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Inverse model calibration for identifying the constitutive model parameters can be computationally
demanding for expensive-to-evaluate simulation models. This paper presents a modified Bayesian opti-
mization (BO) method, denoted as BO-bound, that incorporates theoretical bounds on the quantity of
interest. A case study for the inverse calibration of the Johnson Cook (J-C) flow stress model parameters
is presented using machining (cutting) force data. The results show fast calibration of the five J-C param-
eters within 25 simulations. In general, the BO-bound method is applicable for inverse calibration of any
expensive simulation models as well as optimization problems with known bounds.
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1. Introduction

Finite element (FE) methods are widely used for modeling com-
plex manufacturing processes. However, FE methods require a new
constitutive model for each material system to describe its behav-
ior (e.g., flow stress behavior during the shearing action in metal
cutting). The constitutive model parameters can be determined
through direct methods that employ high strain rate/temperature
testing to measure the behavior or by inverse methods that use
manufacturing process data to infer the parameters. For complex
constitutive models with many parameters, the inverse method
is preferred [1–3]. The inverse method finds the optimal parameter
set that minimizes the difference between the predicted process
variables, such as force and temperature, from the FE model and
the experimental values from the manufacturing tests; this is done
by iteratively modifying the model parameters for each FE simula-
tion [2]. The methods described in the literature for inverse cali-
bration of the constitutive model parameters in manufacturing
use gradient-based methods, evolutionary algorithms, or hybrid
approaches [2]. A major limitation of the existing methods is the
relatively large number of simulations required for inverse calibra-
tion, especially when the gradient information is not readily avail-
able. This can make the methods computationally prohibitive for
expensive-to-evaluate FE models, which can take many hours to
complete. To address this challenge, this paper presents a Bayesian
optimization (BO) method [4–7] that accounts for the bounded
nature of the error functions used in deterministic inverse calibra-
tion of the constitutive model parameters.

In this work, the inverse calibration of the Johnson–Cook (J-C)
model [1] is used as a case-study. The J-C model is widely-used
in the machining community for modeling material flow stress
behavior in machining operations. Note that, in general, the
described BO approach can be used for calibrating any other model
and manufacturing process. The J-C model empirically describes
the material flow stress as a function of the strain, strain rate,
and temperature as

flowstress ¼ Aþ B�n½ � 1þ C ln
_�
_�0

� �� �
1� Tmat � Tref

Tmelt � Tref

� �m� �
; ð1Þ

where � is the plastic strain, _� is the plastic strain rate, _�0 is the ref-
erence strain rate, Tmat is the material temperature, Tref is the refer-
ence temperature at or below which there is no temperature
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dependence of the yield stress, and Tmelt is the material melting
temperature. The J-C model parameters are the yield strength of
the material under reference conditions A, the strain hardening con-
stant B, the strain rate strengthening coefficient C, the strain hard-
ening coefficient n, and the thermal softening coefficient m. Direct
calibration of the J-C model parameters for machining with ten-
sion/compression split-Hopkinson pressure bar tests is difficult
due to the high strains, strain rates, and temperatures [8–11].

There have been various methods presented in the literature for
inverse calibration of J-C model parameters. These include iterative
gradient-based search methods [12,13], response surface method-
ology [14], evolutionary algorithms such as particle swarm and
genetic algorithms [15–17], and Bayesian calibration [8]. This work
focuses on deterministic inverse model calibration using BO, which
is a derivative-free global optimizer [4,5]. Gradient-based methods
can also be used for efficient local optimization when adjoints are
available. In absence of adjoints (e.g., when using commercial/pro-
prietary FE software), gradients estimated through finite difference
can result in a computationally challenging number of expensive
simulations. The global BO is computationally comparable to local
gradient-based solvers when adjoints are available and can be
more efficient in the absence of adjoints for low to medium dimen-
sional problems. The objective function in BO is approximated
using a Gaussian process (GP) regression surrogate that provides
the prediction mean and the prediction uncertainty. The GP surro-
gate is refined sequentially using an acquisition function to make
the optimal sampling decisions in every iteration that contribute
towards converging to the global optimum. The expected improve-
ment (EI) is the most popular acquisition function [4,6]. In this
work, the normalized mean absolute error (NMAE) between the
experimental and the simulated process variables is used as the
objective for model calibration, which has a theoretical lower
bound of zero. However, the generic EI function does not account
for the bounded nature of objective functions encountered in the
inverse calibration problems and this limitation is addressed here.

