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A B S T R A C T   

This paper describes a system for automated identification of the optimal stable cutting param-
eters in milling through Bayesian machine learning and closed-loop control. The closed-loop 
control system consists of a process monitoring architecture, an analysis framework, and a 
feedback mechanism. The analysis framework consists of a Bayesian machine learning algorithm 
that learns a stability map given test results. The learned stability map is used to select parameters 
for stability testing using an expected improvement in the material removal rate criterion. The 
test parameters are communicated to the machine controller to complete the test cut through a 
feedback mechanism. The test cuts were monitored using an audio signal; the stability of the test 
cut was determined by analyzing the frequency content of the audio signal. The test result was fed 
back to the Bayesian learning algorithm to complete the loop. Experimental results demonstrate 
that the system can identify the optimal stable parameters without information about the cutting 
force model or the structural dynamics. The system provides a low-cost method for optimal stable 
parameter identification in an industrial environment.   

1. Introduction and motivation 

High-speed machining is a well-known capability for improving machining productivity. However, the cost-efficient imple-
mentation of high-speed machining is hampered by chatter, a self-excited vibration that depends on the structural dynamics and the 
machining parameters [1]. To avoid chatter, a stability map can be used to select stable machining parameters over a domain including 
the axial depth of cut and spindle speed [1]. Different methods exist to predict stability diagrams in machining. Earlier work included 
the. 

analytical and the frequency domain methods to predict the stability map, which separates stable and chatter combinations of axial 
depth of cut and spindle speed [2,3]. Alternative approaches include time-domain simulations, semi-discretization, and time finite 
element analysis that can predict the period-2 and secondary-Hopf instabilities [4 –7]. Recent advances in stability modeling in 
machining include the following. Olvera et al. described a homotophy method with simulated annealing to determine the stability 
boundary and optimal cutting conditions; results showed a fast computation time [8–9]. Yan et al. used the Legendre and Chebyshev 
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polynomials to approximate the state and the time-delayed term in the equations of motion in milling [10]. Qin et al. described a 
Chebyshev wavelet-based approach for past prediction of milling stability [11]. Celikag et al. presented the validity of mode coupling 
chatter for flexible machine tools [12]. 

Although different models and methods to predict the machining stability map exists, there are three main hurdles to imple-
mentation in an industrial environment for process optimization. First, stability models need information on the structural dynamics, 
typically represented by the tool tip frequency response function (FRF), and the cutting force model, which relates the cutting force 
required to shear away the work material to the commanded machining parameters. Small- and medium-sized manufacturers may not 
have the required equipment (such as an instrumented hammer and vibration transducer) and the engineering support to complete the 
FRF measurements. Accurate identification of the cutting force model coefficients requires the measurement of cutting forces for a 
given tool-material combination with a cutting force dynamometer, which poses an additional cost and challenge. Second, the details 
for special geometry tools, such as the tooth spacing for a variable pitch end mill, may not be available and they are required for 
modeling purposes. Third, there exists uncertainty in analytical model predictions due to uncertainty in the inputs, or factors that are 
not considered in the model [13,14]. As a result, experiments are often required to verify the predicted stability map and the optimal 
stable parameters. 

To address the challenges of implementing the stability map to maximize material removal rates in an industrial environment, a 
closed-loop control system for automated identification of optimal stable operating parameters is described in this paper. The authors 
build on prior efforts in Bayesian machine learning for stability map and optimal operating parameter identification in milling by 
automating the procedure with closed-loop control through communication with the machine [15,16]. Recent developments in 
communication frameworks between external analytic engines and commercial computer numerical control (CNC) machining centers 
enable the development and implementation of advanced workflows and operations. Feedback mechanisms have been developed to 
enable the automatic update of machine instructions, accounting for previous actions, and enabling a closed-loop control regime for 
standard machining equipment [17]. 

The closed-loop control system implemented here consists of: 1. an architecture to monitor the machine state through MTConnect; 
2. an analysis framework including a Bayesian machine learning method to learn the stability boundary using test results and a strategy 
to select the test parameters; and 3. a feedback mechanism to communicate the test parameters to the machine controller to complete 
the test cut. The main contribution of this paper is to demonstrate the combination of Bayesian machine learning and test point se-
lection strategy with closed-loop control for automating the identification of optimal stable operating parameters using a commercially 
available machine tool controller. The system objective is a low-cost method to quickly identify the optimal stable operating pa-
rameters without the requirement of knowledge of the structural dynamics and the cutting force model coefficients. 

