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ABSTRACT 
This paper describes the use of a Learning 
Integrated Manufacturing System (LIMS) 
appliance for collecting operational data from 
manufacturing equipment and analyzing the data 
to monitor process performance. The aim is to 
optimize operations for the manufacturing facility. 
A Haas VF-4 CNC milling machine in the Machine 
Tool Research Center (MTRC) at the University 
of Tennessee, Knoxville serves as the machine 
and facility, respectively, for this case study. 
 
INTRODUCTION 
Machining data monitoring, collection, and 
analysis can be carried out for various reasons, 
such as minimizing energy consumption [1, 2], 
where the power usage of the subsystems (e.g., 
spindle, coolant pump, automatic tool changer, 
etc.) of a machine are independently analyzed 
and compared to determine how best to operate 
the machine. Predictive maintenance of 
machines can also be improved by identifying 
degradation more accurately and detecting 
hidden defects [3]. By monitoring data from 
acoustic emission, vibration, power, and 
temperature sensors, for example, 
manufacturers can detect tool wear, breakage, 
and chatter [4]. The various techniques for data 
collection and analysis available to 
manufacturers today are ultimately geared 
towards improving environmental, equipment, 
and economic conditions. 
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In this study, a router and laptop computer are 
used to connect a Learning Integrated 
Manufacturing System (LIMS) appliance to a 
Haas VF-4 CNC milling machine by creating an 
ethernet communication network that connects 
the router, the computer, the LIMS appliance, and 
the machine. See Fig. 1. 
 

 
FIGURE 1. Three ethernet cables connect the 
router to the Haas VF-4, the LIMS box, and the 
computer. 
 
The computer serves as a digital control for 
accessing data from the machine via MTConnect, 
through a LIMS software known as Solution 
Builder®. See Fig. 2. Using Solution Builder®, 



data from the machine can be monitored, 
collected, and stored in the computer as a CSV 
file. Solution Builder® also provides various 
means for data to be exported to cloud servers or 
monitored via open source cloud-based 
dashboards, such as Grafana. 
 

FIGURE 2. Solution Builder® interface showing 
Haas VF-4 data samples.  
 
It was determined that, for a Haas machine, it is 
easier to achieve high sampling frequency using 
a separate data acquisition system than it is to 
use the MNET communication protocol available 
with the Haas controller. A desktop application 
was created to test the Haas MNET interface 
while monitoring the (X, Y, Z) axis positions. The 
intent was to determine the highest achievable 
sampling frequency. The average time from a test 
of 1000 cycles was 47 ms/read (21.3 Hz sampling 
rate).  
 
Low sampling frequency machining monitoring 
using external sensors and controller signals can 
be achieved on the Haas VF-4 using the LIMS 
appliance directly. In addition, external sensors 
can be connected to a separated microcontroller 
incorporated in the LIMS appliance to collect data 
at high sampling frequencies. To test a direct 
connection from the machine to the LIMS 
appliance, a power sensor (three-phase 
Rogowski coils) was attached to the three power 
leads connected to the main circuit breaker in the 
electrical cabinet of the Haas VF-4 to measure 
the average current drawn by the machine. To 
measure the average current of the machine’s 
spindle, the coils were connected to the cables 
powering the spindle motor only as shown in Fig. 
3. The coils were then connected directly to the 
LIMS appliance. To test a microcontroller-
enhanced connection, a Raspberry Pi PICO 

microcontroller, with sampling frequencies up to 
500 kHz, was used.  
 

 
FIGURE 3. Three-phase Rogowski coils (red, 
yellow, and green) connected to three pairs of 
cables powering the spindle motor. 

 
FIGURE 4. SPECTRUM architecture showing 
component connections.  
 
