using mea-
sured acceleration signals. Saadallah et al. (2018) imple-
ment a machine learning framework based on results of a
geometric physically-based simulation with varied pro-
cess parameter values and refined using an active learning
approach.

@ Springer
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PGML offers the next advance by formally incorporating
physical theory and domain knowledge of the underlying
physics into the machine learning pipeline. Early work in
PGML focused on non-manufacturing applications char-
acterized by degrees of complexity that resist capture by
traditional physical models, but for which large amounts
of data are available for machine learning (Karpatne et al.,
2017). These include physical phenomena such as turbu-
lent flow (Singh et al., 2017) and geoscience applications
such as hydrologic modeling and climate change (Karpatne
et al., 2017; Sheikh & Jahirabadkar, 2018; Faghmous &
Kumar, 2014). Areas of application have expanded recently
into other domains including structural dynamics (Yu et al.,
2020), power system management (Wang et al., 2020a), and
modeling of seismic events (Zhang et al., 2020).

PGML is a relatively newly explored methodology in
machining. Several recent applications can be noted. Wang et
al. (2020b) construct a physics-guided gated recurrent units
(GRU) machine learning model for continuous prediction
of tool wear that considers complex tool cutting conditions
and dynamic changes of physical parameters experienced in
practice. Lee et al., (2018) introduce a physics-based arti-
ficial neural network for online monitoring of steady-state
tool temperatures at the tool/chip interface. Lu et al. (2017)
model the electrochemical micro-machining process by
embedding knowledge about the relationship between the
input process parameters and intermediate outputs, as well
as domain knowledge about the mechanisms of the micro-
machining process, into a neural network structure.

Most recently, physics-informed or physic-guided
approaches for stability modeling during machining opera-
tions have been implemented within a transfer learning
environment that allows for the effects of the changing
process dynamics and highly complex cutting operations.
Postel et al. (2020) utilize deep neural networks pre-trained
with simulated data to match network predictions with
experimentally observed stability states acquired under dif-
ferent cutting conditions using ensemble transfer learning
to combine predictions. Similarly, Unver & Sener (2021)
combine analytical solutions and convolutional neural net-
works within a transfer learning framework. The primary
classifier AlexNet is pre-trained on analytically developed
and labeled stability solutions before being fed experimen-
tal vibration data collected during milling. Yesilli et al.
(2020) use wavelet packet transform and ensemble empiri-
cal mode decomposition, two well-known chatter detection
algorithms, to not only classify acceleration signals associ-
ated with chatter, but also to transfer knowledge from one
cutting configuration to another.
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Challenges of dynamic stability modeling
for chatter detection

Dynamic stability of cutting processes such as milling is a
function of the dynamic behavior of the tool and the work-
piece during cutting. CAD/CAM software generally treats
machining as a geometric effort. As long as the cylindrical
tool follows the required path through the prismatic work
material imparting the desired geometry, it is assumed that
the machining process is acceptable. This approach does
not consider constraints imposed by machining dynamics.
For example, some combinations of spindle speed and axial
depth-of-cut will exhibit self-excited vibrations, or chatter,
which produce large forces, vibrations, unacceptable sur-
face finish, and potential damage to the tool, part, and spin-
dle. Additionally, even if stable behavior is obtained, the
geometric accuracy of the machined part may or may not
satisfy design tolerances, again depending on the selected
spindle speed and axial depth-of-cut combination. Stabil-
ity models that capture the true machining dynamics on
the shop floor are desired to select spindle speed and axial
depth-of-cut combinations that avoid chatter, while provid-
ing the required geometric accuracy.

Combinations of spindle speed and axial depth-of-cut
that result in a stable machining process are represented by a
stability lobe diagram (SLD) which defines stable and unsta-
ble stability regimes as a function of these two machining
parameters. SLDs can be computed analytically or experi-
mentally. In order to determine the SLD experimentally, a
large number of combinations of spindle speed and axial
depth-of-cut must be tested for chatter which is time-inten-
sive, as well as materially and computationally expensive.
Analytical and physics-based models rely on theory derived
through experiment and expressed notationally. A limitation
of stability models and SLDs derived analytically is that
they rarely exactly mirror the SLDs that govern operations
on the factory floor. The combinations of spindle speed and
axial depth-of-cut that yield stable dynamics in an opera-
tional environment depend not only on model uncertainties,
but also the dynamics of the particular milling machine,
conditions in the ambient operational environment, and also
conditions such as tool wear.

Further, an SLD calculated once is only true for that
machine working on that workpiece and in that environ-
ment, and only for that time and not for the whole lifetime
of that machine. To analyze the underlying, and operational,
stability model, measurements must be repeated periodi-
cally as operating or machine conditions change over time.
While a manufacturer may provide operational guidelines
for initial parameter setting, they are not specific to the par-
ticular production environment, the age of the machine, or
the acquired skill of the particular operator. Thus, analytical
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models fail to meet the essential criterion for self-aware-
ness—a stability model and associated SLD that have been
calibrated to the production environment and that can pro-
vide feedback to an operator for manual adjustments in real
time to regain stability at the onset of chatter and ultimately
to the machine itself for automatic self-adjustment.

The lack of alignment of the physics-based model and
true SLD due to its time-varying nature present both compu-
tational and operational challenges for chatter detection in a
production environment. For setting initial cutting parame-
ters, a method is required that can align the physics-based or
manufacturer-supplied SLD with the true SLD so the opera-
tor can select initial parameters. As the machine performs
over time, an automated method is required to update the
physics-based SLD as conditions change. Thus, the model
must be capable of handling time-varying conditions. The
method also has to efficiently accommodate continuously
collected training data since all the measured data may not
be collected by experiment at one time, but periodically dur-
ing production. As manufacturers move toward self-aware
machining, this data may be automatically collected, chat-
ter detected, and the SLD adjusted autonomously, so that
the machine itself is able to self-adjust cutting parameters to
maintain stability.

Development of the physics-based dynamic
stability model

The PGML approach implemented here begins with the
development of a physics-based model for milling. Mill-
ing is a machining process that uses a rotating cylindri-
cal cutting tool to remove material from the surface of a
workpiece. During the milling process, the cylindrical tool
follows a predetermined tool path to achieve the desired
geometry of the workpiece. As discussed above, under cer-
tain dynamic conditions, the milling process will exhibit
chatter—a self-excited vibrational state that leads to insta-
bility and uncontrollability of the system. Development of
physics-based models to predict chatter during milling are
based on an understanding of the vibrational behavior of
the tool-holder-spindle-machine assembly (and sometimes
the part) which imposes specific measurement requirements
for model-building. First, the vibrational behavior at the
tool tip is traditionally described by the frequency response
function (FRF) which is obtained through modal testing. A
popular approach is to excite the structure in question using
an instrumented hammer and to use a low mass acceler-
ometer attached to the structure to record the subsequent
time-domain vibration response. The frequency domain
displacement-to-force ratio is the FRF, or receptance, for
the tool tip (or part).

While the measurement procedure is well-understood,
the lack of widespread availability of modal testing equip-
ment and associated expertise has hindered the implementa-
tion of machining modeling on the shop floor. This points
to a second need; the tool tip receptances must be identified
without physical measurement of each. Because the tool is
clamped in a holder that is inserted in a spindle attached
to the machine, tool tip receptance prediction is not trivial.
Additionally, the tool tip receptance and machining mod-
els are deterministic, but include inherent uncertainties. The
predicted machining parameters are, therefore, also uncer-
tain. This establishes the need for uncertainty reduction
through testing. To build the physics-based dynamic stabil-
ity model and its SLD, three physics-based models are used.
First, receptance coupling substructure analysis (RCSA) is
used to predict the tool tip receptance. Second, a mechanis-
tic force model is used to relate the cutting force to the com-
manded chip area through cutting force coefficients. Third,
a mean force frequency domain analysis is used to predict
the stability limit using the first two models as input. These
models are briefly described in the following sections.

Receptance coupling substructure modeling

Using three-component RCSA for tool tip dynamics pre-
diction has been previously demonstrated (Schmitz &
Donaldson, 2000; Schmitz & Duncan, 2005; Schmitz &
Smith, 2009). In prior efforts, the free-free boundary con-
dition tool and holder were modeled as cylindrical cross-
section Timoshenko beams. These beam receptances were
coupled analytically to measured receptances of the spindle-
machine. The sequence of steps for tool point receptance
prediction are: (1) calculate the tool receptances (free-free
boundary conditions) using the Timoshenko beam model;
(2) calculate the holder receptances (free-free boundary
conditions) using the Timoshenko beam model; (3) mea-
sure the spindle-machine receptances using impact testing;
and (4) couple these receptances to predict the tool-holder-
spindle-machine assembly dynamics using either rigid or
flexible-damped compatibility conditions. The approach is
summarized in Fig. 2.

The coupling procedure is described by Fig. 3 and
Egs. (1)-(3) below. Figure 3 shows that both linear and
translational coordinates are required. This leads to four
receptances that relate displacement, x, and rotation, 6, to
force, f, and moment, m.

