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INTRODUCTION 
In this paper, an integral blade rotor (IBR), or 
blisk, is used as the test case for the development 
and implementation of a physics-guided machine 
learning (PGML) framework for milling 
performance improvement. The project is 
motivated by the importance and inherent 
challenges of the computer-numerically 
controlled (CNC) machining industry. There is 
significant cost embedded in the starting material, 
capital resources, and hourly rates, making it 
essential that parts are not scrapped and the 
machine/tooling is not damaged. Part production 
that conform to design drawing specifications in a 
first-part-correct, high-profit scenario requires 
that the machining parameters, including depths 
of cut, spindle speed, and feed rate, as well as 
the material removal strategy embedded in the 
computer-aided manufacturing (CAM) toolpath, 
are optimized. 
 
PGML 
The first step of the PGML approach is the 
selection of: 1) cutting tools applicable to the 
design geometry; and 2) initial machining 
parameters provided by tool manufacturer 
recommendations and common industry 
handbooks; the latter provides a baseline to 
benchmark performance improvement. Second, 
a digital twin of the machining process is defined 
by physics-based models. This includes 
measurement of the tool tip frequency response 
function (FRF) using tap testing, where an 
instrumented hammer is used to excite the tool tip 
and the response is measured using a low-mass 
accelerometer. The cutting force model is 
selected using the workpiece material and prior 
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experience/literature review. The cutting force 
model and tool tip dynamics are then used to 
define stable spindle speed-axial depth of cut 
combinations that avoid self-excited vibration, or 
chatter, which results in large cutting forces and 
poor surface finish [1]. Third, the machining 
parameters are used to generate toolpaths in 
HyperMill™, a CAM software. Finally, the 
Production Module™ software from Third Wave 
Systems is used to update the feed rates, 
optimize tool paths, and predict cycle times [2]. 
 
Within the PGML framework, the machining 
stability predictions from the physics-based 
models are used as training data for a Bayesian 
machine learning model [3]. The prior (initial 
beliefs about milling stability) is defined using two 
approaches: 1) uninformed, where the only 
information used is the tendency for stability to 
decrease with increasing axial depth; and 2) 
informed, where the physics-based models are 
incorporated in a Monte Carlo simulation to 
include input uncertainties and define the spindle 
speed and axial depth-dependent probability of 
stability. 
 
Given the prior, milling tests are completed to 
update the probability of stability as a function of 
spindle speed and axial depth of cut. The 
frequency content of sound data collected during 
the milling process is analyzed to label a test as 
stable (content only at the tooth passing 
frequency and its multiples), or unstable/chatter 
(content also present at other frequencies) [1]. 
The tests are used to update the probability of 
stability using the Bayesian machine learning 
method [3]. The updated probability of stability 
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(which represents new beliefs about stability after 
several tests) is finally used to select optimal 
material removal conditions. 
 
EXPERIMENTAL SETUP 
For an initial machining trial, a mock IBR 
geometry was designed with straight blades. This 
design consisted of three blades that were 2 mm 
thick and 25.4 mm tall. The material was 6061-T6 
aluminum. See Fig. 1. 
 

FIGURE 1. Straight blade IBR design. 
 
An endmill was selected and the spindle speed 
and feed rates for partial radial immersion and 
slotting conditions were recorded from the tool 
manufacturer. The recommended feeds and 
speeds were used as input parameters for part 
programming. The tool dimensions and 
recommended machining parameters are 
provided in Table 1. 
 
TABLE 1. Tool geometry and machining 
conditions. 

Teeth 
Corner 
style 

Diameter 
(mm) 

Max 
axial 
depth 
(mm) 

Material 

3 Square 12.7 25.4 
PVD 

coated 
carbide 

Recommended down milling for 6061-T6 Al 

Condition 
Spindle 

speed (rpm) 

Axial 
depth 
(mm) 

Feed 
per 

tooth 
(mm) 

Slotting 

6264 - 
24828 

6.35 

0.102 Side milling 
(10% radial 
immersion) 

25.4 

 

The machining strategy was as follows: 
▪ face the workpiece top; 
▪ profile the width of the blades; 
▪ rough the blades at maximum stable slotting 

depth; 
▪ finish blades;  
▪ repeat roughing and finishing operations in 

axial steps (equal to maximum stable slotting 
depth) down the blade height. 

 
This machining strategy was chosen to retain the 
blade stiffness. Finishing passes only took place 
at the current bottom of the blades (stiffest 
location) as the cycle progressed. Alternatively, 
roughing the entire height of the blades would 
have significantly increased the compliance of the 
blades and, subsequently, the time required for 
the finishing process. This strategy enabled the 
stability analysis to consider only the tool 
dynamics.  
 