The two primary contributions of the paper are: (1) the BO-
bound method, which is a BO method that incorporates the theo-
retical bounds in the underlying quantity of interest; and (2) the
application of the BO-bound method to the inverse calibration of
expensive computer models using NMAE as the objective function.
To address the limitation of the EI acquisition function in BO not
accounting for bounds, a closed-form expression for EI was derived
for the BO-bound method that can incorporate the theoretical
bounds of the objective function. Note that the described BO-
bound method can be used for any optimization problem
where there exists a known bound (upper or lower) on the objec-
tive function. An alternate application could be the optimization of
process parameters in laser additive manufacturing to minimize
part porosity, where the part porosity has a lower bound of zero.

The remainder of the paper is organized as follows. Section 2
gives an overview of the standard BO method and describes the
proposed BO-bound method that incorporates the NMAE lower
bound of zero. Section 3 presents results for inverse calibration
of the J-C flow stress model parameters for machining and a com-
parison of the BO-bound method with the standard BO method.
Section 4 presents conclusions and future work.

2. Bayesian optimization for inverse calibration of J-C model
parameters

The inverse calibration problem for identifying the J-C model
parameters by minimizing the NMAE between the simulated and
experimental observations is detailed in Section 2.1. The standard
BO method for inverse calibration is then presented in Section 2.2.
Finally, the proposed BO-bound method that incorporates the non-
negative property of the NMAE is described in Section 2.3.
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2.1. Inverse calibration problem setup

For a given set of parameters specific to a workpiece material
and tool geometry (such as rake angle and rake face shape), FE sim-
ulation can be used to predict the tangential component of the cut-

ting force, Fsim
T , which is aligned with the cutting speed direction,

and the normal component of the cutting force, Fsim
N , which is per-

pendicular to the machined surface. In this case, the inputs to the
system are the five J-C parameters x :¼ A;B;C;n;mf g 2 X#R5,
where X denotes the parameter search space. The system output
is denoted by y ¼ f xð Þ, where f : X # X#R, which is the NMAE
between the experimental and simulated tangential and normal
force components obtained through the expensive FE model simu-
lation at x as given by

f xð Þ :¼ NMAE A;B;C;n;mð Þ

¼ 1
2

jFsim
T xð Þ � Fexpt

T j
Fexpt
T

þ jFsim
N xð Þ � Fexpt

N j
Fexpt
N

 !
: ð2Þ

The superscript sim denotes results from the FE model and the
superscript expt denotes the experimental results. The optimiza-
tion problem is defined as x� ¼ argmin

x2X
f xð Þ. Although minimizing

the NMAE results in non-unique solutions for the J-C model param-
eters, each solution is considered valid for the goal of accurately
predicting the cutting force components through FE simulations
[1,8,9].

2.2. BO for inverse calibration of expensive functions

BO is a GP-based method for sequentially converging to the glo-
bal optimum. Given k samples of the NMAE, the next sampling
location xkþ1 to simulate and update the GP surrogate is selected
by maximizing an acquisition function, J xð Þ, as xkþ1 ¼ argmax

x2X
J xð Þ.

EI is the most popular acquisition function and uses the
expected value of improvement to balance trade-offs between
exploration (global search) and exploitation (local search) [4,6].
For a minimization problem, the improvement function I xð Þ at
any x is defined based on improving beyond the current observed
best solution ykmin after k sample evaluations as

I xð Þ :¼ ykmin �Y xð Þ; Y xð Þ 6 ykmin

0; Y xð Þ > ykmin;

(
ð3Þ

where Y xð Þ � N l xð Þ;r xð Þð Þ is the GP prediction at any x with l xð Þ
denoting the GP prediction mean and r xð ÞÞ denoting the GP predic-
tion standard deviation that gives a measure of uncertainty in the
prediction. The EI acquisition function at any given x is [4]

E I xð Þ½ � ¼ ykmin � l xð Þ� �
U b xð Þð Þ þ r xð Þ/ b xð Þð Þ; ð4Þ

where E denotes expectation, b xð Þ ¼ ykmin � l xð Þ� �
=r xð Þ;U :ð Þ is the

standard normal cumulative distribution function, and / :ð Þ is the
standard normal probability density function (see A.1 for derivation
and a demonstration in Example 1).