The four direct receptances are shown in Eq. 1 for the
right end of the cylinder (tool) pictured in Fig. 3. The four
component receptances are organized into a generalized
coordinate format in Eq. 2. Using this formulation, the direct
tool point receptances (uppercase coordinates) are com-
puted for a rigid connection using the component direct and

@ Springer
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cross receptances (lowercase coordinates) in Eq. 3. Flex-
ible/damped connections may also be selected. In Eq. 3, the
displacement-to-force H,; receptance provides the input to
machining simulations.
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Force model

In mechanistic force modeling for milling, the cutting force
coefficients, &, are calculated using the commanded axial
depth-of-cut, b, and chip thickness, 4. The model described
in Eq. 4 includes force components that are tangential, ¢, and
normal, n, to the rotating cutting edge. Force coefficients
that relate the force to chip area, bk, are identified by a ¢
subscript (cutting or shearing force). Those that relate the
force to axial depth alone have an e subscript (edge or rub-
bing force).

Fy = kycbh + Ky

F, = kbl + iy b )

@ Springer

(b)

()

These coefficients may be determined by experiment where
the cutting force is measured using a force dynamometer
and the commanded axial depth-of-cut and chip thickness
are known. Linear regression over a range of chip thick-
ness values and nonlinear least squares fitting to the time-
domain force have been applied (Rubeo & Schmitz, 2016).
As an alternative, the material behavior can be defined using
a constitutive model and the cutting force predicted using
finite element simulation (Shi & Liu, 2004).

Frequency domain stability analysis

The analytical stability limit may then be determined using
Fourier force analysis to transform the dynamic mill-
ing equations into a time-invariant, but radial, immersion
dependent system (Altintas & Budak, 1995). This analysis
expands the frequency domain dynamic milling equations
into a Fourier series. The series is then truncated to include
only the mean component. The tool point receptance and
force model are inputs to the analysis. The dynamic mill-
ing process model is derived by considering the Fourier
series expansion of the time-varying milling force coeffi-
cients. The eigenvalues of the dynamic milling expression
are calculated analytically by selecting a chatter frequency
around the dominant structural modes. Noting that the axial
depth-of-cut is always a real quantity, the chatter free axial
depths-of-cut and spindle speeds are analytically formulated
as a function of the tool tip receptances, the cutting force
coefficients, the number of teeth, milling orientation (up and
down), and radial depth-of-cut.

The individual stability lobes that determine the SLD
are computed by, first, selecting a chatter frequency near
a dominant mode from the tool tip receptances and solv-
ing the eigenvalue equation. The critical axial depth-of-cut
and spindle speed are calculated for each stability lobe. This
procedure is repeated by scanning the chatter frequencies
around all dominant modes from the tool tip receptance. The
final output is the limiting axial depth-of-cut as a function of
spindle speed for a selected radial depth-of-cut, milling ori-
entation, and number of teeth on the endmill. The graphical
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Fig. 4 Physics-Guided Machine
Learning Approach
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representation of this output is the SLD that defines the sta-
bility boundary that is the subject of this research.

In addition to the operational and model uncertainties
noted earlier, the deterministic models described in the pre-
vious section also include measurement uncertainty. For
example, the actual extension length of the endmill from the
holder is subject to set-up and measurement uncertainties.
This results in uncertainty in the tool tip receptance which,
in turn, leads to uncertainty in the stability limit. Propaga-
tion of uncertainties in the tool and holder models, spindle
receptances, and cutting force coefficients to uncertainty
in the stability limit may be computed using Monte Carlo
simulation (Karandikar et al. 2010). This provides a predic-
tive model, where a probabilistic, rather than deterministic,
stability limit is presented. However, if a test is performed
to determine the actual stability behavior of a spindle speed-
axial depth combination, there is no straightforward map-
ping between this result and input parameters.

PGML approach to stability modeling

The PGML approach developed herein is described concep-
tually in Fig. 4. The approach combines two models. First,
a PGML model is created from the physics-based dynamic
stability model described in the previous section. The phys-
ics-based stability model is used to generate an initial train-
ing dataset that is comprised of three parameters, the target
stability state—unstable (or chatter) and stable (or no chat-
ter)—and two physics-based input parameters spindle speed
and axial depth-of-cut. A machine learning method then
“fits” a baseline PGML model to this initial physics-based
training dataset. The baseline PGML model should have
good fit with the physics-based data to serve as a benchmark
for determining predictive accuracy improvements dur-
ing updating with measured data and domain knowledge.
Then, in an iterative process, points in the initial physics-
based training dataset are updated with measured (off-line
or in-process) stability values; points whose true stability
state is known by domain knowledge are also updated. The

knowledge Yoy

(Re)Train PGML
Model /" Update [/
VN e o o /. dataset Y, with
measured %
data Yy '

Select Yy,
Guided by
Physics-

Based Model
Yi=f(X;)

Final Output Y,

PGML model is retrained at each iteration. The points to
be sampled for measurement at each iteration are selected
according to novel updating strategies. As the updating pro-
cess proceeds iteratively, the PGML SLD is hypothesized
to converge toward the SLD of the true stability model. As
convergence occurs, the predictive accuracy of the PGML
model increases proportionately.

Physics-based knowledge is incorporated by three mech-
anisms shown by shaded red boxes in Fig. 4 with the solid
outline. First, the physics-based stability model on the left
generates an initial physics-based training dataset composed
of physics-based stability values for combinations of spindle
speed and axial depth-of-cut. The baseline PGML stability
model is trained using this baseline training dataset. Sec-
ond, selection of points to be measured experimentally or
on the production floor is guided by the physics-based SLD.
Third, non-measured data points that are known to have true
stability (stable or unstable) are updated by domain knowl-
edge. Consistent with the framework in Fig. 4, numerical
simulation experiments were performed to test whether a
physics-based stability model, with associated operational,
model and measurement uncertainty, can be updated with
measured data and domain knowledge to better approximate
the true underlying stability model and, thus, improve pre-
dictions of instability.

Since the true underlying stability model and its SLD are
typically unknown in practice, both physics-based and true
stability models are simulated for these experiments. For the
physics-based model described in Sect. 4, errors are inten-
tionally introduced into the model inputs so that the pre-
dicted stability limit used to train the PGML model includes
uncertainty. However, because the input errors are known, it
is possible to determine the true (zero uncertainty) stability
limit as well. This error-free stability model is used to gen-
erate true experimental data, which replaces the uncertain
stability limit defined in the uncertain initial training dataset
during updating.

For the purposes of these numerical experiments, the
physics-based SLD is simulated as follows. Errors are intro-
duced to both the RCSA tool tip receptance prediction and
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Fig. 6 Grid Design for Simulation Experiments

the force model to incorporate uncertainty. These errors
include the extension length of the tool inserted in the holder
for the RCSA model and the cutting force coefficients for
the force model. The SLD is defined with and without these
errors, where the SLD provides the limiting axial depth-of-
cut as a function of spindle speed for a given radial depth-
of-cut, milling orientation, and number of endmill teeth.

The two SLDs generated for the following experiments
are shown in Fig. 5. The SLD on the left has been gener-
ated from the physics-based stability model with introduced
errors; the true SLD on the right has been generated from
the physics-based stability model without errors. As can
be seen, there is a wide divergence between the SLD with
errors and the SLD without errors (i.e., the true SLD). For
this exercise, the correct values for the milling setup are: (1)
12 mm diameter tool with 4 teeth and a 53 mm extension
length from the holder; and (2) a force model with coef-
ficients k. = 692.8 N/mm?, k,. = 400.0 N/mm?, k;. = 0,
and k,. = 0. These parameters were used to define the right
SLD in Fig. 5.

@ Springer

Because there is uncertainty in these inputs, errors were
introduced to define the starting SLD displayed on the left in
Fig. 5. Errors were introduced for the tool extension length
and force model coefficients. These erroneous values were:
(1) tool with 50 mm extension from the holder; and (2) force
model coefficients k;. = 649.0 N/mm?, k,,. = 262.2 N/mm?,
kie = 0, and k,. = 0. The same spindle and holder recep-
tances were used in both cases and the same stability algo-
rithm was applied (with modifications to the tool geometry
and force model). Up milling with a radial depth of 2 mm
was selected.