Research efforts in the literature have focused on chatter control and suppression using machining parameter modification used 
two different approaches: 1. adjust machining parameters [18–22], and 2. disrupt regeneration of waviness through spindle speed 
variations [23–28]. In the parameter adjustment method, the goal is to iteratively identify the stable spindle speed by matching the 
tooth passing frequency to the dominant chatter frequency. Pioneering early work by Smith et al. described a system that automatically 
detected chatter using the machining audio signal content, stopped the feed when chatter was identified, changed the spindle speed to 
a new spindle speed based on the chatter frequency, adjusted the feed to keep the chip load constant, and then released the feed hold 
[18 –20]. Dijk et al. built upon the idea to implement a second control strategy that modifies the spindle speed and feed to reduce the 
magnitude of tool vibrations [21]. Tarng et al. developed an algorithm to select spindle speed automatically to eliminate chatter in 
milling based on the features on the cutting-force spectrum [22]. In the spindle speed variation (SSV) method, the regeneration of 
waviness is interrupted by continuously varying the spindle speed. This modifies the phasing between vibration and surface un-
dulations, which tends to reduce chatter [23–28]. Lin et al. showed that been shown that a sinusoidal variation in spindle speed is the 
most feasible profile to suppress chatter [23]. Semi-discretization approaches showed improved stability and chatter suppression 
through spindle speed variation [24 –25]. Zatarain et al. developed a general theory for analysis in the frequency domain and any 
speed variation strategy [26]. Ding et al. described an active chatter suppression approach through closed loop control by adaptive 
adjustment of frequency and amplitude of spindle speed variation. [27–28]. Urbikain described a spindle speed variation model using 
perturbation theory and demonstrated its implementation [29]. Totis et al. presented a method to evaluate process stability in milling 
with spindle speed variation using the Chebyshev colloation method [30]. A review of prediction methods and experimental tech-
niques is provided in [31]. 

Earlier methods of CNC control often enabled the transfer of information, but not its execution. CNC control architectures were 
designed to have minimal access for operational instruction sets, other than standard G-code. Schofield et al. contributed to a more 
open control architecture; however, it was not widely adopted in industrial applications [32]. In recent years, additional teleoperation 
of CNC systems was developed by Oliveira et al. but still required user interaction to command the machine [33]. 

The approach described in this paper is an improvement over those systems that adjust the machining parameters (spindle speed 
and feed rate) in the following ways. First, the system is designed for pre-process, offline identification of optimal stable machining 
parameters which maximize the material removal rate. Spindle speed variation methods described in the literature are online methods 
for eliminating chatter in real-time. Second, the method recommends an axial depth of cut in addition to spindle speed to iteratively 
converge on the optimal stable operating parameters. As a result, the system can converge to the optimal stable parameters starting 
from initial stable parameters. Third, the system provides a probabilistic stability map using test results which can be archived and 
reused for subsequent uses of the tool in the machine. 

The remainder of the paper is organized as follows. Section 2 describes the Bayesian learning method for identifying the stability 
map and the experimental strategy for selecting test parameters. Section 3 describes the closed-loop control for machine communi-
cation. Section 4 describes the system architecture and process flow for automated stability testing in machining. Section 5 shows the 
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results for two tools tested on a commercial CNC machine tool. Results show convergence to the optimal stable parameter in fourteen 
tests. Section 6 presents a discussion on the practical implementation of the closed-loop control system for stability testing. An 
alternative test strategy that minimizes the risk of tool damage due to unstable results in testing and methods for implementation in 
different controllers are described. Conclusions and future work are described in Section 7. 

2. Bayesian machine learning for stability identification and strategy for test parameter selection 

This section describes the Bayesian machine learning method for stability map identification and the strategy for test parameter 
selection. The objective of the Bayesian machine learning method is probabilistic modeling of stability over the spindle speed-axial 
depth of cut domain given test results (stable or unstable). The Bayesian learning method enables learning the stability behavior 
with or without information on the structural dynamics and cutting force model coefficients using a small number of test points. 
Traditional machine learning methods, such as neural network or support vector machines, have two main challenges for stability 
identification in milling. First, machine learning models are purely data-driven and agnostic to the physical laws governing the 
process, resulting in predictions that may violate the operational constraints or physical laws for the process. Second, machine learning 
models require many data points to generalize beyond the training dataset and predict the stability map accurately. With the Bayesian 
learning method, knowledge of the process physics can be incorporated into the Bayesian learning framework. This enables the 
Bayesian learning method to converge to the stability boundary using a small number of test data points. 