2.3. BO-bound for inverse calibration of expensive functions with
theoretical bounds

For the inverse calibration problem, the lower bound for NMAE
is known to be zero. The GP surrogate is data-driven and cannot
directly incorporate the underlying theoretical bounds on the
quantity of interest. As a result, the GP can predict negative values
for NMAE, which are unattainable. Within the standard BO frame-
work, the incorrect negative NMAE predictions from the GP surro-
gate are propagated to the EI acquisition function, which could lead
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to a misinformed choice of the sampling location. In this work, the
objective function theoretical bounds are incorporated within the
BO framework by redefining the improvement function. The mod-
ified improvement function IB xð Þ restricts the maximum predicted
improvement to be ykmin as

IB xð Þ :¼
ykmin; Y xð Þ 6 0

ykmin �Y xð Þ; 0 < Y xð Þ 6 ykmin

0; Y xð Þ > ykmin;

8><>: ð5Þ

When Y xð Þ 6 0, the maximum improvement is restricted to
ykmin by suppressing the GP prediction to zero when predicted to
be negative. Note that IB xð Þ can be similarly defined for any given
bounds on the objective function making the BO-bound method
applicable to other cases beyond the inverse calibration problem.

The modified EI at any given x can be derived in closed-form
(see A.2 for derivation) as

E IB xð Þ½ � ¼ U a xð Þð Þykmin þ ykmin � l xð Þ� �
U b xð Þð Þ �U a xð Þð Þð Þ

þ r xð Þ / b xð Þð Þ � / a xð Þð Þð Þ; ð6Þ

where a xð Þ ¼ 0� l xð Þð Þ=r xð Þ. The BO method with the modified EI
function for objective functions with theoretical bounds is denoted
as BO-bound. Appendix A provides a comparison between the EI
values in standard BO and BO-bound through Example 1.
3. Results

The BO-bound method was evaluated using an experimental
result for orthogonal (or two-dimensional) turning reported in
[8]. The material was Aluminum 6061-T6. The cutting tool had a
rake angle of 15� and a relief angle of 8�. The cutting speed was
60 m/min, the feed was 0.3 mm/rev, and the depth of cut was 1
mm. The tangential cutting force component Fexpt

T was 224.1 N
and normal cutting force component Fexpt

N was 95.1 N. The pro-
posed BO-bound method was first compared with the standard
BO method by fixing three of the five J-C parameters to illustrate
the efficiency and robustness of the method. Subsequently, BO-
bound method was applied for the inverse calibration of all five
J-C parameters using expensive FE simulations. The procedure for
the BO/BO-bound method is described in Algorithm 1.
Fig. 1. Comparison of standard BO with BO-bound for the two-dimensional test showing (a
(c) convergence of median NMAE w.r.t. number of simulations along with confidence band
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Algorithm1:BO/BO-bound pseudo-code
) optimal parameters obtained and (b) NMAE histogram after 12 simulati
s representing 25 and 75 percentiles for 100 repeats.
Input:Number of initial samples kinit, total number of
simulations ktotal, NMAE simulation model f :ð Þ
Output:Optimal J-C parameters x�, optimal NMAE f x�ð Þ

1: Initial Latin hypercube sampling (LHS) of kinit points
2: Determine the force values, FsimT and FsimN by FE
simulation and the corresponding NMAE values

f xið Þf gki¼1 using Eq. (2)

3: k ¼ kinit

4: whilek 6 ktotal do

5: Fit GP surrogate to the available training data

xi; f xið Þf gki¼1

6: Select next sample xkþ1 that maximizes the

acquisition function in Eq. (4) for BO or Eq. (6) for BO-
bound
7: Run FE simulation at the selected sample xkþ1 and
determine NMAE value f xkþ1ð Þ using Eq. (2)
8: k ¼ kþ 1

