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This paper describes a two-step (additive + subtractive) hybrid manufacturing approach for a laser pow-
der bed fusion 316L stainless steel constrained-motion cutting force dynamometer (PBF CMD). The pur-
pose of the research is to produce a near-net shape metallic dynamometer via additive manufacturing
(AM) with post-processing by machining and wire-EDM to achieve the desired surface finish and perfor-
mance. A cutting force comparison is presented with a commercially-available dynamometer.

© 2021 Society of Manufacturing Engineers (SME). Published by Elsevier Ltd. All rights reserved.

1. Introduction

In manufacturing research, metal cutting mechanics have been
studied for more than a century [1-3]. Due to the complexity of
material removal processes, the modeling of cutting mechanics
remains an area of academic and industrial interest. The cutting
force signal is fundamental to the understanding, modeling, and
evaluation of machining processes. The force signal can be used
for process optimization, such as: 1) adaptive feed rate control to
maintain the applied force at a predetermined level [1-4]; 2) chat-
ter detection [1-2,4-10]; 3) tool wear evaluation [8-10]; and 4)
detection of tool breakage in milling [8-10]. Multi-axis piezoelec-
tric dynamometers are a popular choice for cutting force measure-
ment. These dynamometers rely on specific piezoelectric
transducer arrangements and the structural dynamics of the sys-
tem, while stiff, are not rigid. Although these systems offer a large
measuring range, high sensitivity, and fast response time, the sys-
tematic errors caused by their complex structural dynamics must
generally be compensated using advanced post-processing tech-
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niques [11-13]. This research builds upon the concepts introduced
by [14], where the dynamometer structural dynamics are a princi-
ple component in the mechanical design and are easily altered
with material selection and flexure element geometry and arrange-
ment. It was reported that the constrained-motion cutting force
dynamometer (CMD) achieved a high-resolution force response
within a prescribed measurement bandwidth using a structural
deconvolution procedure [14,15] at a significantly lower cost than
traditional piezoelectric dynamometers. The integration of the
CMD on the machine table lowers the influence of transmissibility
behavior which may occur if the machining point is sufficiently far
away from the measuring system [5].

In this paper, the development and verification of a CMD man-
ufactured by powder bed fusion (PBF) and machining is presented.
The intent is to produce a near-net shape metallic dynamometer
via PBF with post-processing by machining to achieve the desired
surface finish and performance. While prior research efforts have
focused on alternative dynamometer designs and cutting force sig-
nal compensation for existing piezoelectric systems, to date, the
development of a cutting force dynamometer produced by a hybrid
manufacturing approach has not been reported. This novel
approach offers design freedom, customization, and part count
reduction compared to traditional cutting force dynamometers
[16,17].

2. Hybrid manufacturing process description

A monolithic PBF CMD is constructed to measure milling forces
in two directions. The design includes four leaf-type flexure
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Table 1
Hybrid manufacturing detail for the PBF CMD.
Operation Machine Tool details Description Operation
time
PBF (316L SS) Farsoon FS271M Spherical powder with 15-45 um diameter. Laser power of 300 W with a  Generation of the near-net 20 h
1000 mm/s scan velocity. Laser spot size of 133 um with a layer thickness additive preform.
of 40 pm.
Face and Haas TM-1P 5-flute solid carbide endmill (19.05 mm diameter) Removal of the rough PBF 20 min
peripheral vertical milling surface on the base of the
milling machine additive preform
(bottom)
Wire-EDM Sodick AQ750LH Brass wire (0.254 mm diameter) Removal of the additive preform 4 h
wire-EDM machine from build plate
Face and Makino A51nx 5-flute solid carbide endmill (19.05 mm diameter) Removal of support material, 5 min
peripheral horizontal milling rough PBF and wire-EDM
milling (top) machine surfaces
Helical milling 2-flute solid carbide endmill (4.0 mm diameter) Removal of excess material in 15 min
printed holes for thread milling
Thread milling 3-flute solid carbide single point thread mill (2.5 mm diameter) Removal and generation of 15 min

threads required for workpiece
mounting

' (a)iin o
AMPBTETorTi

Support
‘/materia!