The Bayesian machine learning method for stability boundary identification is as follows. Before any tests are performed, a 
probability of stability map is generated in the spindle speed-axial depth of cut domain (denoted as the prior). This is done by dis-
cretizing the axial depth and spindle speed ranges into a grid of points and assigning a probability of stability to each point. If the 
information on the structural dynamics and the cutting force model is not available, the probability of stability is decided from the 
knowledge that it is more likely to observe an unstable result at higher axial depths of cut. After an experimental result is made 
available, the posterior probability of stability is given by the Bayes’ theorem as shown in Eq. (1) [15]: 

Fig. 1. Prior probability of stability (top panel) and the posterior probability of stability given stable result (bottom left panel) and an unstable 
result (bottom right panel) at {6500 rpm, 5 mm}. 
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In Eq. (1), p denotes probability, s denotes stability, r denotes the test result, subscript g denotes an arbitrary grid point, and 
subscript t is the test point. The test result at grid point t can be either stable or unstable. According to the Bayes’ rule, the posterior 
probability of stability at any point g given experimental result at t, denoted by p(sg | rt), is the product of the prior probability of 
stability at g, p(sg), and the likelihood probability of experimental result given g is stable, p(rt | sg), divided by the probability of the 
result, p(rt). Eq. (1) can be used for one or multiple test results at different test parameters in the domain. For multiple experimental 
results, the posterior probability of stability after the first experimental result becomes the prior for the second result and so on. 
Alternatively, multiple experimental results can be used simultaneously to calculate the posterior by taking a product of the likelihood 
probabilities for each experimental result. The physics and knowledge of the process can be encoded in the Bayes’ learning algorithm 
through the prior and the likelihood probabilities. For brevity, the mathematical details of the Bayesian learning algorithm are not 
included in the paper; the reader is referred to [15] for details. 

To illustrate the Bayesian learning method, consider a spindle speed range from 2000 rpm to 12000 rpm and an axial depth of cut 
range from 0 mm to 6 mm. Fig. 1 shows the prior probability of stability (top panel) and the updated probability of stability given 
stable result (bottom left panel) and an unstable result (bottom right panel) at {7000 rpm, 3 mm}. In this case, the prior probability of 
stability is taken to decrease linearly from one at the minimum axial depth of cut to 0.05 at the maximum axial depth of cut. As noted, 
the physics of the stability diagram is also encoded in the likelihood probabilities. For example, if a test result is stable, all axial depths 
of cut greater than the test axial depth of cut at the test spindle speed are also stable. The reader is referred to [15] for details on 
including the stability diagram knowledge in the likelihood probabilities. As seen from Fig. 1, one test result enables updating the 
probability of stability over a range of spindle speeds and axial depths, not just the test point. As noted, this is the advantage of 
Bayesian learning over traditional machine learning approaches, such as neural networks or support vector machines, which require 
large datasets to establish input-output correlations. 

The optimal test parameter is decided based on an expected improvement in material removal rate, MRR, criterion [15]. The 
expected improvement in MRR at a grid point is given by Eq. (2). 

E[I(MRR) ]g = p
(
sg
)
×

(
MRRg − MRRprior

)

MRRprior
(2) 

In Eq. (2), E denotes expectation, I denotes improvement, subscript g denotes an arbitrary grid point, MRRprior is the optimal MRR 
based on the prior probability of stability, and MRRg denotes the MRR at the grid point g. MRRprior is determined as the highest MRR 
among parameters that are stable with certainty in the domain. The E[I(MRR)] criterion balances the trade-off between the probability 
of stability at a grid point and the improvement in MRR if the result at the grid point is stable. Fig. 2 shows E [I(MRR)] at all spindle 
speed-axial depth grid points given the linear prior probability shown in Fig. 1 (top panel); the color bar shows E [I(MRR)] as per-
centages. The optimal test point is {12,000 rpm, 3.2 mm}. Since no stable operating points are known before testing, the prior optimal 
point is taken as {12000 rpm, 0.01 mm}. 

Fig. 3 illustrates the Bayesian learning method and the sequence of tests using E [I(MRR)] criterion. In Fig. 3, the test result is 
determined using the analytical stability boundary shown in green. The left column shows E [I(MRR)] for each test and the right 
column shows the posterior probability of stability using the test results. The sequence of tests is shown on the posterior probabilities of 
stability. The updated probability of stability after each test is used to calculate the test parameter for the next test using the expected 
improvement in MRR shown in Eq. (2). If the test result is stable, the MRRprior is updated to the MRR at the stable test parameters. As 
seen from Fig. 3, the algorithm converges to the optimal stable parameters in four tests for the analytical stability boundary (shown in 
green). The testing can be terminated when the E [I(MRR)] is less than 5%. As shown in [10], convergence to the optimal stable 
parameters is typically achieved in 10 to 20 tests with the expected improvement in the MRR criterion. 

