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INTRODUCTION 
Machining stability is an important limitation in 
high-speed machining. The physical mechanism 
for unstable machining, or chatter, is the 
regeneration of surface waviness during material 
removal [1]. Stable operating parameters in 
milling may be selected using the stability 
boundary, which separates stable spindle speed-
axial depth of cut combinations from unstable (or 
chatter) combinations [1]. While analytical 
models exist to predict machining stability, their 
cost-efficient implementation can be hampered 
by the need for information on the tool point 
frequency response function (FRF) and the 
cutting force coefficients. Without knowledge of 
the tool point FRF and the cutting force 
coefficients for the tool-material combination, 
machining parameters are typically selected 
using tool supplier and handbook 
recommendations, or previous experience. If 
unstable behavior (chatter) is observed, the 
parameters are often adjusted by trial and error 
until stable behavior is obtained. Typically, this 
means reducing the spindle speed and axial 
depth of the cut. In this work,  remote 
identification of optimal stable milling parameters 
with Bayesian learning using test results is 
presented. The test cuts were monitored with a 
wireless sensory tool holder instrumented with an 
accelerometer. The test results were analyzed for 
stability remotely, used to learn the stability 
boundary, and recommend parameters for the 
next test using a Bayesian learning approach. 
The iterative process was repeated until 
convergence to a stable optimal process 
parameter set was achieved. The described 
approach can be automated to enable optimizing 
machining processes in production environments 
through data sharing with a central location where 
the analysis is completed. 

REMOTE BAYESIAN UPDATING FOR 
MILLING STABILITY 
The procedure for remote Bayesian updating for 
milling stability is as follows. Milling tests were 
performed on a milling machine at the TU Wien, 
Vienna, Austria. The milling tests were monitored 
using a wireless sensory tool holder instrumented 
with an accelerometer [2, 3]. The accelerometer 
data was shared through the cloud with Oak 
Ridge National Laboratory, Oak Ridge, 
Tennessee, USA, and the University of 
Tennessee, Knoxville, Tennessee, USA. The 
recorded data from a milling test cut was used to 
classify the cut as stable or unstable based on the 
frequency content [1]. The test cut result was 
given as input to a Bayesian learning algorithm 
for milling stability. The algorithm updated the 
probability of stability as a function of axial depth 
of cut and spindle speed based on the test results 
[4]. The probability of stability was subsequently 
used to recommend the axial depth and spindle 
speed for the next test cut based on a maximum 
expected improvement in the material removal 
rate criterion. The optimal test parameters were 
then communicated back to TU Wien in real-time 
for subsequent testing. The iterative process 
between two transatlantic locations was repeated 
until convergence to a stable optimal process 
parameter set was achieved. 
 
TEST SETUP AND MONITORING 
The milling tests were performed on a DMG 
MORI DMU 75 monoBLOCK milling machine at 
TU Wien, Vienna, Austria. The workpiece 
material was Aluminum 6060-T6. Figure 1 shows 
the test setup. The tool was a 10 mm diameter 
four flute solid carbide end mill. The axial depth 
of cut and spindle speed range for the testing was 
0 mm – 8 mm and 5000 rpm – 9000 rpm. The 
radial depth of cut was  
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2 mm and feed per tooth was 0.1 mm/tooth. The 
cuts were down-milling. The workpiece was 
saved after each test cut to enable inspection of 
the machined surface. To ensure tight and 
repeatable clamping of the workpiece, specific 
vice jaws were used. 
 

Figure 1. Setup for the cutting tests. 
 
The test cuts were monitored with a wireless 
sensory tool holder instrumented with an 
accelerometer [2, 3]. The sensory tool holder can 
be used for process monitoring and process 
control and is depicted in detail in Figure 2. 
Without changing the outer contour of the tool 
holder, a battery, telemetry system, and an 
accelerometer mounted on a circuit board have 
been integrated into the holder. The 
accelerometer measures the radial acceleration 
of the tool holder vibration and has a range of up 
to +-100 g. The vibration data is transmitted out 
of the rotational system to the receiver unit via a 
wireless digital communication link, based on 
Bluetooth low energy [3]. The receiver unit 
forwards the time-stamped data to a processing 
unit. A laptop can be used for saving the data as 
a .csv file to the cloud. The sensor and radio 
transmission system was installed directly into an 
HSK-A 63 tool holder as shown in Figure 2.  
 