Research framework

Simulation experiments were conducted over a 2-dimen-
sional grid of 2,020 points described by spindle speed and
axial depth-of-cut space as illustrated in Fig. 6. Spindle
speeds ranged from 1.0x 10% to 2.0 x 10* rpm along the hori-
zontal x-axis, in increments of 100.0 rpm; axial depth-of-cut
values ranged from 0 to 20 mm along the vertical y-axis,
in increments of 1.0 mm. The training dataset is shown as
solid circles. For testing the PGML models, another dataset
of points was created using the midpoints of alternate x-axis
and y-axis intervals in the training grid, also illustrated in
Fig. 6. This out-of-sample test set includes 500 points shown
by the open circles in the figure. Each combination of axial
depth-of-cut and spindle speed in both the training and test
sets is associated with two physics-based stability values
(physics-based or true) computed as described in Sect. 5.
For baseline training of the PGML model prior to updat-
ing, each spindle speed and axial depth-of-cut point in the
training set of 2,020 points is associated with a physics-based
stability value. During training, the PGML model is “fit” to
this baseline training dataset of 2,020 points using three dif-
ferent machine learning methods and then tested against the
test set of 500 points. To update the PGML model, the true
stability states of measured points are sampled from a set
of true stability values, computed as previously described,
and their values updated in the PGML training dataset. In
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Table 1 K-Nearest Neighbors Hyperparameters and Value Ranges
K-NEAREST NEIGHBORS

Table 2 Support Vector Machine Hyperparameters and Value Ranges

SUPPORT VECTOR MACHINE

Hyperparameter Value Range

# K-neighbors 1-50, step=2
Weights Uniform, Distance
Metric Euclidean, Manhattan
# Stratified CV Folds 5

Scoring Accuracy

Selected: K=3, weights=uniform, metric=FEuclidean, CV=35,
scoring = accuracy

practice, as discussed earlier, the true states are unknown.
For the purposed of this simulation, true stability values
are defined by the physics-based model without errors, as
described earlier. Thus, for each combination of spindle
speed and axial depth-of-cut in both the training data set of
2,020 points and the test dataset of 500 points, there are two
associated stability states, the simulated physics-based value
and the simulated true stability value. Over the sequence
of iterations, as more points are sampled, measured, and
updated, the baseline PGML training dataset contains fewer
physics-based stability values and an increasing number of
true or validated stability values.

Training the physics-guided machine learning
model

To evaluate the performance of the proposed approach,
PGML models for each updating strategy were imple-
mented using three machine learning methods: (1) K-Near-
est Neighbors (KNN), (2) Support Vector Machines (SVM),
and (3) Artificial Neural Networks with Nesterov-Acceler-
ated Adaptive Moment Estimation (ANN-NADAM). Each
reflects a different learning approach that captures different
characteristics of the stability data being modeled. Four
updating strategies are evaluated: (1) Random Sample with-
out Domain Knowledge (RAN), (2) Random Sample with
Domain Knowledge (RAN-DK), (3) Climb-the-Hill with
Domain Knowledge (CTH-DK), and (4) Follow-the-Curve
with Local Search and Domain Knowledge (FTC-LS-DK).
In total, 12 experimental designs were created.

K-Nearest Neighbors (KNN)

KNNs (Tran et al., 2021; Deshmukh & Bhosle, 2018) are a
non-parametric supervised machine learning method used
largely for classification but also regression. Also known
as “lazy learner”, KNN makes decisions by referring to the
K data points closest to the data point of interest. The dis-
tance between any two data points is calculated by using
any of several metrics. Common choices are Manhattan,
Euclidean, and Minkowski distances. KNN (1) does not
make strict assumptions over the distribution of the dataset,

Hyperparameter  Value Range
Kernels RBF, Linear
C range [1,1.25,1.5,1.75,2,3,5, 10, 25, 50, 100, 1000]

Gamma range [0.00001, 0.0001, 0.001, 0.01, 0.1, 1, 10, 100, 1000]
Stratified CV Folds 5

Selected: Kernel = RBF, C= 1000, Gamma = 1.0, CV=35, scoring = accuracy

unlike linear regression; (2) performs especially well under
the infinite sample set assumption, with less probability of
error than any other decision rule; and (3) does not produce
a generalized rule over the dataset, which means it requires
less training time—an advantage for in-process sampling
and measurement. However, it stores all training data during
the validation phase which requires more memory. Hyper-
parameters for the KNN model are provided in Table 1.

Support Vector Machine (SVM)

SVM (Peng et al., 2015; Wan et al., 2021) is a supervised
machine learning method that is used largely for classifica-
tion, but also prediction. Like ANNs, SVMs infer a func-
tion from labeled training data consisting of a set of training
examples of paired inputs and outputs. The objective of the
SVM algorithm is to find a hyperplane in an N-dimensional
space where N is the number of input features that distinctly
classifies the data points. For example, binary classification
is performed by finding the hyperplane that best differenti-
ates between two classes, i.e. maximizes the margin between
the hyperplane and the support vectors, or closest values to
the classification margins. The use of kernels can transform
linearly inseparable problems into linearly separable ones.
Given the highly nonlinear SLD, SVM’s ability to transform
linearly inseparable problems may be an advantage. Hyper-
parameters for the SVM model are provided in Table 2.

Artificial neural network with Nesterov-Accelerated
Adaptive Moment Estimation (NADAM)

NADAM is a type of gradient descent optimizer used in
neural network models that minimizes the cost function by
finding the optimized values for the weights during updat-
ing. NADAM is typically used in the case of noisy gradients
or gradients with high curvatures. One limitation of gradient
descent is that a single learning rate (i.e. step size) is used
for all input variables. Extensions to gradient descent like
the Adaptive Moment Estimation (ADAM) algorithm add a
first and second moment of the gradient and automatically
adapt the learning rate for each parameter that is being opti-
mized. This approach may result in a step size that rapidly
decreases to very small values. NADAM is an extension of
ADAM that incorporates Nesterov momentum (NAG) and
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Table 3 Artificial Neural Network with NADAM Hyperparameters
and Value Ranges
ARTIFICIAL NEURAL NETWORK WITH NADAM

Hyperparameter Value Range

# Input Features 2

# Output Targets 1

ANN Configuration [20-14-8-1]

# Hidden Layers 3

# Neurons in Hidden Layers [20-14-8]

# Neurons in Output Layer 1

Hidden Layer Activation Function ReLu

Output Layer Activation Function Sigmoid

Loss Function Binary
Crossentropy

Optimizer NADAM

Metric Accuracy

# Epochs for Training 1000

can result in better performance of the optimization algo-
rithm. NAG is an extension to classical momentum where
the update is performed using the gradient of the projected
update to the parameter rather than the actual current vari-
able value. This has the effect of slowing down the search
when the optimum is located rather than overshooting.
Thus, ANN-NADAM may have an advantage when fitting
SLDs with large numbers of lobes and associated optima.
Recent applications of ANN to machining include chatter
prediction in milling (Mishra & Singh, 2022) and a forward
prediction model for electrochemical micro-machining with
knowledge embedded into an ANN (Lu et al., 2017). Hyper-
parameters for the ANN model are provided in Table 3.

Updating the physics-guided machine learning
stability model

The PGML model is updated with simulated true stability
states that would be measured in an operational environ-
ment, as described earlier. At each iteration, the replace-
ment of the baseline physics-based (and uncertain) stability
values with true stability values will force convergence of
the physics-based SLD towards the true SLD for that par-
ticular milling machine, operational environment, and status
of tool wear. By updating the PGML model with measured
points, augmented by domain knowledge points, the pro-
cess by which measurement data is captured on the factory
floor can be simulated. An important question, then, is how
to sample points for measurement to promote fast and effi-
cient convergence of the PGML SLD to the true underly-
ing SLD—and thus achieve the highest predictive accuracy
with the fewest measured points.

Four updating strategies are implemented, as described
and illustrated below, to evaluate the speed and efficiency
of convergence of the PGML SLD to the true SLD at each
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iteration. The dashed red line represents the physics-based
simulated PGML SLD, while the solid black line is the
true simulated SLD. For the purpose of determining effi-
ciency of convergence, we distinguish between points that
are measured—points that are, in practice, experimen-
tally determined during production and for which there is
an acquisition cost in terms of production interruption or
downtime—and points that do not have any associated cost
because they are determined by domain knowledge rather
than experiment. Points can be measured or updated only
once to avoid double counting although there is no cost
associated with updating a domain knowledge point. All
measured points are updated unless they have been updated
by domain knowledge in a previous iteration.

Random sample without domain knowledge (RAN)

Random Sample without Domain Knowledge assumes no a
priori theory-based or expert domain knowledge to guide
selection of measured points and, thus, provides a bench-
mark against which the information value of prior knowl-
edge can be evaluated. Points are sampled randomly across
the experimental grid without replacement. No points are
updated by domain knowledge. To start the updating pro-
cess, 1,000 points are randomly sampled from the grid.
At each of 10 update iterations, 100 points are randomly
selected from the initial sample set of 1,000 points. The true
stability states of these points are measured and their respec-
tive values are updated in the PGML training dataset. When
all 100 sample points in each iteration have been measured
and updated, the PGML model is retrained. Figure 7 illus-
trates the RAN updating strategy for a small set of 13 ran-
domly sampled points. In the left-hand figure, solid red
points that lie above the PGML SLD, shown as a red dashed
line, are unstable prior to updating. Conversely, solid green
points below the PGML SLD are stable prior to updating.
After measuring the true states of all 13 points, four points
have been updated, as shown in the grid on the right. Two
unstable points have been updated to stable, indicated by
the arrows and light green outlined points; similarly, two
stable points have been updated to unstable, indicated by
arrows and light red outlined points. No points have been
updated by domain knowledge. After 10 iterations, all 1,000
sampled points have been measured and their stability states
updated in the PGML training dataset.