Fig. 2. Expected percentage improvement in MRR; the optimal test point is {12,000 rpm, 3.2 mm }.  
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Fig. 3. Numerical demonstration of the test sequence and the Bayesian learning method based on the analytical stability boundary prediction; the 
left column shows E[I(MRR)] as percentages for each test and the right column shows the posterior probability of stability using the test result. 
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3. Closed-loop control for machine communication 

This section describes the closed-loop control mechanism for machine communication. The closed-loop system consists of three 
parts: 1. an architecture to capture, communicate, and store information about the process; 2. an analysis framework to compare 
current actions against the desired actions and compute corrective steps; and 3. a feedback mechanism to provide updates to the 
machine instructions [16,17]. 

The process monitoring architecture is implemented on a standard PC-based computer next to the CNC machine. The computer is 
connected to the CNC controller via Ethernet and communicates using the TCP/IP protocol, providing a pathway for information 
output and input. MTConnect and OPC-UA are the two common protocols for capturing machine information [34–35]. The protocols 
provide information from the machine controller, such as the machine state, current machine position, feed rate, spindle speed, and 
part program line number [34–35]. The MTConnect protocol defines a common formatting standard for the information, which in-
creases flexibility over multiple machines and controllers. A support framework captures process data generated by the CNC machine 
and provided via an XML file through MTConnect. The desired process tags such as machine state, machine position, and process 
parameters are parsed from the process data [36]. Note that MTConnect is a one-way protocol by design, preventing any information 
from being transferred to the CNC system [34]. OPC-UA was designed as a bi-directional communication protocol, enabling clients to 
provide information back to the server. However, most commercial CNC systems prevent bi-directionality and only allow information 
output, like the functionality provided by MTConnect. OPC-UA and MTConnect are interchangeable and achieve the same machine 
monitoring purpose. Each of these process tags is converted into a local nomenclature for comparison across multiple machining 
systems. This enables the simultaneous storage of all process data for external analysis and immediate processing of selected variables 
to inform the feedback mechanism. In addition to the data from the machine controller, external sensors can be retrofitted to the 
machine. The choice of the external sensor depends on the specific needs of the manufacturing process. In machining, the common 
external sensors include current and power sensors, accelerometers, and microphones. Like MTConnect and OPC-UA protocols, sensor 
data is converted into a local format for processing. Information from the machine protocols can be synchronized with the external 
sensors in the support framework. 

The analysis framework governs the type of data collected by the process monitoring framework. The analysis framework is 
responsible for managing communications to and from the machine, triggering calculations for the next set of machine instructions, 
and triggering the feedback mechanism to communicate the instructions to the CNC controller. Multiple processes are required for 
analysis, depending on the type, amount, and format of data collected. The analysis framework relies on a common JSON data 
structure, with messages sent via Message Queue Telemetry Transport (MQTT) [36]. The analysis can be completed on a standard PC- 
based computer as minimal bandwidth is required. A new set of instructions for the machine are generated using the monitoring data 
from the machine, which are communicated to the machine using the feedback mechanism. All information transferred between the 
CNC controller and PC is text-based and requires less than 30 Kb per MTConnect message and less than 20 Kb per machine instruction 
message. While this system was implemented with wired connections, it is easily transferrable to wireless protocol and other local area 
networks. 

The feedback mechanism enables timed updates to the current instructions on the CNC machining system. A series of flags are used 
between the CNC machine and the process monitoring architecture to determine when additional commands can be sent, following the 
timing sequence illustrated in Fig. 4. Fig. 4 shows a time of 2000 ms to transfer new instructions to the machine; this is defined by the 
user. Once the user enables the feedback process, the flag is set to high (1) and it signals that additional commands can be sent, 
overwriting previous commands in the specified memory location. The CNC machine then signals that no more instructions can be 
written by setting the flag low (0). Finally, the updated instructions are parsed by the machine, and the motion paths are executed. The 
CNC machine resets the flag to high (1) after the motion paths are executed indicating that it is ready for the next set of instructions. 
Fig. 5 displays the generic operational flow for the feedback mechanism. This flow is designed to work on any commercial CNC system 
with a standard operating system. 