9: end while
10: Find optimal parameters x� ¼ argmin f xið Þf gki¼1

.Optimal NMAE is given by f x�ð Þ

11: return x�; f x�ð Þ
To compare the standard BO and BO-bound methods, the mode
1 values reported in [8] were used to fix three of five parameter
values as C ¼ 0:0142; n ¼ 0:035; andm ¼ 1:47 along with varying
A 2 50;350½ � MPa and B 2 40;300½ � MPa. The objective of the BO
and BO-bound method is to find the A;Bf g combination that leads
to the same forces as measured in the experiment, using the min-
imum number of objective function simulations. The orthogonal
cutting FE simulations were completed using Third Wave Systems’

AdvantEdgeTM. The friction coefficient (for relative sliding between
the chip and rake face) was selected as 0.8 [8]. The computation
time for each simulation was one hour. For the J-C model, _�0 was
taken as 1 and Tref was 20 �C.

Two initial LHS samples were used to train the GP model for
NMAE followed by 10 iterations. The Matern kernel was used for
the GP model with length scale bounds as 0.001 and 100. The
ons, and



Table 1
Optimal values for the J-C parameters for five repeats of the BO-bound and BO method.

# Method A (MPa) B (MPa) C n m FsimT (N) FsimN (N) NMAE (%)

1 BO-bound 202.38 94.97 0.015 0.30 1.21 225.75 94.25 0.82
BO 270.22 77.45 0.043 0.33 1.49 230.46 96.29 2.04

2 BO-bound 272.92 90.74 0.027 0.20 1.13 225.28 94.6 0.52
BO 324.91 183.04 0.037 0.38 1.40 226.60 95.38 0.70

3 BO-bound 220.66 136.85 0.037 0.09 1.21 231.4 95.01 1.67
BO 105.94 204.34 0.036 0.05 1.48 225.08 94.31 0.63

4 BO-bound 279.48 53.48 0.034 0.25 1.27 223.77 93.13 1.10
BO 350.00 40.00 0.005 0.29 1.50 223.05 92.33 1.69

5 BO-bound 292.70 150.63 0.011 0.11 1.09 227.97 93.66 1.62
BO 209.67 201.23 0.012 0.13 1.00 224.56 99.62 2.47
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efficiency of any BO method depends on the initial design of exper-
iment (in this case, LHS). To evaluate the robustness of the BO and
BO-bound methods Algorithm 1 was repeated 100 times each with
a different initial LHS of two samples. To computationally enable
completing 100 repeats of BO, each with 12 objective function sim-
ulations, a second-order polynomial model was first fitted to the

Fsim
T and Fsim

N as a function of A and B to act as a surrogate for the
FE simulations (see Appendix B for details). This enabled rigorously
testing the two BO methods without requiring the expensive FE
simulation at each iteration.

Fig. 1 shows the results for the 100 repeats of BO and BO-bound

completed using the polynomial surrogate model for Fsim
T and Fsim

N .
In Fig. 1(a), each dot represents the best A;Bf g combination at the
end of 12 simulations from the 100 repeats and the contour plot
show NMAE from the polynomial surrogate model. BO-bound
shows better performance compared to standard BO as seen from
the NMAE contour plots in Fig. 1a) and the NMAE convergence plot
in Fig. 1(c). From the 100 repeats, 80 cases for the BO-bound
method have NMAE less than 1% as compared to 66 for BO as seen
from the histogram of NMAE after 12 simulations in Fig. 1(b). In
this case, BO-bound takes nine simulations (including the two ini-
tial samples) as compared to 11 simulations required by standard
BO to reach a median NMAE of less than 1% leading to computa-
tional savings of 18% as seen from Fig. 1(c). The confidence bands
representing 25 and 75 percentile range from 100 repeats shown
in Fig. 1(c) show that BO-bound is more robust than BO. The results
show that incorporating the theoretical bounds through the BO-
bound method results in improved convergence as compared to
the standard BO method.