Random sample with domain knowledge (RAN-DK)

Random Sample with Domain Knowledge leverages domain
knowledge, or physics-based knowledge, to update addi-
tional grid points to their true value, but without measure-
ment. The addition of domain knowledge points increases
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the information content of the training set and speeds con-
vergence to the true SLD. It is known from theory (and
practice) that all values of axial depth-of-cut above those
that have been measured to be unstable must also be unsta-
ble—assuming constant spindle speed. Similarly, all points
below the axial depth-of-cut of a measured stable point must
also be stable—assuming constant spindle speed. The addi-
tion of domain knowledge points also reduces the number
of points that need to be measured to achieve target con-
vergence. In Fig. 8, the domain knowledge points that have
been updated to stable below a measured stable point—or
unstable above a measured unstable point—are shown in
light gray without an outline.

Climb-the-Hill with domain knowledge (CTH-DK)

Climb-the-Hill with Domain Knowledge leverages a strategy
that discovers the unknown (in practice) underlying SLD by
systematically measuring points at the lowest depth-of-cut
and incrementing upward until chatter is observed. The pro-
cess is analogous to how many manufacturers develop their
guidelines for parameter selection. The process is initiated
by measuring and updating all points with axial depth-of-cut
equal to 1.0 mm and spindle speeds ranging from 1.0x 10*

to 2.0x 10* rpm. At each subsequent iteration, as samples
“climb-the-hill,” the axial depth-of-cut is incremented one
unit. In the following experiments, each incremental unit
equals 2 mm. All points at the incremented depth-of-cut
that lie above a point measured to be stable in the previ-
ous iteration are measured and updated. Further, since all
points above a measured unstable point are unstable, all
points above a measured unstable point are also updated
as unstable in the PGML training dataset through domain
knowledge. As illustrated in Fig. 9, on the left, all points at
1.0 mm axial depth-of-cut are measured to be stable dur-
ing the first iteration and are shown in solid dark green.
Therefore, at the second iteration on the right, all points are
measured at axial depth-of-cut equal to 3.0 mm. During the
second iteration, five points are measured to be unstable and
are shown outlined in light red. Their values are updated
to unstable in the PGML training dataset, along with all
points above it by domain knowledge. Domain knowledge
points are shown in light gray. Similarly, at the third itera-
tion at axial depth-of-cut of 5.0 mm, only points above a
stable point in the previous iteration are measured. Seven
additional points are measured as unstable and their values
are updated to unstable in the PGML training dataset, along
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with all domain knowledge points above them. The process
continues similarly at each iteration.

Follow-the-Curve with local search and domain
knowledge (FTC-LS-DK)

Follow-the-Curve with Local Search and Domain Knowl-
edge guides the process of selecting points for measurement
along the physics-based SLD where the information value
of the measured points is hypothesized to be highest due to
its likely proximity to the true underlying SLD. The selec-
tion strategy is completed by domain knowledge and a local
search process which also focuses measurement in the area
of highest information value. Points are measured at equal
intervals of spindle speed along the baseline PGML SLD and
in increasingly smaller increments of spindle speed at each
iteration. Follow-the-Curve also includes a local search rou-
tine that measures points around the sample points in a pre-
scribed way. The strength of the Follow-the-Curve strategy
is that the local search allows it to gain more information,
more quickly, about the location of the true SLD. Domain
knowledge is implemented for both measured sample and

for local search measured points around the sample points
on the SLD.
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As shown in Fig. 10, Follow-the-Curve begins by
selecting points at regular intervals of spindle speed along
the x-axis. The sample point to be measured is the point
on the bsaeline PGML SLD associated with the selected
value of spindle speed on the x-axis. For example, at the
first iteration, 11 points are selected at equal increments of
1.0x 10° rpm along the spindle speed axis from 1.0x 10*
to 2.0x10* rpm. The corresponding points on the PGML
SLD are initially assumed to be stable. After measurement
three points, shown in red, are unstable while eight points,
shown in green, are confirmed stable. Measured values are
updated in the PGML training dataset. At each subsequent
iteration, midpoints for each of the spindle speed intervals
on the x-axis, shown as outlined white circles on the right,
are measured and updated, as necessary. The process con-
tinues until a final interval size of 100 rpm at Iteration 6, at
which point every spindle speed value along the x-axis in
the training dataset has been measured.

After each sample point on the baseline PGML SLD
is measured, a local search is implemented around that
point. Adjacent points in each of the four compass direc-
tions (north, south, east and west) are sequentially measured
and their values updated. The local search in each direc-
tion stops when the measured state matches the value in the
PGML training dataset. Local search is illustrated in Fig. 11.
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Fig. 11 Follow-the-Curve with Local Search and Domain Knowledge

Following the numbering, at Step 1 the sample point on the
curve at spindle speed 1.4x 10* rpm, indicated as a solid
light green circle, is measured as stable and its stability
value in the PGML training dataset is updated. At Step 2,
proceeding in the south direction, all points below the mea-
sured stable point are updated as stable by domain knowl-
edge without measurement. In all cases, if a sample point is
measured to be stable, no further measurement is performed
in the south direction and all points below are updated as
stable without measurement. Similarly, no further measure-
ment is performed in the north direction if a sample point is
measured to be unstable and all points above that point are
updated as unstable without measurement. Domain knowl-
edge points are updated above or below the sampled point,
but never in both directions.

Continuing with Step 3, to the west we measure the next
adjacent point as stable which does not match the value
in the PGML training dataset, and its value is updated in
the PGML training dataset. All points below that point are
updated as stable without measurement by domain knowl-
edge and the local search to the west continues. An addi-
tional point is measured. Its stability state does not match
the value in the PGML training dataset and is also updated.
In Step 4, the next point measured is unstable and does not
match the value in the PGML training dataset, indicated by
a solid red circle. All points above that point are updated as
unstable without measurement by domain knowledge and
the local search to the west continues. Finally, at Step 5, the

1A 1.6 1.8

South - No Local Search
Domain Knowledge Pts Updated Stable

measured local search point to the west is measured as stable
which matches the value in the PGML training dataset and
the local search in that direction stops. Domain knowledge
points below that point are updated as stable. Search in the
north (Step 6) and east (Step 7) directions proceed similarly.

Experimental design for training and
updating the PGML model

The workflow for implementing PGML model training and
updating in each of the experiments is provided in Fig. 12.
Each of three machine learning methods was paired with
each of the four updating methods and metrics for evalu-
ating their respective predictive accuracies and stability
convergence scores according to the performance metrics
described below. As illustrated in the flowchart in Fig. 12,
three physics-based models are used to analytically deter-
mine the physics-based dynamic stability model and its
associated SLD. This model informs the creation of two
simulated datasets. The first is the physics-based dataset
for baseline training of the PGML and the second is the
true dataset from which the measurement values are sam-
pled (simulating experimental data collection on the fac-
tory shop floor) for updating the PGML model. Values of
these datasets populate a 2-dimensional experimental grid
over the experimental domain of interest where the x-axis
is spindle speed (rpm) and the y-axis is depth-of-cut (mm).
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A baseline PGML model is fit to the initial physics-based
training dataset and predictions of the stability states are
produced for the test set. Model accuracy and stability con-
vergence are computed to serve as a benchmark for evaluat-
ing the convergence of the updated PGML models to the
true underlying SLD. In an iterative fashion, measurements
of true stability states are sampled from the simulated true
dataset as specified by the updating strategy and the PGML
dataset is updated. At each iteration, the stability states are
predicted for the test set and performance metrics are com-
puted to track convergence of the physics-based SLD to the
true underlying SLD.