Fig. 4. Timing diagram for the feedback mechanism to update machine instructions.  
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4. System for automated stability testing with closed-loop control 

This section describes the application of Bayesian learning, described in Section 2.0, and closed-loop control, described in Section 
3.0, for automated stability testing. Fig. 6 shows the closed-loop control system flowchart. The user inputs information on the material 
for testing, tool, and process parameters. The tests are performed on a rectangular block of material. The inputs for the block include 
the maximum allowable cut length, width, and depth for testing and the material type. Tool information includes the type of tool 
(square, ball nose, or bull nose), tool diameter, number of teeth, helix angle, and pitch type (fixed or variable). Process parameter 
information includes the axial depth and spindle speed ranges, feed per tooth, radial depth of cut, and the type of cut (up milling or 
down milling). The user also inputs the stable operating parameters, if are known. The system proceeds as follows:  

1. The Bayesian stability learning algorithm calculates the probability of stability in the spindle speed-axial depth of cut domain (the 
spindle speed and axial depth of cut ranges are discretized with a step size of 10 rpm and 0.1 mm, respectively);  

2. the test parameter selection algorithm calculates the optimal test parameters (spindle speed and axial depth) to test based on the E[I 
(MRR)] criterion;  

3. the G-code is updated with the selected test parameters and transferred to the machine;  
4. the machine performs the test cut at the selected parameters;  
5. an audio signal is recorded during the test and is used to classify the cut as stable or unstable;  
6. steps 1 through 5 are repeated until E [I(MRR)] is less than 5%. 

The test cuts proceed on the rectangular block of material as follows. The left-forward corner of the test block is set as the origin. 
The starting coordinate and the ending coordinate in X for the tool path are determined based on the type of cut, up or down milling, as 
noted by the user. The test cuts proceed using the axial depth of cut at the user-defined radial depth of cut, illustrated in Fig. 7. If the 

Fig. 5. Generic operational flow for the feedback mechanism.  

Fig. 6. Process flow for the automated stability testing system.  

J. Karandikar et al.                                                                                                                                                                                                   



Mechanical Systems and Signal Processing 181 (2022) 109531

8

recommended test axial depth of cut is greater than the remaining block depth, a clean-up pass is performed at an axial depth of cut 
equal to the remaining block depth. The tool then increments in the radial depth of cut for the subsequent test. This is illustrated in 
Fig. 7. 

5. Implementation and results 

This section describes the implementation details on a Mazak VC-500A/5X AM HWD Hybrid machine. The Mazak had a Mazatrol 
SmoothX controller and operates on the Windows 7 platform. Table 1 lists the machining parameters (shown as user inputs in Fig. 6). 

The machine state was monitored through the MTConnect protocol [34]. The machine was connected to a local network such that a 
secondary local computer could send and receive information. A machine state monitoring script was programmed in Python, enabling 
the local computer to receive MTConnect information produced by the machine via HTTP GET commands. Current machine state, 
machine position, user flags, and process parameters were parsed from an XML file and saved to the local machine at a frequency of 2 
Hz. At the start of testing, the user flag was set to high (1), meaning the machine was ready for the next set of instructions. The flag 
value was monitored through the MTConnect protocol. The analysis framework, which consisted of the Bayesian machine learning and 
test parameter selection algorithms, was triggered when the flag value was high. The algorithms were implemented in Python. As 
noted, before any tests were performed, the Bayesian learning method started with an uninformed prior (shown in Fig. 1) based on the 
user-defined spindle speed and axial depth of cut range. The test parameter selection algorithm used the prior probability stability to 
calculate the optimal test parameters by Eq. (2). 

Fig. 8 shows the prior probability of stability for the selected tool (left panel) and the E[I(MRR)] in percentage for the first test (right 
panel). The user input on block dimensions, process parameters, and the calculated test parameters were used to update the G-code. A 
G-code template for the Mazak machine was provided to the analysis framework as a starting point. The algorithm also updated the 
starting and ending X position of the tool based on the block length. The Y position was calculated using the radial depth of cut and the 
feed was calculated using the selected spindle speed, feed per tooth, and the number of teeth on the tool. The starting G-code template 

Fig. 7. Depth of cut progression across test block to determine machining stability. A clean-up pass is used if the selected test axial depth of cut 
exceeds the remaining available stock. 

Table 1 
Machining parameters for testing.  

# Variable Value 

1 Workpiece material Aluminum 6061-T6 
2 Workpiece length 250 mm 
3 Workpiece width 100 mm 
4 Workpiece depth 15 mm 
5 Tool diameter 12.7 mm 
6 Number of teeth 4 
7 Axial depth of cut range 0.01 mm to 10 mm 
8 Spindle speed range 4000 rpm to 9000 rpm 
9 Feed per tooth 0.06 mm/tooth 
10 Radial depth of cut 5 mm 
11 Type of cut Down milling  
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and the updated G-code are shown in Fig. 9. In Fig. 9, the spindle speed is updated in line number N7, the X positions are updated in 
line number N9 and N12, the feed is updated in N9, the Y position is updated in N10, and the axial depth of cut is updated in N11. 