For the second study, the BO-bound method was tested for cal-
ibrating all the five J-C model parameters using the FE simulation
in each iteration. The J-C model parameter ranges were selected
based on a literature review [8,18–25] to be: A 2 50;350½ � MPa,
B 2 40;220½ � MPa, C 2 0:001;0:05½ �; n 2 0:05;0:5½ �, and m 2 1;1:5½ �.
Five initial LHS samples were used to train the GP model for NMAE
followed by 20 iterations using BO-bound. The optimal J-C model
parameter values were A = 202.38 MPa, B = 77.46 MPa, C
= 0.015, n = 0.30, and m = 1.21, with NMAE equal to 0.82%. The
sequence of tests and results are shown in Appendix C. Note that
the inverse model calibration is done for experimental forces at a
single cutting parameter set. The J-C model parameters would
not be optimal for cutting forces measured at different cutting
parameters. To illustrate, Appendix C shows the simulated and
experimental forces at 5� and 25� rake angles using calibrated J-C
model parameters at 15� rake angle. For experimental cutting force
data at different cutting parameters, an average value of NMAE can
be used for the inverse calibration. The process will require run-
ning the FE simulations at different cutting parameters in parallel,
calculating the NMAE at each (using Eq. 2), and taking the average
NMAE value as the output y for the BO-bound method.
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To evaluate the robustness of the result, the BO-bound was
repeated five times with different initial LHS. For comparison, the
standard BO method was also completed for the five repeats.
Table 1 shows the best values for the J-C model parameter for each
repeat for the BO-bound and BO method. As seen from Table 1, the
best NMAE is less than 1.7% for each repeat of BO-bound with a
total computational cost of 25 FE simulations in each case. Table 1
also shows that the NMAE is less for BO-bound compared to the
standard BO in four out of five repetitions. As noted, the standard
BO does not consider the zero bound for NMAE. Table 1 confirms
that the inverse calibration of the J-C model parameter from
machining forces does not have a unique solution; multiple feasi-
ble solutions give force values close to the experimental values
[8,18]. Note that even though the flow stress–strain curve for each
parameter set is different, they are considered equally valid for the
goal of accurately predicting the machining forces.
4. Conclusions

A BO method for calibration of expensive FE simulation models
that accounts for known bounds of error functions used as the
objective function in inverse model calibration was presented. A
case study for inverse calibration of the J-C model parameters
was demonstrated. The objective function was the NMAE between
the experimental and simulated force components in the tangen-
tial and normal directions obtained from an expensive-to-
evaluate FE simulation. The proposed BO-bound method considers
the non-negativity of the NMAE by suppressing the GP predictions
beyond zero through restricting the improvement function values
used in the acquisition function of EI. Furthermore, the BO-bound
method can generally be applied to any optimization problem with
known theoretical bounds on a computationally expensive objec-
tive function.

Results on calibrating A and B showed that the BO-bound
method converges faster than the standard BO approach and is
more robust; BO-bound method led to � 18% computational sav-
ings as compared to the standard BO approach for median NMAE
from 100 repetitions to reach below 1%. The calibration of all five
J-C model parameters showed that the BO-bound method achieves
fast convergence with NMAE from each of the five repetitions
reaching within 1.7% using only 25 FE simulation and outperforms
the standard BO method in four out of five repeats.

Future work will include modifying the BO-bound method to
include additional variables (such as cutting temperature and chip
thickness), experimental results from different process parameters,
and noise in the experimental results. Parallel BO methods [7] will
be explored to take advantage of parallelizing the FE simulations in
each BO iteration. A multi-objective optimization routine will also
be evaluated where the error in each force prediction is modeled
separately to determine the optimal FE model parameters.
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Appendix A. Expected improvement acquisition function

In this section, the EI acquisition function used in the stan-
dard BO is described in A.1 followed by the derivation of EI
for BO-bound in A.2. An illustrative example is provided in
Example 1 to further explain BO and BO-bound acquisition
functions.
E IB xð Þ½ � ¼ PI1 xð ÞE ykmin j Y xð Þ 6 0