Performance metrics Aqgapy and Apggr express the per-
cent of the points for which the predicted PGML stability
value matches the stability value in the training dataset, and
the percent of points for which the predicted PGML stability
value matches the stability value in the test dataset, respec-
tively. Training and testing accuracy are computed in the
conventional way. Training accuracy, Ay, 1S defined as
the number of points in the training set for which a cor-
rect prediction (CP) is obtained by the PGML model when
compared with the training dataset values, divided by the
total number of predictions (P). Testing accuracy, Arggrs, 1S
defined as the number of points in the test set for which
a correct prediction (CP) is obtained by the PGML model
when compared with the test dataset values, divided by the
total number of predictions (P). The general expression of
accuracy, for both training and testing, with respect to their
training and test datasets, is provided in Eq. 5 below:

@ Springer

Create Training Select ML Compute Baseline
and st Method & Train Baseline Test Baseline p (’f VL Model
Update PGML Model PGML Model
Datasets Performance
Strategy
|
|
PGML MODEL UPDATING
Select Points for Update PGML Rebae PG_ML Compute Update Yes
| ! Model with :
i Update Based Training Undeted Convergence to Iterations !
i | onStrategy Dataset pdgte Simulated True SLD Done?
\ Dataset i
-

! CP
Arran(%) = Atest(%) = —p * 100 (5)

Stability convergence, Cg; ), expresses the percent of points
for which the PGML-predicted stability value matches the
true stability state at each iteration. Changes in the mag-
nitude of Cg;, from iteration to iteration reflect the speed
with which the PGML SLD gets closer and closer to, or
converges to, the true SLD. A high stability convergence
value means that the PGML model agrees more closely with
the true stability model and that the number of correct sta-
bility predictions by the PGML model is high. Similarly,
increasing convergence scores at each iteration indicate
that the PGML SLD curve is converging towards the frue
SLD curve and that the predictive capability of the PGML
model is increasing. Stability convergence Cg;  is formally
defined as the number of points in the test set for which
a correct prediction (CP) is obtained by the PGML model
when compared with the true value, divided by the total
number of predictions (P), as follows in Eq 6:

Csip(%) = (6)

% %100

FScore. The F | score, also called F'-measure, is the har-
monic mean between recall and precision where precision
is the number of true positive (TP) results determined by
the model divided by the number of all positive (TP+FP)
results, and recall is the number of true positive (TP) results
divided by the number of all samples that should have been
identified as positive (TP +FN). The F1 score takes both pre-
cision and recall into account at equal weights and generates
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Table 4 Performance Results for Baseline PGML Model Fitting

Machine Learning Model Average Accuracy Average F1 Score Average AUC Score Average Convergence
Train Test Train Test Train Test Fit to True Model

KNN 100.0% 96.7% 99.9% 95.5% 100.0% 99.7% 81.0%

SVM 99.6% 97.0% 99.4% 95.9% 99.0% 100.0% 81.2%

ANN-NADAM 97.2% 95.6% 95.6% 93.8% 99.6% 99.3% 81.5%

a high score only if the number of true positives obtained is
high compared to the other prediction outcome categories.
The F, score, computed as shown in Eq. 7, ranges from 0.0
to 4+ 1.0 (expressed as a percentage) where a higher score
indicates a better classifier performance.

precision * recall 2xTP
%

=2 =
! precision +recall 2+«TP+ FP+ FN Q)

Area Under the Curve (AUC). The AUC measures the abil-
ity of a classifier to distinguish between classes. The AUC
equals the probability that the classifier will rank a randomly
chosen positive example higher than that of a randomly
chosen negative example. The AUC, ranging between 0.0
and + 1.0 (expressed as a percentage), is typically used for
binary classification problems. The higher the AUC, the bet-
ter the model is at distinguishing between classes.

In addition to computing performance metrics Aqgans
Aqpsr Corp, F and AUC, the number of measured points
and domain knowledge points that are validated as stable or
unstable at each iteration are also counted. Tracking point
counts, especially counts of measured points that incur cost,
provides insight into the information value of measurement
and domain knowledge with respect to predictive accuracy.
Depending on updating strategy, different numbers and loca-
tions of points will be measured and updated at each itera-
tion. Similarly, different numbers and locations of domain
knowledge points will be confirmed as stable or unstable at
each iteration. These different spatial patterns of sampling
and updating for each strategy drive improvements in con-
vergence to the true SLD and make a particular updating
strategy better than another from the perspective of predic-
tive accuracy and measurement cost.

Numerical results

Numerical results addressing the following research ques-
tions are provided below: (1) Does the baseline PGML
model, without updating, adequately fit the physics-based
data, and which machine learning method provides the best
fit as a baseline for subsequent updating; (2) Can the predic-
tive ability of the baseline PGML model be improved by
updating the PGML training dataset with measured data and

domain knowledge, and which updating strategy provides
the best convergence (i.e. predictive accuracy); and (3) Can
predictive accuracy be further improved using physics-
based knowledge of the SLD by implementing local search
around measured points. Results for each of the 12 experi-
ments are presented. Results from each experiment are aver-
ages of 100 runs. Reference to the physics-based and true
SLDs in the following discussion of experimental results
refers to the simulated SLDs, respectively.

Accuracy and convergence during baseline PGML
model fitting

A first question is whether the baseline PGML model, with-
out updating, adequately fits the physics-based data and
which machine learning method provides the best fit. To
compare methods, the baseline PGML model was trained
using KNN, SVM and ANN-NADAM and metrics Apgan
and Aqpgr were computed. Typically, Argapy results are
higher than Apqp results because the points in the test data-
set have not been evaluated or seen by the PGML model
during training. Note that model fit here refers to the fit with
the baseline physics-based dataset and does not reflect how
well the PGML model predicts the true stability states. To
evaluate how well the PGML model predicts true stability
states, stability convergence Cg; , is computed. Both accu-
racy and convergence results can help assess which of the
machine learning methods will perform best when retrain-
ing the PGML model during updating.

Table 4 compares the training and testing accuracies for
the three machine learning methods KNN, SVM, and ANN-
NADAM, as well as two other useful metrics for classifi-
cation problems with class imbalance, F; and AUC scores.
KNN provides the best training accuracy, correctly predict-
ing all stability values in the training dataset. All methods,
however, exhibit Ag apy scores of 97.2% or higher. Perfor-
mance against the test dataset is comparably good, with
Aqpgr scores between 95.6% and 97.0% for all methods.
Thus, all machine learning methods provide overall good
fit with the physics-based model and presage good predic-
tive accuracy during updating. Stability convergence Cg; p
results are also provided in Table 4 and range between 81.0%
and 81.5%. ANN-NADAM achieved the highest Cg; , score
at 81.5%. All three methods provide a comparable base-
line for evaluating predictive accuracy improvements due
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Table 5 Stability Convergence and Point Counts for Random (RAN)

RANDOM

Iteration Sample KNN SVM ANN-NADAM Measured  Domain Validated ~ Cum. Grid
Size Csip Csip Csip Points Kn.owledge Points Va!idated Points
Points Points
Baseline 81.0% 81.2% 81.5%
1 100 81.3% 81.8% 82.4% 100 0 100 100 5.0%
2 100 81.6% 82.2% 83.0% 100 0 100 200 9.9%
3 100 81.9% 81.6% 83.8% 100 0 100 300 14.9%
4 100 82.0% 82.0% 84.3% 100 0 100 400 19.8%
5 100 83.1% 81.2% 85.4% 100 0 100 500 24.8%
6 100 83.9% 82.4% 85.9% 100 0 100 600 29.7%
7 100 85.1% 83.2% 86.6% 100 0 100 700 34.7%
8 100 86.0% 84.6% 87.5% 100 0 100 800 39.6%
9 100 87.1% 86.6% 88.4% 100 0 100 900 44.6%
10 100 88.3% 87.8% 89.0% 100 0 100 1000 49.5%
%Change 9.0% 8.1% 9.2% 1000 0 1000

to measurement and domain knowledge updating and were
retained for further experiments.

However, to account for small differences in perfor-
mance across the methods during updating, each updating
strategy is paired with each machine learning method in12
experiments, as noted earlier. Interestingly, ANN-NADAM
performed least well among the three methods with respect
to both Arpapy and Agggr, but slightly better with respect
to Cg;p. Average F,; scores and AUC scores are also pre-
sented for each method in Table 4. Beyond accuracy, the F,
score takes into account not only the number of prediction
errors made by a model, but also captures the type of errors
that are made. A model will obtain a high F, score only if
it can predict most of the positive, chatter cases (i.e. high
precision) and if it can correctly identify most of the posi-
tive, chatter cases (i.e. high recall) in the data. As shown in
Table 4, the methods have high F, score varying from 93.8
to 95.9% for the test dataset. The higher the AUC score the
better the ability of the method to distinguish between the
positive and negative classes, i.e. chatter and no-chatter. The
three methods” AUC scores exhibit very good performance
varying from 99.3 to 100% on the test dataset.

Convergence during PGML model updating

A second question is whether the predictive ability of the
baseline PGML model can be improved by updating the
PGML training dataset with operational data and domain
knowledge, and which updating strategy provides the best
convergence (i.e. predictive accuracy). Having confirmed
that each machine learning method offers a good fit to the
physics-based training dataset, and comparable stability
convergence, all 12 experiments were performed for the
four updating strategies described in Sect. 6.0 and all perfor-
mance metrics computed for both training and testing. The
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stability convergence scores and point counts for each itera-
tion are provided in Tables 5, 6, 7 and 8 for all experiments.
Accuracy, F; and AUC scores, computed for each iteration
over all experiments, were as expected and are omitted due
to space limitations.