 

Figure 2. Sensory tool holder [3]. 

STABILITY CLASSIFICATION 
The accelerometer data was shared through the 
cloud with the analysis framework implemented 
at the Oak Ridge National Laboratory, Oak Ridge, 
Tennessee, USA, and the University of 
Tennessee, Knoxville, Tennessee, USA. The first 
step of the analysis framework was to classify the 
test cut as stable or unstable based on the 
accelerometer data. The stability classification 
was performed using frequency analysis. For 
stable cutting conditions, there is frequency 
content only at the tooth passing frequencies and 
its harmonics. For unstable test cuts, there is 
content at chatter frequencies in addition to the 
tooth passing frequencies. Note that since the 
accelerometer in the sensory tool holder is not 
stationary, the frequencies are split by the spindle 
rotational frequencies [3]. To illustrate, Figure 3 
shows the frequency spectrum of the 
accelerometer data from the sensory tool holder 
for the test at {9000 rpm, 4 mm} using. The tooth 
passing frequency is 600 Hz and the spindle 
rotational frequency is 150 Hz. Due to the 
nonstationary nature of the accelerometer, the 
tool passing frequency is split by the spindle 
rotational frequency at 450 Hz and 750 Hz.  To 
compare, Figure 4 shows the FFT from a sound 
measurement of the same test cut measured with 
a microphone. The FFT from the sound signal is 
at the tooth passing frequency and its harmonics.  
 

Figure 3. Frequency spectrum for the test at 
{9000 rpm, 4 mm} using accelerometer data from 
the sensory tool holder. 
 

 
Figure 4. Frequency spectrum for the test at 
{9000 rpm, 4 mm} using a microphone. 



 

 

BAYESIAN LEARNING AND TEST 
PARAMETER SELECTION 
The second step of the analysis framework is the 
Bayesian learning and the test parameter 
selection algorithms. The Bayesian learning 
approach updates the probability of stability using 
test results. Before any tests are performed, a 
probability of stability map is generated in the 
spindle speed - axial depth of cut range. This is 
done by discretizing the spindle speed and axial 
depth range into grid points and assigning a 
probability of stability to each point. If the 
information on the frequency response function is 
not available, the probability of stability is decided 
from the knowledge that it is more likely to 
observe an unstable result at higher axial depths 
of cut. In this case, the probability of stability is 
taken to decrease linearly from one at the 
minimum axial depth of cut to 0.01 at the 
maximum axial depth of cut.  After an 
experimental result is made available, the 
probability of stability at each grid point is updated 
using Bayes’ rule as shown in Eq. 1 [4]: 
 

𝑝(𝑠𝑔|𝑟𝑡) =
𝑝(𝑟𝑡|𝑠𝑔)𝑝(𝑠𝑔)

𝑝(𝑟𝑡)
  (1) 

 

In Eq. 1, g is an arbitrary grid point in the spindle 
speed and axial depth domain and t is the test 
grid point. The test result at t, denoted by r, can 
either be stable or unstable.  p(sg) is the prior 
probability of stability at grid point g, p(rt | sg) is the 
likelihood probability of the result r at grid point t 
given grid point g is stable, p(rt) is the probability 
of the test result at grid point t, and p(sg | rt) is the 
posterior probability of stability at grid point g 
given test result r, at grid point t. The Bayes’ 
learning algorithm considers the physics of the 
stability boundary for updating the probability of 
stability. For brevity, the mathematical details of 
the Bayesian learning algorithm are not included 
in the paper; the reader is referred to [4] for 
details.  After a test is completed, the result is 
used to update the probability of stability using 
Eq. 1. The posterior probability of stability 
becomes the prior for the next update and so on.  
 
Using the probability of stability, the optimal test 
parameter is decided based on an expected 
improvement in material removal rate, MRR, 
criterion [4]. The expected improvement in MRR 
at a grid point is given by Eq. 2.  