 �þ PI2 xð ÞE ykmin �Y xð Þ j 0 < Y xð Þ 6 ykmin


 �þ 1� PI1 xð Þ � PI2 xð Þ� �� 0

¼ PI1 xð Þykmin þ PI2 xð Þ ykmin � E Y xð Þ j 0 < Y xð Þ 6 ykmin


 �� �
¼ U a xð Þð Þykmin þ U b xð Þð Þ �U a xð Þð Þð Þ ykmin � l xð Þ � r xð Þ / b xð Þð Þ�/ a xð Þð Þ

U b xð Þð Þ�U a xð Þð Þ

� � � 
¼ U a xð Þð Þykmin þ ykmin � l xð Þ� �

U b xð Þð Þ �U a xð Þð Þð Þ þ r xð Þ / b xð Þð Þ � / a xð Þð Þð Þ:

ð10Þ
A.1. Derivation of EI for standard BO

Let ykmin ¼ min y 1ð Þ; . . . ; y kð Þ� 	
be the current best function value

after k simulations, where y 1ð Þ; . . . ; y kð Þ� 	
are observations at

x1; . . . ;xkf g, respectively. The GP prediction at any x is a normal
distribution with the mean l xð Þ and the standard deviation r xð Þ.
The improvement function I xð Þ for a minimization problem is
Fig. A.2. Illustrative example showing (a) GP surrogate fit with true objective function yt
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given by Eq. (3). The probability of improvement when
Y xð Þ 6 ykmin is PI xð Þ ¼ P Y xð Þ 6 ykmin


 � ¼ U b xð Þð Þ,where b xð Þ ¼
ykmin � l xð Þ� �

=r xð Þ. The EI is given by

E I xð Þ½ � ¼ PI xð ÞE ykmin �Y xð Þ j Y xð Þ 6 ykmin


 �
þ 1� PI xð Þð Þ � 0 ¼ PI xð Þ ykmin � E Y xð Þ j Y xð Þ 6 ykmin


 �� �
¼ U b xð Þð Þ ykmin � l xð Þ � r xð Þ / b xð Þð Þ

U b xð Þð Þ

� � 
¼ ykmin � l xð Þ� �

U b xð Þð Þ þ r xð Þ/ b xð Þð Þ;
ð7Þ
A.2. Derivation of EI for BO-bound with bounded objective functions

The modified improvement function IB xð Þ is given by Eq. (5),
which restricts the maximum improvement to ykmin when
Y xð Þ 6 0 since NMAE has a lower bound of 0. The probability of
improvement when Y xð Þ 6 0 is

PI1 xð Þ ¼ P Y xð Þ 6 0½ � ¼ U a xð Þð Þ; ð8Þ
where a xð Þ ¼ 0� l xð Þð Þ=r xð Þ. The probability of lying within
0 < Y xð Þ 6 ykmin is

PI2 xð Þ ¼ P 0 < Y xð Þ 6 ykmin


 � ¼ U b xð Þð Þ �U a xð Þð Þ: ð9Þ
The EI for bounded improvement function in BO-bound is given

by
Example 1 (Illustrative example showing BO and BO-bound EI). Let

the true function be y xð Þ ¼ 6x� 2ð Þ2 sin 12x� 4ð Þ � 6:02 with a
known lower bound of zero (global minimum is zero at x ¼ 0:76).
Fig. A.2(a) shows the GP fit using four training data at

xif g4i¼1 ¼ 0;0:45;0:65;1f g with corresponding observations

y ið Þ� 	4
i¼1 ¼ 9:04;6:50;3:81;21:85f g. Based on the current y obser-
rue and (b) EI for BO and BO-bound with the maximum locations marked with a star.



Fig. B.3. Leave one out cross-validation plot for the second-order polynomial model for predicting (a) Fsim
T and (b) Fsim

N .
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vations, the best function value is ymin ¼ 3:81 at x ¼ 0:65. Fig. A.2
(b) shows the EI in ymin as a function of x for BO and BO-bound and
can be seen to be different. The maximum value of EI is marked
with a star for BO and BO-bound in Fig. A.2(b)(b) to show the
difference in the next sample selection. The maximum EI is equal
to 0.98 and occurs at x ¼ 0:22 for standard BO while the maximum
EI is equal to 0.7 and occurs at x ¼ 0:58 for BO-bound. The BO-
bound method penalizes the negative prediction values at x ¼ 0:22
and restricts the maximum improvement for IB xð Þ to ymin ¼ 3:81;
this reduces the EI for BO-bound at x ¼ 0:22 and switches the
maximum location to x ¼ 0:58.
Table C.2
NMAE values for J-C model parameter simulations using BO-bound for one repetition.