Stability convergence, Cg; py, is expected to increase as
the PGML training dataset is updated with measured val-
ues and domain knowledge at each iteration consistent with
the hypothesis that the PGML model is converging to the
true stability model. Stability convergence, as noted earlier,
reflects the increasing accuracy of the PGML model in pre-
dicting the underlying true stability values. This hypothesis
is confirmed by the results in Tables 5, 6, 7 and 8. Con-
versely, and as expected, as stability values in the PGML
training dataset are updated with measured values, stability
convergence Cgq; 1, improves for all 12 experiments. Again,
looking at KNN for the random updating strategy (RAN) in
Table 5, Cg; p increases from 81.0% at the baseline iteration
to 88.3%, or an increase of 9.0% and ANN increases from
81.5 to 89.0% or an increase of 9.2%. Similar increases in
Cg;p from baseline iteration to final iteration are obtained
for the other three updating strategies as shown in Tables 6,
7 and 8. Stability convergence is defined as the percent of
correct stability predictions achieved during testing. All
four strategies achieved a predictive accuracy of at least
88%. The Follow-the-Curve strategy achieved the highest
predictive accuracy of 95% with KNN.

The comparative gains in predictive accuracy by PGML
models over physics-based models (equivalent to baseline
PGML model) are summarized in Fig. 13. The results are as
expected but contain some surprises. RAN, the benchmark
against which other updating strategies can be compared,
had the lowest Cg; 1, improvement of 8.8% averaged over
the three machine learning methods. RAN can be thought
of as an uninformed method since no a priori knowledge
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Table 6 Stability Convergence and Point Counts for Random with Domain Knowledge (RAN-DK)

RANDOM WITH DOMAIN KNOWLEDGE

Iteration Sample KNN SVM ANN-NADAM Measured ~ Domain Validated ~ Cum. Grid
Size Csip Csip Csip Points Knowledge  Points Validated  Points
Points Points
Baseline 81.0% 81.2% 81.5%
1 100 84.8% 84.6% 85.1% 85 203 288 288 14.3%
2 100 86.8% 85.2% 86.2% 72 175 247 535 26.5%
3 100 88.3% 88.8% 88.4% 49 205 254 789 39.1%
4 100 89.1% 89.2% 89.5% 48 128 176 965 47.8%
5 100 90.9% 92.0% 90.9% 25 93 118 1083 53.6%
6 100 92.0% 92.6% 91.3% 37 38 75 1158 57.3%
7 100 92.3% 92.6% 91.6% 36 103 139 1297 64.2%
8 100 93.1% 93.2% 92.0% 22 87 109 1406 69.6%
9 100 93.6% 94.0% 91.9% 27 64 91 1497 74.1%
10 100 93.7% 94.4% 92.2% 9 45 54 1551 76.8%
%Change 15.7% 16.3% 13.1% 410 1141 1551
Table 7 Stability Convergence and Point Counts for Climb-the-Hill (CTH-DK)
CLIMB-THE-HILL
Iteration Climbing KNN SVM ANN-NADAM Measured Domain Validated ~ Cum. % of
Increment Cyp Caip Cqp Points Knpwledge Points Va!idated Gr?d
Points Points Points
Baseline 81.0% 81.2% 81.5%
1 I mm 81.0% 81.2% 81.4% 101 0 101 101 5.0%
2 3 mm 81.8% 81.6% 82.6% 101 199 300 401 19.9%
3 5 mm 87.8% 88.0% 86.7% 91 298 389 790 39.1%
4 7 mm 91.6% 91.8% 90.4% 53 194 247 1037 51.3%
5 9 mm 94.0% 92.8% 92.3% 29 121 150 1187 58.8%
6 11 mm 94.9% 94.0% 93.0% 19 108 127 1314 65.0%
7 13 mm 95.1% 94.8% 93.0% 14 67 81 1395 69.1%
8 15 mm 95.0% 94.6% 93.0% 8 28 36 1431 70.8%
9 17 mm 95.0% 94.6% 93.1% 0 4 1435 71.0%
10 19 mm 94.9% 94.6% 93.2% 2 18 20 1455 72.0%
%Change 17.2% 16.5% 14.4% 422 1033 1455
Table 8 Stability Convergence and Point Counts for Follow-the-Curve (FTC-LS-DK)
FOLLOW-THE-CURVE
Iteration Omega Step KNN SVM ANN-NADAM Measured  Domain Validated ~ Cum. % of
Csip Csip Csip Points Knowledge Points Validated  Grid
Points Points Points
Baseline 81.0% 81.2% 81.5%
1 1000 89.2% 88.0% 87.9% 109 360 469 469 23.2%
2 800 91.0% 91.0% 90.3% 63 143 206 675 33.4%
3 600 92.7% 93.4% 91.8% 45 37 82 757 37.5%
4 400 94.0% 93.8% 92.4% 28 89 117 874 43.3%
5 200 94.5% 94.6% 92.9% 48 34 82 956 47.3%
6 100 95.0% 94.8% 92.9% 39 13 52 1008 49.9%
%Change 17.3% 16.8% 14.0% 332 676 1008

is used to sample points for measurement and no domain
knowledge is implemented. In contrast, RAN-DK, CTH-
DK, and FTC-LS-DK all implement physics-based theory
and/or domain knowledge in different ways. While neither
RAN-DK nor CTH-DK assumes a priori knowledge of the
physics-based SLD, they do utilize domain knowledge to

increase predictive accuracy. FTC-LS-DK implements a
priori knowledge of the physics-based PGML SLD to guide
sampling directly on the physics-based SLD curve. FTC-
LS-DK also has the benefit of local search. Local search
is hypothesized to add information about the location of
the true underlying SLD by additional measurement in
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Fig. 13 Percent Improvement in Stability Convergence Over Baseline
After Updating

close proximity to the true SLD. RAN-DK, which builds in
domain knowledge, increased the percent improvement in
Cq; p over baseline to 15.0%. Surprisingly, RAN-DK, CTH-
DK and FTC-LS-DK obtain equivalent results, as seen in
Fig. 13. All three strategies improved Cg; , over baseline by
(on average) 15.0%, 15.9% and 16.0%, respectively, after a
complete iteration cycle. Local search did not add substan-
tially to improvements in Cg;, when comparing FTC-LS-
DK and CTH-DK strategies.

More important, while RAN-DK, CTH-DK and FTC-
LS-DK produced comparable improvement in Cg;p, over
their respective complete iteration cycles, the trajectories
of improvement at each iteration are very different. Itera-
tive improvements in Cg; , for the four updating strategies
are compared in Fig. 14. As can be observed in the figure,
each strategy has a unique signature. Recognizing that the
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preferred updating strategy is the one that maximizes Cg; p
with minimal investment in measurement, the desired sig-
nature is a rapid increase in Cg;p, at early iterations when
cumulative measurement costs are still low. As expected,
RAN underperforms the other three strategies, achieving
less than 90% convergence after 10 iterations. When equal
numbers of points are selected at random without a priori
theoretical knowledge, improvements from iteration to
iteration can be expected to be approximately uniform, as
observed by the linear signature. Any variability across ML
methods for RAN can be explained by different spatial posi-
tioning of the measured points with respect to the PGML
SLD at each of 100 repetitions of the experiment. RAN-DK
approaches 95% stability convergence by the 10th itera-
tion which can be explained by the influence of additional
domain knowledge points. Declining Cg, improvement
for RAN-DK at later iterations reflects fewer numbers of
measured points since points in the sample to be measured
have been already updated by domain knowledge at previ-
ous iterations.

In particular, very different behaviors can be observed
for the CTH-DK and FTC-LS-DK strategies. While both
achieve Cg;p of 95%, the trajectories are quite different.
With CTH-DK, stability convergence starts off slowly for
the first two iterations and then increases rapidly before
flattening after the fifth iteration. In contrast, FTC-LS-DK
stability convergence increases sharply from baseline to the
first iteration, then shows smaller increases at subsequent
iterations. As reported in Tables 5, 6, 7 and 8, and illus-
trated graphically in Fig. 13, the percent increase in Cg;
across the iteration cycles ranges between 8.1% and 9.2%
for RAN, between 13.1% and 16.3% for RAN-DK, between
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14.4% and 17.2% for CTH-DK, and between 14.0% and
17.3% for FTC-LS-DK.

Convergence of the PGML SLD to the true underlying
SLD at each iteration can be visualized graphically for FTC-
LS-DK in Fig. 15. The true SLD is shown by a solid black
line and the PGML SLD by a dashed red line. The darkly
shaded areas between the true SLD and the PGML SLD, as
well as the lightly shaded gap areas below the true SLD are
regions of prediction error. The dark pink shaded areas indi-
cate regions where unstable stability states are incorrectly
predicted as stable by the PGML. The light pink shaded
areas below the true SLD define regions in which the sta-
bility states are correctly predicted as stable; similarly, the
white areas above both curves define regions where unstable
states are correctly predicted as unstable. And lightly shaded
areas between the two curves define regions where stable
states are incorrectly predicted as unstable. At the baseline
iteration a number of regions of prediction error, noted by
dark shaded regions above the true SLD and lightly shaded
regions below the true SLD, can be seen. As more measured
points are updated in the training dataset, these regions
decrease in size. By the last iteration, the updated PGML
SLD has substantially converged to the true SLD with a few
exceptions, e.g. in particular, the large area to the right side
of the figure at high spindle speeds and a small lobe to the
left size of the figure at low spindle speeds.