SPECTRUM 
The microcontroller-enhanced edge computing 
architecture was selected for a frequency domain 
evaluation of milling performance, SPECTRUM, 
which was based on the sensor frequency 
content. The LIMS appliance is designed around 
the Raspbian OS (operating system) which 
provides basic access to I/O (input/output) at 
minimum sample periods of 100 ms (10 Hz 
sampling maximum). Monitoring vibration and 
acoustic signals typically requires higher 
sampling frequencies (e.g., 50 kHz). A Raspberry 
Pi PICO microcontroller was selected to serve as 
the processor for sampling and processing the 
analog signals from accelerometers and 
microphones. The Raspberry Pi PICOs are 
capable of sampling up to 500 kHz [5], but the 
initial sampling rate was set to 50 kHz. The 
implementation architecture is shown in Fig. 4.  
 



The analog signals from the accelerometer and 
microphone are connected to the input channels 
of the Raspberry Pi PICOs. Analog anti-aliasing 
filters will be applied to filter the input signals 
based on the sampling rates. The Raspberry Pi 
PICO collects the data until its internal buffers are 
full and calculates the fast Fourier transform 
(FFT) to convert from the time to frequency 
domain. For the initial implementation, the power 
for the eight dominant frequencies is determined 
during each sampling/calculation interval. These 
frequencies and powers are sent via the USB port 
to the Raspberry PI or Meadow processor. The 
Raspberry PI Processor is responsible for 
aggregating the signals received from the two 
Raspberry Pi PICOs and presented in a REST 
Interface. The Raspberry PI Processor will 
maintain a circular buffer of the aggregated 
frequency spectrums as received by the two 
Raspberry Pi PICOs. The REST Interface will 
enable external applications to request the history 
of the spectra. 
 
The first client of the Raspberry Pi PICO REST 
interface will be the LIMS appliance which will be 
responsible for data collection and possible 
control reactions. The LIMS appliance has a rich 
set of communications and hardware interfaces 
that allow to host data collection, the chatter 
identification algorithm, and possible associated 
control reaction. The first application will be for 
the LIMS appliance to present a Grafana 
histogram of the latest observed dominant 
frequencies. The intention of the design team is 
to provide “open source” implementation for both 
the software and hardware in the SPECTRUM 
appliance. The source code for the Raspberry Pi 
PICO application will be provided as “open 
source” using the MIT License. 
 
RESULTS 
Figure 5 shows a screenshot of the eight 
dominant frequencies and their power observed 
during the sample time of the Raspberry Pi PICO 
for 250,000 test samples. Figure 6, on the other 
hand, displays the results from simultaneous low-
frequency sampling of the spindle current and 
spindle speed to study how the spindle current 
changes with increasing spindle under no load. 
Although both data sets were monitored and 
collected with the LIMS appliance, the spindle 
current was measured and communicated to the 
LIMS appliance using a power sensor (three-
phase Rogowski coils).  
 

FIGURE 5. Frequencies and power calculated 
during each sampling interval for the Raspberry 
Pi PICO (250,000 samples).  
 

FIGURE 6. Changes in spindle current as spindle 
speed increases (no spindle load). 
 
Further tests were carried out to understand how 
the spindle current reacts during cutting 
operations. Figures 7 and 8 show the changes in 
spindle current during cutting tests with a 76 mm 
diameter face mill cutting at 2500 rpm and 5000 
rpm, respectively. The time when machining is 
identified. Also, the spindle current increased at 
the beginning and end of the plot which indicates 
the times at which the spindle is turned on and 
off.  
 



 
FIGURE 7. Changes in the spindle current with 
the Y axis position (inches). The cutting time is 
identified. The spindle speed was 2500 rpm and 
the feed rate was 508 mm/min. 
 

 
FIGURE 8. Changes in the spindle current with 
the Y axis position (inches). The cutting time is 
identified. The spindle speed was 5000 rpm and 
the feed rate was 1016 mm/min.  
 

FIGURE 9. Grafana dashboard displaying 
spindle speed and spindle current over a period 
of 6 hours. 
 
Future work will include new interfaces to enable 
real-time updating for milling process monitoring. 
For example, data from the LIMS Solution 
Builder® software can be monitored via Grafana 
(a third-party cloud-based visualization web 
application) as shown in Fig. 9.  
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