Machining trials were completed on a Haas VF-4 
three-axis computer numerically controlled 
(CNC) milling machine. A low-mass 
accelerometer and instrumented hammer were 
used to measure the tool tip FRF in both the x and 
y machine axes; see Fig. 2. The measured FRF 
and cutting force model were used to construct a 
stability map for the selected tool-holder-spindle-
machine assembly [1]. This map was used to 
establish the prior (initial beliefs) for the PGML 
updating. This was done by assigning 
uncertainties in the cutting force coefficients and 
propagating them through the stability model 
using a Monte Carlo simulation [4]. 
 

FIGURE 2. Endmill modal tap test. 
 
To update the PGML model, audio content from 
test cuts was recorded using a Shure SM94 
instrument microphone. Best results were 
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obtained with the microphone located inside the 
enclosure.  
 

 
FIGURE 3. Machining audio sampling. 
 
The time domain audio content was converted to 
the frequency domain using the fast Fourier 
transform (FFT). Test cuts were performed for 
slotting and 50% radial immersion (6.35 mm 
radial depth). The audio signal frequency content 
and visual inspection of the surface finish were 
used to determine if the spindle speed-axial depth 
combination was stable or unstable. For a stable 
combination, the frequency content occurs at the 
tooth passing and its multiples. FIGURE 4 shows 
a comparison of the frequency content for stable, 
2.3 mm, and unstable, 3.0 mm, axial depths for 
slotting passes with a spindle speed of 7310 rpm 
(365.5 Hz tooth passing frequency).  
 

 
FIGURE 4. Stable (top) and unstable (bottom) 
frequency domain content for slotting tests. 
 

The results from the trials were used to update 
the probability of stability using the Bayesian 
machine learning method. The test parameters 
were determined using an expected improvement 
in material removal rate criterion [3]. The tests 
were terminated when the expected improvement 
in material removal rate was less than 5%. The 
details of the Bayesian learning algorithm and 
test parameter selection are described in [3].  
 
The straight bladed IBR design was used as the 
initial test case for the PGML framework. The 
geometry was then updated to include more 
realistic curved blades; see Fig. 5. 
 

 
FIGURE 5. Curved blade IBR design. 
 
The fixed-level roughing and finishing strategy 
previously detailed was adapted for the curved 
blade design. Videos were recorded for all 
machining cycles to document time savings seen 
at the machine and compare to software 
predictions. 
 
PRODUCTION MODULE 
Production Module™ (PM) is a toolpath level 
analysis and optimization software offered by 
Third Wave Systems [2]. PM has configurable 
machine kinematics that refine cycle time 
predictions as compared to CAM software by 
including acceleration/deceleration rates for rapid 
and feed motions. For cycle time reduction and 
program optimization, gain multipliers were set to 
increase the calculated mean tangential force on 
the tool while limiting the maximum in-cut feed 
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rate and load per unit length (average tangential 
force divided by tool-workpiece interference 
length). PM’s optimization process overwrites the 
commanded feed rate in the toolpath program to 
achieve the scaled tangential force. The 
optimization values used for both toolpath 
programs in this study are described in Table 2. 
 
TABLE 2. Production Module optimization 
multipliers. 

Tangential force 1.2 

Load per unit length 1.3 

Max in-cut feed rate 1.5 

 
The roughing and finishing cycles were separated 
in PM to accurately scale the mean tangential 
force for each respective machining operation. 
  
RESULTS AND DISCUSSION 
Modal tap testing provided the vibrational 
response for the tool-holder-spindle-machine 
assembly used in this study. A stability map was 
constructed for slotting conditions; see FIGURE 
6. Any spindle speed and axial depth combination 
contained under the solid boundary (in the 
unshaded region), was expected to be stable. 
Meanwhile, combinations greater than the 
boundary were expected to be unstable.  
 

FIGURE 6. Slotting stability map. 
 
The dotted line in Fig. 6 shows the recommended 
axial depth for slotting provided by the tool 
manufacturer. The recommended depth was 
significantly greater than the measured stability 
limit for the machine’s entire spindle speed range. 
Results for machining tests using the 
recommended cutting conditions are displayed in 
Fig. 7. 

FIGURE 7. Machining results using 
manufacturer-recommended parameters. 
 