As noted, the underlying operating system of the Mazak controller is Windows. This enables various memory locations internal and 
external to the controller to be mapped and networked. This provides a pathway to feed information back into the machine. The 
primary hard drive of the controller was networked to the local computer such that the computer could read and write files in a specific 
directory. Furthermore, current values of macro variables can be changed via G-code commands during live operations. The primary 
hard drive of the controller was networked to the local computer such that the computer could read and write files in a specific 
directory. This enabled a connected feedback loop, where the local computer could read the current status of the Machine via 
MTConnect and transfer the updated G-code to the machine via the networked hard drive. 

Two G-code programs were used to operate the CNC machine, a primary control program, and a secondary sub-program. The user is 
responsible for initially executing the primary control program. This program sets the appropriate macro variables to signal that the 
machine tool had entered closed-loop control mode. The local computer polled the macro variable’s status at a rate of 2 Hz. A variable 
delay was used to provide computation time for the local computer to analyze current data, generate the next set of instructions, and 
transfer them to the machine. Once ready, the local computer transferred a new set of instructions to the networked memory location 
on the Mazak controller’s hard drive, coinciding with the secondary sub-program location. This new set of instructions can include any 
commands enabled by standard G-code, such as machine setup, toolpath, or inspection operations. After the delay expired, the 
controller entered the sub-program and executed the G-code statements. Finally, the sub-program returned to the main program, and 
the flag was reset to indicate that updated instructions were requested. This loop completes until a termination signal is given by the 

Fig. 8. Prior probability of stability for the selected tool (left panel) and the E[I(MRR)] in percentage for the first test (right panel).  

Fig. 9. G-code template (left panel) and the updated G-code with the selected axial depth of cut and spindle speed (right panel).  
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local computer. A common local HDF5 structure was used for data storage. This dataframe recorded machine state, actions, and control 
signals sent by the algorithm. At the end of each run, the dataframe was stored in an HDF5 format file, with a new table entry for each 
iteration of the stability algorithm. It should be noted that this particular choice of format was made for convenience with numerical 
analysis in Python NumPy and Pandas libraries. The specific implementation can also support other common formats such as SQL. 

The procedure for automated stability testing with closed-loop control is as follows: The user first enables the closed-loop control 
process on the machine and the supporting computer. The CNC machine sets a system flag high (1) to indicate that it is ready for the 
next set of instructions. The machine is monitoring the system flags via MTConnect to determine when it is safe to write to the specified 
memory location. When the CNC machine flag is detected as high (1), it triggers the calculations to determine the optimal test pa-
rameters and update the G-code. After the flow control time flag time expires on the machine, the CNC machine sets the flag low (0), 
indicating that it is executing the G-code to perform the test cut and preventing the transfer of additional information from the local 
computer. The flow control flag time is user-defined and was set as 2000 ms as shown in Fig. 1. 

Once a test is complete, the machine returns to the home position, and the flow control flag is reset to high (1), triggering the next 
set of calculations and notifying that the CNC machine is ready for the updated G-code. The analysis updates the probability of stability 
using the test result (stable or unstable) provided by the operator with the Bayesian machine learning method, calculates the test 
parameters for the next test and updates the G-code. The updated G-code with the next set of parameters is uploaded to the machine’s 
memory and the loop repeats until E[I(MRR)] is less than 5% or if the test material is exhausted. The flowchart for the system is shown 
in Fig. 6. 

An audio signal was recorded during the test cut and was used to classify the test cut as stable or unstable. The microphone signal 
was sampled at 20KHz during the cut. The Fast Fourier Transform (FFT) of the time-based audio signal collected during the test cut was 
calculated and the resulting spectrum was comb filtered to remove the tooth passing frequency and higher harmonics [37]. The 
dominant frequency was identified from the filtered spectrum. The cut was classified as unstable if the amplitude of the dominant 
frequency exceeded a certain threshold value. The threshold value is calibrated based on the background noise during the test process. 
Note that in this study, the microphone was not integrated into the closed-loop control system. The analysis to classify the test cut as 
stable or unstable was completed by the operator using the recorded signal and the result was provided to the system. However, the 
process monitoring framework enables the integration of the audio signal and the associated analysis for a completely automated 
system. 