# A (MPa) B (MPa) C n

1 270.23 77.46 0.043 0.33
2 195.15 101.69 0.014 0.31
3 75.02 179.63 0.036 0.08
4 115.54 298.35 0.023 0.47
5 338.04 217.70 0.001 0.18
6 192.36 104.21 0.014 0.31
7 202.38 94.97 0.015 0.30
8 194.82 94.12 0.016 0.29
9 209.22 96.31 0.014 0.31
10 194.34 89.04 0.015 0.31
11 205.60 99.29 0.015 0.30
12 201.00 93.58 0.014 0.29
13 201.18 100.40 0.016 0.30
14 350.00 40.00 0.050 0.05
15 190.18 40.00 0.050 0.05
16 350.00 40.00 0.024 0.05
17 350.00 40.00 0.032 0.050
18 350.00 79.27 0.031 0.050
19 350.00 45.69 0.005 0.050
20 350.00 40.12 0.032 0.127
21 350.00 65.74 0.020 0.152
22 350.00 40.00 0.032 0.316
23 306.36 40.00 0.024 0.109
24 350.00 40.00 0.020 0.203
25 342.64 40.00 0.010 0.251

Table C.3
Using the calibrated J-C model parameters at different rake angles.

Rake angle (�) FexptT (N) FexptN (N)

Calibration 15 224.1 95.1

Test 5 261.2 171.3
Test 25 178.5 43.3
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Appendix B. Second-order polynomial fit for algorithm testing

In this work, 25 FE simulations were completed using an
equally-spaced 5� 5 grid and the force values for each sample
were recorded. A second-order polynomial fit to this data was used
as the FE surrogate in BO to eliminate the need to complete expen-
sive FE simulations at each BO iteration in the first study to rigor-
ously analyze the BO approaches. Fig. B.3 shows the leave-one-out
cross-validation results for the surrogate model. The polynomial

surrogate model for Fsim
T and Fsim

N are
m FsimT (N) FsimN (N) NMAE (%)

1.49 271.91 110.90 18.97
1.20 230.46 96.29 2.04
1.01 181.00 75.70 19.82
1.32 596.84 242.34 160.58
1.15 281.61 120.64 26.26
1.20 235.42 96.47 3.25
1.21 225.75 94.25 0.82
1.21 221.10 92.30 2.14
1.22 232.60 96.80 2.79
1.22 217.66 90.79 3.70
1.21 229.74 95.46 1.45
1.20 219.75 91.43 2.90
1.22 230.55 95.49 1.64
1.50 253.39 88.71 9.89
1.50 179.40 71.70 22.28
1.50 228.91 83.81 7.01
1.320 226.96 80.89 8.11
1.465 249.40 88.50 9.11
1.385 205.98 78.34 12.85
1.482 241.89 92.00 5.60
1.500 246.82 98.93 7.08
1.500 254.59 103.47 11.20
1.500 217.33 85.88 6.36
1.500 235.00 95.42 2.60
1.500 224.66 93.74 0.84

FsimT (N) FsimN (N) NMAE (%)

225.75 94.25 0.82

289.7 178.3 7.49
170.1 43.1 2.69
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bF sim
T ¼ 2:98339þ 0:698Aþ 0:811B� 0:000374A2

�0:000470B2 � 0:001083ABbF sim
N ¼ �3:2744þ 0:354Aþ 0:384B� 0:000356A2

�0:000253B2 � 0:000715AB
Appendix C. Sequence of simulations for the BO-bound method

Table C.2 shows the results with the first five rows showing the
initial LHS samples followed by 20 subsequent simulations deter-
mined by the BO-bound method. The optimal J-C model parame-
ters are highlighted in bold. The NMAE for the optimal J-C model
parameters after 25 simulation was 0.82%.

Table C.3 shows the simulated and experimental forces at 5�

and 25� rake angles using calibrated J-C model parameters at 15�

rake angle.
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