FIGURE  displays the probabilistic stability 
diagram for slotting that the PGML framework 
produced with an uninformed prior. In this case, 
the tap test and force model data were not used 
to determine the prior probabilities. The prior 
probability was assumed  to reduce linearly with 
increasing axial dept. The color gradient 
represents the probability of stability, with 1.0 
(gray) indicating stable and 0.0 (white) indicating 
unstable parameters. The results of 18 test cuts 
are included. The predicted stability limit for 
slotting was identified to be 2.3 mm at 7130 rpm.  
 

 
FIGURE 8. Probabilistic stability lobe diagram 
with uninformed prior. 
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FIGURE 9. Probabilistic stability lobe diagram 
with informed prior. 

FIGURE  shows the probabilistic stability limit 
where an informed prior was implemented. In this 
case, the tap test FRFs, cutting force model, and 
corresponding uncertainties were included in a 
Monte Carlo simulation to establish the 
probability of stability. For this prior, only three 
test cuts were required. The maximum stability 
limit was 2.6 mm at 7000 rpm. The informed prior 
stability limit was used to program the toolpaths 
for both the straight and curved blade geometries. 

FIGURE 10. Production Module results: 1) force analysis and optimization targets for straight blade 
program; 2) optimized and unoptimized comparison for straight blade program; 3) force analysis and 
optimization targets for curved blade program; and 4) optimized and unoptimized comparison for curved 
blade program. 
 
TABLE 3. Cycle time predictions and recorded improvements for PM toolpath optimization.  

Program 
Unoptimized Optimized Improvement 

source time (s) source time (s) (%) time (s) 

Straight 
blade 

hyperMILL 159 hyperMILL - - - 

Production 
Module 

287 
Production 

Module 
216 24.7 -71 

actual 304 actual 240 21.1 -64 

Curved 
blade 

hyperMILL 350 hyperMILL - - - 

Production 
Module 

429 
Production 

Module 
273 36.4 -156 

actual 441 actual 286 35.1 -155 

FIGURE 1010 shows the PM force analysis and 
optimization effort for the straight and curved 
blade programs. The cycle times for both 
programs were reduced significantly within PM 
and as recorded on the machine. The mean 

tangential force in the straight blade program was 
nearly constant for the roughing and finishing 
operations. The optimization process resulted in 
a consistent increase of the feed rate, and 
subsequent force, that resulted in the cycle time 



ASPE 36th Annual Meeting, November 1-5, 2021, Minneapolis, MN 

reductions listed in TABLE 3TABLE 3. Cycle time 
predictions and recorded improvements for PM 
toolpath optimization. 
 
The tangential force in the curved blade program 
fluctuated much more due to the changing radial 
engagement and curvature of the design 
geometry. The feed rate adjustments resulted in 
a more continuous force profile with maximum 
values that were less than the peak forces 
observed in the original toolpath. For both 
programs, the out-of-cut time was decreased 
considerably. The in- and out-of-cut optimization 
of the straight and curved blade programs 
resulted in cycle time reductions of 21.1% and 
35.1%, respectively. The recommended 
parameters from the tool manufacturer did not 
provide suitable machining conditions (i.e., 
chatter occurred) and, therefore, no comparative 
improvement through the PGML process was 
available. This shows that accurate 
recommendations for CAM programming 
requires knowledge of the tool tip dynamics.  
 
CONCLUSIONS 
This paper demonstrated a physics-guided 
machine learning (PGML) framework for milling 
performance improvement. The application was 
integral blade rotor (IBR), or blisk, machining. 
 
The PGML framework provided optimized 
machining conditions using two scenarios: 1) an 
uninformed prior, where the only information used 
was the tendency for stability to decrease with 
increasing axial depth; and 2) an informed prior, 
where a physics-based stability model was 
implemented that used the tool tip FRF and force 
model together with a Monte Carlo simulation to 
include input uncertainties and define the spindle 
speed and axial depth-dependent probability of 
stability.  
 
Given the prior, milling tests were completed to 
update the probability of stability as a function of 
spindle speed and axial depth of cut. The 
frequency content of sound data was collected 
during the milling process and analyzed to label a 
test as stable or unstable/chatter. The tests were 
used to update the probability of stability using 
Bayesian machine learning approach. The 
updated probability of stability (which represents 
new beliefs about stability after several tests) was 
finally used to select optimal material removal 
conditions. It was shown that the machining 
parameters recommended by the manufacturer 
did not produce acceptable IBRs (chatter 

occurred), while the optimized parameters were 
stable and provided the required surface finish. 
 
Additionally, the toolpaths were optimized using 
Production Module™ (PM), a toolpath level 
analysis and optimization software offered by 
Third Wave Systems. Cycle time reductions of 
21.1% and 35.1% were obtained for the two IBR 
designs (straight and curved blades). 
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