Fig. 10 shows the results. As noted, the tests were terminated when E[I(MRR)] was less than 5%. The optimal point after 10 tests 
was {8710 rpm, 6.3 mm }. To validate the result, the FRF of the tools was measured using an impact test and an analytical prediction 
was made. The specific cutting energy (which represents the cutting force model) for the analytical stability prediction was 600 N/ 
mm2. The analytical prediction for the tool is shown in green Fig. 10. As seen from Fig. 10, the system was able to converge to the 
optimal stable parameters in 10 tests. 

The procedure was repeated for a 9.525 mm four-tooth endmill. The spindle speed and axial depth of cut ranges were 4000 rpm to 
9000 rpm and 0 mm to 5 mm, respectively. The block dimensions, feed per tooth, radial depth of cut, and the type of cut are listed in 
Table 1. Fig. 11 shows the results. The analytical prediction using the FRF measurement is shown in green. The testing had to be 
stopped and the tool had to be replaced after Test #8 and Test #14 due to excessive built-up edge on the tool. As seen from Fig. 11, the 
stability boundary was at a much lower axial depths cut compared to the selected maximum axial depth of cut. This resulted in many 
unstable tests as seen in Fig. 11. 

6. Discussion 

In this section, alternative algorithms for test parameter selection to reduce the risk of testing in the automating system are 
described. 

Fig. 10. Sequence of tests and posterior probability of stability for 12.7 mm diameter tool; the optimal stable point was {8710 rpm, 6.3 mm }. The 
analytical prediction is shown in green. 
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6.1. Algorithms for test parameter selection 

As described in Section 2.0, an expected improvement in MRR criterion, denoted as E[I(MRR)], is used to select optimal test pa-
rameters. Although the E[I(MRR)] leads to faster convergence to the optimal stable parameters, it also results in many unstable tests in 
cases where the optimal stable axial depth of cut is a small fraction of the selected maximum value for the axial depth of cut. As seen 
from Fig. 2 and Fig. 8, the linear prior probabilities result in the first test at approximately 52% of the maximum axial depth of cut. This 
is due to a product of the linearly decreasing prior probabilities of stability and linearly increasing MRR as a function of axial depth of 
cut. This presents a challenge in automating the testing of tools; the resulting vibrations and forces from an unstable cut can damage 
the tool (and potentially the tool holder and spindle) and disrupt the automated testing process. To prevent this, two algorithms for test 
point selection are evaluated. First, the prior probabilities were decreased non-linearly using an exponential decay function. This 
reduces the axial depth of cut for the first test. Fig. 12 (left panel) shows the prior probability of stability using non-linear reduction in 
probabilities with axial depth of cut for the 12.7 mm diameter tool. Fig. 12 (right panel) shows a comparison between linear and non- 
linear reduction in prior probabilities as a function of axial depth of cut. 

The two tools from experimental testing were studied numerically using the non-linear prior probabilities shown in Fig. 12. Fig. 13 
displays the results for the 12.7 mm diameter tool (left panel) and the 9.525 mm diameter tool (right panel). Note that the results 
shown in Fig. 13 are numerical and were determined using the analytical stability boundary shown in green. As seen from Fig. 13 (right 
panel), although the first test axial depth of cut is lower, the algorithm doesn’t show improvement in eliminating the unstable test cuts 
for the 9.525 mm diameter tool. This is because once a stable result is identified, the algorithm identifies successively higher axial 
depths of cut which have a higher MRR than the stable test result. Note that test cuts #10 and #24 for the 9.525 mm diameter tool 
shown in Fig. 13 (right panel) are clean-up passes due to the limited test block depth. 

As noted, there are two main issues with the E[I(MRR)] criterion for automating test parameter selection. First, if the optimal stable 
axial depth of cut is a small fraction of the maximum axial depth of cut, the criterion will result in many unstable cuts before the 
optimal parameters are identified (see Fig. 11). This can damage the tool leading to disruptions in testing. Second, after a stable result 
is identified, the algorithm identifies successively higher axial depths of cut which have a higher MRR than the stable test result (see 
Fig. 13 right panel). To overcome these two issues, a modified test selection criterion based on a minimum probability of stability at the 
test parameters was evaluated. In this criterion, if the test parameter selection using the E[I(MRR)] has a probability of stability less 
than a pre-determined threshold probability, the axial depth of cut is reduced at the selected spindle speed such that the probability of 
stability equals the selected threshold probability. Fig. 14 shows the results for the two tools with a threshold probability equal to 0.8. 
The prior probability was linear. 