Local search stopping rules for Follow-the-Curve

To further improve the performance of the Follow-the-
Curve strategy (FTC-LS-DK), three stopping rules that con-
trol the pattern local search around sampled points on the
physics-based SLD were investigated. Local search gathers
information of higher value in areas that are hypothesized to
be close to the true underlying SLD. As described in Sect. 6,
each local search point, is measured and updated in the four
compass directions until the process is halted by the stop-
ping rule in effect. For each measured local search point,
domain knowledge points are also updated, without mea-
surement. Stopping Rule 1 was implemented in the previous
experiments.

Stopping Rule 1: Stop on Match. Local search in
each compass direction stops when the measured
value equals the value in the PGML training data-
set and the local search measured point is updated.
Domain knowledge points are updated above or below
the measured local search points, as appropriate.

Stopping Rule 2: Stop on Mismatch. Local search
in each compass direction stops when the measured
value doesnotequal the value in PGML training data-
set and the local search measured point is updated.

Domain knowledge points are updated above or below
the measured local search points, as appropriate.
Stopping Rule 3: Stop on Measured Sample Point
Mismatch. The local search in each compass direc-
tion stops when the measured value does not equal the
stability value of the measured sample point (the local
search original starting point) and the local search
measured point is updated. Domain knowledge points
are updated above or below the measured local search
points, as appropriate.

Figure 16 illustrates the different search behaviors of each
stopping rule and allows visual comparison of the relative
performance of each with respect to convergence. Graphs in
the left column illustrate local search mechanics for Stop-
ping Rule 1, Stopping Rule 2, and Stopping Rule 3, all at
iteration 1. Graphs in the right column compare the con-
vergence of the final PGML SLD to the true SLD after all
six iterations. Stopping Rule 1 offers the best performance
with fewer regions of prediction error after the last itera-
tion. As previously, sample measured points are outlined
in red; local search measured points in the four compass
directions are shown in solid green; domain knowledge
points are shown in light gray. Also, as previously, the base-
line PGML model prior to Iteration 1 was trained using the
physics-based training dataset. At subsequent iterations, the
PGML model was retrained with updated training datasets.
ANN-NADAM was used to train the PGML model at all
iterations—the best performing of the three methods during
baseline testing.

The mechanics of local search are easily seen in the top
left in Fig. 16. Stopping Rule 1 measures points in each com-
pass direction until the measured local search point matches
the value in the PGML training dataset. Sample point A,
indicated in the figure by the shaded red circle, is predicted
by the baseline PGML model to be stable, but is measured
in Iteration 1 as unstable. Since the point is measured to be
unstable, all points to the north are updated as unstable, as
shown. Moving to the east, the point to the right is measured
as unstable, which matches the PGML model value and the
local search in that direction ends. Next, a local search in the
south direction is conducted measuring stable points until
it hits Point B which measures stable, as predicted by the
PGML model. Finally, local search turns to the west direc-
tion, measuring stable points until the measured value is
equal to PGML predicted value of stable which stops the
local search to the west.

The superior performance of Stopping Rule 1, and the
reason for its selection as the local search stopping rule, can
be seen by comparing the regions of prediction error in the
graphs on the right. All three stopping rules result in regions
of prediction error on the far right and left of the graph.
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Fig. 16 Comparison of Local
Search Stopping Rule Behaviors
for FTC-DK: Rule 1 (top row),
Rule 2 (middle row), and Rule 3
(bottom row)
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However, Stopping Rule 2 fails to correctly predict stability
in three additional regions, two of which are around the tall
stability lobes. In two of the three regions the PGLM model
predicts unstable states when the true states are stable while,
in the third, the PGML model predicts stable states when the
true states are unstable. Stopping Rule 3 reduces prediction
errors around the tall lobes, but the third region of prediction
error is only slightly reduced.

Numerical results in Table 9 comparing accuracy, Atgan
and Aqggp, and convergence Cg; 1 for the three stopping rules
are consistent with the above observations. With respect to
Csip, Stopping Rule 1 and Stopping Rule 3 achieve 92.1%
and 91.5% convergence, respectively, both higher than
Stopping Rule 2 at 89.4%. When differences in baseline fit
for each stopping rule are considered, Stopping Rule 1 and
Stopping Rule 3 report the highest improvements of Cg;py
over baseline of 12.9% and 12.1%, respectively. Stopping
Rule 2 reports only 9.6% over baseline, respectively.

18 [ Iteration 6

18 19 20 10 11 12 13 14 15 16 17 18 19 20
x10* Spindle speed (rpm) x10*

= == PGMLSLD

TRUE SLD
Domain Knowledge Pt @ PGML Stable Pt Closest to TRUE SLD

The superior performance of Stopping Rule 1, as well
as Stopping Rule 3 can be explained by the larger numbers
of grid points that are validated as true by measurement or
domain knowledge. A reasonable expectation is that a stop-
ping rule that maximizes the number of measured points
that are updated, as well as domain knowledge points,
would have an advantage. The number of points validated
as to their true state by measurement and domain knowl-
edge, shown in Table 10, also support the superior perfor-
mance of Stopping Rule 1 and Stopping Rule 3. Table 10
compares the total points validated for each stopping rule
over all six iterations, broken down into measured points
(both on the curve and by local search) and unmeasured
domain knowledge points. As shown in Table 10, Stopping
Rule 1 achieves the highest convergence (92.1%) with the
fewest measured points (332) and the most domain knowl-
edge points (676), for a total of 1008 validated points. Stop-
ping Rule 3 achieves comparable convergence (91.5%) with
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Table 9 Accuracy and Convergence for Local Search Stopping Rules (FTC-LS-DK with ANN-NADAM)

LOCAL SEARCH STOPPING RULE 3

A‘T RAIN

LOCAL SEARCH STOPPING RULE 2

LOCAL SEARCH STOPPING RULE 1

A‘T RAIN

True Points

79.6%
89.7%
92.0%
93.3%
94.1%
94.7%
95.6%
20.1%

CSLD

ATEST

True Points

79.6%
82.6%
84.3%
85.9%
87.5%
89.8%
91.6%
15.1%

CSLD

ATEST

ATRAIN
96.8%
94.6%
93.8%
93.9%
93.8%
93.8%
94.3%
2.6

True Points

79.6%
88.6%
91.2%
92.3%
93.4%
94.7%
96.1%
20.7%

CSLD

ATEST

Iteration

81.6%
88.7%
90.2%
90.6%
90.9%
91.0%
91.5%
12.1%

95.1%
85.4%
83.7%
83.1%
82.7%
82.4%
81.5%
-14.3%

96.8%
92.3%
92.5%
92.5%
92.3%
92.3%
92.8%

4.1

81.6%
84.1%
84.4%
85.5%
86.9%
88.7%
89.4%
9.6%

95.1%
92.1%
90.7%
89.6%
88.1%
86.2%
84.8%
-10.8%

81.6%
87.8%
90.0%
90.5%
91.1%
91.6%
92.1%
12.9%

95.1%
87.2%
84.5%
83.8%
83.1%
82.2%
80.6%
-15.3%

96.8%
93.3%
92.4%
91.8%
92.4%
92.2%
92.8%

4.1

Baseline

%Change

432 measured points and 641 domain knowledge points, for
a total of 1073 validated points. Stopping Rule 2 has the
fewest validated points (962) and, as observed earlier, the
domain knowledge points are not in locations that provide
leverage to reduce the size of the regions of prediction error.

Another factor contributing to the superior performance
of Stopping Rule 1 is the percent of total points in the
PGML dataset that have been updated to their true state at
the end of a complete iteration cycle. A particular stopping
rule may, by chance, validate more points than another stop-
ping rule that change their state to the true stability value
since they sample different sets of points. However, at the
end of the iteration cycle, nearly all grid points are expected
to have been updated to their true value through measure-
ment or domain knowledge. To confirm this, the number of
true points as a percent of total points in the grid, is shown
in Table 9. At the end of the iteration cycle, the percentages
of validated true points for Stopping Rules 1, 2 and 3 are
96.1%, 91.6%, and 95.6%, respectively.

Balancing predictive accuracy and
measurement cost in the factory

Measuring the stability states for combinations of spindle
speed and axial depth-of-cut can be prohibitively expensive
for many machine tool companies and job shops. In a pro-
duction environment, keeping manufacturing costs low is a
priority. And while avoiding chatter both improves surface
quality and reduces the expense of rework and waste, the
costs and time needed to implement the PGML approach in
practice can be sizeable and must also be considered. From
a practical perspective, then, an important consideration for
factory floor operations is selection of an updating strat-
egy that balances predictive accuracy (i.e. stability conver-
gence) and measurement cost. Assessing this trade-off is a
major goal of this research.