 

𝐸[𝐼(𝑀𝑅𝑅)]𝑔 = 𝑝(𝑠𝑔) ×
(𝑀𝑅𝑅𝑔− 𝑀𝑅𝑅𝑝𝑟𝑖𝑜𝑟)

𝑀𝑅𝑅𝑝𝑟𝑖𝑜𝑟
      (2) 

In Eq. 2, the optimal MRR before a test is 
completed, denoted as MRRprior, is determined as 
the optimal material removal rate among 
parameters that are stable with certainty. The 
expected improvement in the MRR criterion 
balances the trade-off between the prior 
probability of stability and the improvement in 
MRR if the parameter is stable. To illustrate the 
Bayes’ learning procedure, Figure 5 shows the 
prior probability of stability. Recall that the axial 
depth of cut and spindle speed range for the 
testing was 0 mm – 8 mm and 5000 rpm – 9000 
rpm. For the prior probability of stability, it is 
assumed that the information of the tool 
frequency response function is not known. The 
probability of stability decreases linearly from one 
at 0.01 mm to 0.01 at 8 mm. Note that classical 
stability analytical models consider stationary 
dynamics of the tool point FRF in a fixed 
coordinate frame. The structural dynamics of the 
instrumented tool holder change as the spindle 
rotates. It is shown that the stability diagram for a 
rotating asymmetric dynamic system changes [5]. 
This further presents the motivation for using an 
uninformed prior shown in Fig. 5 for the 
instrumented tool holder with asymmetric rotating 
dynamics.  
 
The optimal parameter before any test is {9000 
rpm, 0.01 mm}. The spindle speed and the axial 
depth of cut range are discretized in intervals of 
10 rpm and 0.01 mm, respectively. The expected 
improvement in percentage material removal rate 
at each grid point is calculated using Eq. 2. Figure 
6 shows the results. The optimal parameters for 
the first test are {9000 rpm, 4 mm}; this is shown 
as a yellow half-circle in Figure 6.  
 

Figure 5. Prior probability of stability. 
 



 

 

Figure 6. Expected improvement in percentage 
material removal rate for the first test.  
 
RESULTS 
As noted, the optimal test parameters are 
communicated to the TU Wien, Vienna, Austria. 
The test parameters were manually entered on 
the CNC machine and the test was completed. 
Future work will focus on automating the 
procedure by communication with the machine 
controller. The first test at {9000 rpm, 4 mm} was 
stable (see Figure 3). Figure 7 shows the updated 
probability of stability using the first test result and 
Figure 8 shows the expected percentage 
improvement in MRR for the second test. The 
optimal parameters for the second test were 
{9000 rpm, 5.2 mm}. The iterative testing 
procedure was repeated till the expected 
improvement in percentage MRR was less than 
1%. Figure 9 shows the final results. The optimal 
parameters were {8700 rpm, 6.7 mm} after 11 
tests. The maximum expected improvement in 
MRR after the 11th test is 0.2%, indicating 
convergence to the optimal parameters.  

Figure 7. Updated probability of stability after a 
stable result at {9000 rpm, 4 mm}. 

Figure 8. Expected improvement in percentage 
material removal rate for the second test.  
 

Figure 9. Updated probability of stability after 11 
tests; the optimal stable parameters were {8700, 
6.7 mm}. 
 
CONCLUSIONS 
This paper demonstrated a remote Bayesian 
learning approach for optimal stable parameter 
selection in milling. The test cuts were completed 
at the TU Wien, Vienna, Austria, and monitored 
with a sensory tool holder instrumented with an 
accelerometer. The data was shared through the 
cloud with Oak Ridge National Laboratory, Oak 
Ridge, Tennessee, USA, and the University of 
Tennessee, Knoxville, Tennessee, USA. The 
accelerometer data was used to classify the test 
cut as stable and unstable. The test result was 
used to update the probability of stability using a 
Bayesian learning method and select optimal test 
parameters, which were communicated back to 
the TU Wien for subsequent testing. The iterative 
process between two transatlantic locations was 
repeated and converged within 11 test cuts, 
achieving an optimal process parameter set.  
 
The described approach can be automated to 
enable optimizing machining processes in 
production environments through data sharing 



 

 

with a central location where the analysis is 
completed. The sensory tool holder enables 
continuous monitoring of the milling process. The 
combination of sensory tool holder and Bayesian 
stability map updating enables optimizing milling 
operations across different machines and tools. 
Future work will focus on monitoring production 
parts with the sensory tool holder and enabling a 
self-optimizing milling operation, where process 
parameters are updated in each successive run 
to converge to the optimal stable parameters.  
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