As seen in Fig. 14, the modified criterion with a threshold probability reduces the number of unstable cuts and eliminates unstable 
test cuts that may damage the tool. The limitation of the method is that the number of tests required to converge can be higher if the 
optimal stable axial depth of cut is comparable to the maximum axial depth of cut. This is seen in Fig. 14 (left panel) for the 12.7 mm 
diameter tool where the number of tests required to converge increased from 10 (see Fig. 10) to 16. However, note that the modified 
criterion eliminates test cuts that can be excessively unstable (for example, test #5 in Fig. 10) that can damage the tool. This makes the 
modified criterion suitable for implementation in an automated test setup with closed-loop control. Additional precautions may be 
taken to prevent damage to the tool, holder, or spindle during testing. One approach is to monitor the spindle power during test cuts. 
Expected spindle power can be calculated using the test parameters and the specific power of the workpiece. A comparison between the 
measured spindle power and the expected power can be used to detect excessive tool wear or tool breakage to prevent damage to the 
holder and spindle. 

Fig. 11. Sequence of tests and posterior probability of stability for 9.525 mm diameter tool; the optimal stable point was {8150 rpm, 1.6 mm }. The 
analytical prediction is shown in green. 
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Fig. 12. Prior probability of stability using non-linear reduction in probabilities with axial depth of cut for the 12.7 mm diameter tool (left) and 
comparison between linear and non-linear reduction in prior probabilities as a function of axial depth of cut (right). 

Fig. 13. Sequence of tests starting with a prior with a non-linear decrease in the probability of stability with the axial depth of cut for the 12.7 mm 
diameter tool (left panel) and 9.525 mm diameter tool (right panel. 

Fig. 14. The sequence of tests with a modified criterion of testing at an axial depth of cut with a probability of stability equal to or greater than 0.8 
at the selected test spindle speed; the left panel shows the results for the 12.7 mm diameter tool and the right panel shows results for the 9.525 mm 
diameter tool. 
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6.2. Expansion to additional systems 

The implementation of the closed-loop control system on a Mazak machine with a Windows-based Mazatrol SmoothX controller 
was described in Section 5.0. The implementation described in Section 5.0 relies on a data communication module to provide input 
instructions to the machine. This module is specific to the machine manufacturer, model, and machine controller. The methodology 
described in Section 5.0 involved the use of networked memory locations, managed by the data communication module, which applies 
to machining centers whose controllers run a version of the Windows operating system in the background. However, other methods of 
information transfer are possible enabling implementation on a range of commercial machining centers. 

Well-supported controllers such as Siemens, Fanuc, and Linux CNC platforms retain the capability to accept instruction information 
through similar concepts. A secondary method of providing simple instructions relies on the “DPRNT” serial communication, or TCP/ 
IP functionality in these controllers. When implemented in the data communication module, each line of G-code is sent and executed 
individually. This method is lower in bandwidth but is supported by most controllers. Additionally, other information transfer op-
portunities exist in the main program/sub-program structure described in Section 5.0. While the implementation described in Section 
5.0 relied on cohesive blocks of instructions sent as a file (the entire sub-program), the G-code sub-program itself can be parameterized 
and persistently stored on the controller. In this approach, only the updated parameters are sent via macro variable update commands 
through the host controller’s serial input. This methodology restricts the flexibility of the toolpath geometry but enables the rapid and 
efficient update of cutting depth, feed rate, and spindle speed. Additionally, this approach can be leveraged for many legacy controllers 
without modern networking capabilities. 

7. Conclusions 

A closed-loop system for automated identification of the optimal stable parameters in machining using Bayesian machine learning 
was described. The paper describes two new claims to the state of the art.  

• A closed loop system consists of a process monitoring architecture, an analysis framework, and a feedback mechanism is described.  
• The application of the closed-loop control for automated identification of the optimal stable parameters in machining using 

Bayesian machine learning is demonstrated. 

The machine state and the test cuts were monitored through MTConnect and an audio signal. The Bayesian machine learning 
algorithm calculates the probability of stability at grid points given test results. The probability of stability was subsequently used to 
calculate the optimal test grid point which maximizes the expected improvement in material removal rate. The G-code is updated with 
the test parameters and communicated to the machine based on the machine status. The test cut is classified as stable or unstable based 
on the audio signal and the process is repeated until convergence to the optimal stable parameter is achieved. The closed-loop control 
system provides a low-cost and quick method for identifying optimal stable parameters in an industrial environment. 

Future work will focus on algorithm improvements. First, the Bayesian learning approach can be extended to include the radial 
depth of cut to identify the optimal stable axial depth, radial depth, and spindle speed combination. Second, a low-cost microphone 
will be integrated into the process monitoring framework to enable a fully automated system. Additionally, the system will be eval-
uated on different machine tool controllers using the methods described in Section 6.2. 
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