Each of the four updating strategies investigated here
offers a different approach for gathering measurement data
during machining in order to avoid chatter. In particular,
numerical experiments were designed to evaluate the ability
of the PGML approach to locate the true underlying SLD
with minimal process measurements. Control of the mea-
surement process from iteration to iteration was defined
by novel updating strategies that update points through
measurement, physics-based theory or domain knowledge.
Since the numbers and locations of updated points vary by
updating strategy at each iteration, it is difficult to compare
strategies directly by looking at stability convergence Cg; p
and measured point counts separately. While these metrics
tell us a lot about the predictive accuracy of the PGML
model overall, they do not provide practical insight for
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Table 10 Point Counts for Local Search Stopping Rules (FTC-LS-DK with ANN-NADAM)

LOCAL SEARCH STOP-  SAMPLE PTS PTS MEASURED PTS MEASURED TOTAL MEA- DOMAIN TOTAL

PING RULE ON CURVE ON CURVE LOCAL SEARCH SURED PTS KNOWLEDGE  VALI-
PTS DATED

PTS

Rule 1 219 54 278 332 676 1008

Rule 2 219 67 346 413 549 962

Rule 3 219 38 394 432 641 1073
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Fig. 17 Trade-Off Between Predictive Accuracy and Measurement Cost — ANN-NADAM

applications that depend on the information efficiency—or
the information contribution of each measured point to gains
in predictive accuracy. For decisions on the factory floor,
then, the critical question is which and how many points
should be measured to quickly locate the true position of
the SLD. That is, what is the marginal value of measuring
an additional point to the convergence of the PGML SLD
to the true SLD. And additionally, how many points need to
be measured to achieve a farget stability convergence—that
is, how many points need to be measured if one wants to be
95% accurate in their predictions of dynamic stability.

This trade-off between stability convergence Cg;p, and
number of measured points is provided in Fig. 17 for each
updating strategy using ANN-NADAM for model fitting
and updating. Referring to Fig. 17, consider first a target
of 95% stability convergence shown by the dashed black

line. The number of measured points required to approach
95% stability convergence varies greatly by strategy. The
RAN updating strategy never reaches 95% stability con-
vergence after 1,000 measured points over 10 iterations.
After 10 iterations, approximately 50% of the grid has been
validated by measurement but only 89.0% convergence is
achieved. RAN-DK, CTH-DK and FTC-LS-DK approach
95% target accuracy with significantly fewer measured
points, plus contributions by domain knowledge points. The
addition of (unmeasured and no cost) domain knowledge
points to the updating strategy enables 92.2% convergence
after 410 measured points over 10 iterations for RAN-DK,
93.2% convergence for CTH-DK after 10 iterations with
422 measured points, and 92.9% convergence for FTC-
LS-DK after only 322 measured points in 6 iterations. The
trade-off between stability convergence Cg; r, and number of
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measured points with target accuracy of 90% is also shown
in Fig. 17 by a solid green line. Again, FTC-LS-DK is the
most efficient updating strategy from a measurement cost
perspective after 6 iterations, achieving 90% convergence
with only 180 measured points. Results for a target accuracy
of 85% are also shown in Fig. 17 by a dashed blue line.

From a practical perspective, the updating strategy of
choice would provide the most improvement in Cg; , with
the fewest points—and also the most quickly. The speed
of convergence can be seen in the shapes of the curves in
Fig. 17. The updating strategies display different geometric
behaviors as Cg; p increases. The RAN and RAN-DK strat-
egies display an approximately linear relationship between
Cqrp and the number of measured points, as expected
since each iteration starts with a selection of 100 randomly
sampled points, with RAN-DK measuring fewer points at
later iterations. The CTH-DK strategy displays a convex
relationship between Cgpp and the number of measured
points, with small increases in Cg; p, at early iterations even
though larger numbers of points are measured. The FTC-
LS-DK strategy, in contrast, displays a concave relationship
between Cg; p, and the number of measured points. Stability
convergence, Cg p, for FTC-LS-DK increases more quickly
during early iterations with fewer measured points over-
all but including local search points with high information
value in close proximity to the true SLD—an advantage on
the factory floor where low costs are a priority.

Finally, the contribution of domain knowledge, in addi-
tion to measured points discussed above, helps to explain
the comparative performance of the updating strategies.
Figure 18 summarizes the total numbers of measured
and domain knowledge points over all iterations for the
four updating strategies. By design, RAN does not lever-
age domain knowledge. However, each of the three other
updating strategies benefits from the contribution of domain
knowledge to the predictive accuracy of the PGML model,
and the faster convergence of the PGML SLD to the true
SLD. The superior performance of FTC-LS-DK, discussed
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earlier, can be attributed to the contributions of both mea-
sured points and domain knowledge points located spatially
in the region of the true SLD due to the sampling strategy
that is guided by the physics-based model.

Conclusions

This research applies a new approach, physics-guided
machine learning or PGML, to modeling dynamic stabil-
ity for process control to avoid chatter during milling. The
simulation experiments performed here address the prob-
lem of estimating the true—and unknown—stability bound-
ary or SLD by updating the physics-based stability model
with physics-based theory to guide the sampling strategy,
combined with measurement data and domain knowledge.
The PGML approach proposed offers the ability to improve
productivity and part quality by selecting operational
parameters that avoid chatter while minimizing production
downtime required for data collection.

Simulation experiments were performed in which the
PGML stability model was trained using an initial approxi-
mation of the physics-based model (with errors) and then
updated with simulated measurement data (without errors)
to approximate the true stability model specific to the oper-
ational environment. Four strategies to update the PGML
model were explored—each strategy reflecting a different
approach to incorporating both physics-based theory, real-
time measurements and domain knowledge. All four updat-
ing strategies improved the predictive capability of the
baseline physics-based model, with improvements ranging
between 8.1% and 17.3%, depending on the ML method
used, to achieve prediction accuracy approaching 95%.
Updating strategies that leveraged both the information
value of each measured and updated point and non-mea-
sured domain knowledge points, achieved the largest gains
in predictive accuracy and converged most quickly to the
underlying true stability boundary.

Further, all four updating strategies demonstrated conver-
gence to the true underlying SLD, even when measurement
points were selected randomly. The inclusion of domain
knowledge in addition to measurement data for the Ran-
dom with Domain Knowledge (RAN-DK), Climb-the-Hill
with Domain Knowledge (CTH-DK) and Follow-the-Curve
with Domain Knowledge and Local Search (FTC-LS-DK)
strategies resulted in further improvements in both the mag-
nitude and speed of convergence in all experiments—dem-
onstrating the value of domain knowledge to data-driven
stability modeling. Further, the choice of updating strategy
mattered less than the fact that domain knowledge was
included. Among the three updating strategies with domain
knowledge, all demonstrated comparable convergence
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capability—approximately 15% improvement in conver-
gence to the true SLD.

Follow-the-Curve (FTC-LS-DK) achieved the fastest
convergence with the fewest measured points—suggesting
its suitability for use in a production environment where
measurement costs are a concern. Follow-the-Curve (FTC-
LS-DK) leveraged physics-based knowledge about the
approximate location of the true underlying SLD to obtain
a faster rate of convergence at early iterations. A practical
limitation of FTC-DK-LS is that a priori knowledge of the
physics-based SLD is required to guide the selection of
points to be sampled for measurement. Neither RAN-DK
and CTH-DK nor require a priori knowledge of the physics-
based SLD yet achieved comparable predictive accuracy,
although with more measurement cost. Finally, the RAN-
DK, CTH-DK and FTC-LS-DK strategies all approached
95% convergence to the true SLD over their respective com-
plete iteration cycles. The proposed methods are currently
being validated with experiments using real data obtained
during the milling process in a laboratory setting. Work is
continuing to refine the updating strategies reported here to
further improve chatter prediction and reduce measurement
cost. In particular, in-process knowledge of chatter occur-
rence while milling can allow adaptive updating strategies
for choosing the next points for measurement. In addition,
other ML methods such as hybrid models (Deshmukh &
Bhosle, 2018) are being explored for more efficient baseline
training.

The PGML approach shows promise in bridging the gap
between theory and practice in chatter avoidance. Despite
technical advances in process control for machining pro-
cesses, managing dynamic instabilities during machining
remains a challenge and an impediment to increased pro-
ductivity and more consistent surface quality for machined
parts. The true stability state and its SLD are unknown in
practice, and machine operators typically resort to experi-
ence and/or manufacturer’s recommendations in setting
the feeds and speeds to avoid chatter. Further, when chat-
ter is experienced, the operator typically stops production
to adjust operating parameters adding time and cost—and
may need to remove the workpiece for later rework depend-
ing on the degree of surface roughness. The approach
introduced here offers foundational support for future self-
aware machining where a machine’s ability to discover its
own SLD allows self-adjustment independent of the opera-
tor. This capability depends on self-knowledge of both the
machine’s true and current stability states, plus a mapping
of process, operational, and machining parameters to stable
and unstable stability states during operation that allow it to
maintain a stable state or return to a stable state in the event
of chatter. Challenges that remain, and that are the next steps
for this research, are continued development of the PGML

approach and updating strategies for milling within a time-
varying and continuous learning environment with the goal
of enabling the capture, characterization, and prediction of
the machining process in real time for machine-initiated
chatter avoidance and corrections.
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