L Workgém
_ holgs (1/4%2055)" -
o

PBF
surface

Fig. 1. PBF CMD additive preform on the build plate (a), detail of the additive preform after a reference datum was machined on the base (b), rough surface resulting from
wire-EDM operation (c), setup for the generation of functional threads by a combination of helical and thread milling operations (d), hybrid manufactured PBF CMD top view
(e) and bottom view (f) showing the optical interrupter placement on the base of the dynamometer.

elements in a symmetric dual four-bar linkage arrangement which
guides the movable platform. The CMD design and corresponding
flexure leaf geometry are analogous to the CMD presented in
[14]; the purpose of this paper is to augment the design procedure,
outlined previously, to add a hybrid manufacturing approach using
an additively produced metallic alloy. The additive preform was
produced using a Farsoon FS271M PBF printer with a Yb fiber laser
(500 W). The printing details and steps required for the hybrid
manufacturing process are provided in Table 1 and the additive
preform is shown in Fig. 1(a-f). For force measurement, displace-
ment is inferred from the optical interrupter, identified in Fig. 1
(f). In this approach, a knife edge is attached to the movable plat-
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form and partially blocks the optical beam during motion caused
by the milling force. This low-cost sensor has the added benefit
of a compact footprint and fast response time (10 us) without
the need for a supplementary amplifier.

3. Results and discussion

To complete the structural deconvolution procedure, the fre-
quency response function (FRF) for the PBF CMD is required. Since
clamping (boundary) conditions can affect the dynamic response,
the PBF CMD was bolted to the machine table with the guided
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Fig. 2. Experimental setup and cutting conditions for milling force measurement (a). Direct frequency response function (FRF) measurement results for the endmill and PBF
CMD under clamped (bolted) boundary conditions with a mounted workpiece; semi-logarithmic magnitude (b), phase (c), and coherence (d) are presented. The results are an

average of 10 measurements.

motion occurring in the x-direction; see Fig. 2(a). To measure the
FRFs, modal impact tests were performed on the PBF CMD in the
experimental configuration; the measured FRFs are displayed in
Fig. 2(b-d). The estimated static stiffness for the x- and y-
directions were 6.47 x 10’N/m and 2.28 x 108N/m, respectively.

To compare the PBF CMD with a piezoelectric dynamometer
(Kistler 9257B), independent cutting tests were completed on a
Haas TM-1P vertical milling machine. The cutting performance
was evaluated using the same cutting tool inserts (Sandvik Coro-
mant® 390R-070204E-MM) on nominally identical workpieces
with identical cutting and clamping conditions. With reference to
Fig. 2(a), the x- and y-direction force measurements were realized
by adjusting the table feed direction to x and y, respectively. This
procedure allows for the x- and y-direction force components to
be measured separately without the need for an additional optical
knife edge sensor.

Once the FRF is obtained, the structural deconvolution proce-
dure proceeds by converting the time-domain displacement
(scaled voltage from the optical interrupter) to the frequency
domain using the discrete Fourier transform (DFT). Next, the
frequency-domain displacement is converted to frequency-
domain force using the inverted PBF CMD FRF; see Eq. (1) [14,15].

Fo) = |7 (w)F X(w) (1)

67

A lowpass digital filter (3rd order Butterworth) is convolved
with the inverted FRF to attenuate high frequency noise in the dis-
placement signal. In this case, the filter corner frequency was set at
the dynamometer’s natural frequency (866 Hz from Fig. 3(b))
[14,15]. The inverse DFT is then applied to the Eq. (1) result to con-
vert the force to the time domain.

To enable direct comparison between the PBF CMD and piezo-
electric dynamometer, a compensation technique based on inverse
transmissibility filtering was used to truncate the unwanted fre-
quency content in the cutting forces measured by the piezoelectric
dynamometer [18-20]; see Fig. 3(a-e). Good agreement is
observed between the CMD and piezoelectric dynamometer at
three different spindle speed (tooth passing frequency) values.
The measured time-dependent cutting force profiles from both
dynamometers is dependent on the runout in the endmill teeth
as mounted in the holder and spindle. This is because spindle axis
rotation errors, offsets between the holder centerline and spindle
axis of rotation, and offsets between the tool centerline and holder
centerline can lead to differences in chip thickness [1]. The tool-
holder-spindle system runout inherently appears in the measured
force record at all spindle speeds. For this study, the PBF CMD was
capable of accurately measuring cutting forces within a bandwidth
of approximately 2.5 kHz.
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Fig. 3. Comparison of the PBF CMD (blue solid line) and filtered piezoelectric dynamometer (black dash-dot line) cutting forces for the x-direction (left column) and y-
direction (right column) at 1000 rpm (a-b), 3000 rpm (c-d), and 6000 rpm (e-f). The fundamental tooth passing frequency for the presented results are 83.3 Hz, 250 Hz, and
500 Hz, respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

4. Conclusions

The limited setup and machining time, coupled with monolithic
design concepts, enable rapid development and iteration for a cut-
ting force dynamometer manufactured using PBF and machining.
The concepts introduced can be adopted for alternative CMDs
which leverage the design freedom afforded by the hybrid manu-
facturing approach. Experimental results were presented which
validate the PBF CMD against a piezoelectric, industry-standard
dynamometer. Future efforts will be targeted at new designs and
advanced filtering techniques to advance this technology.
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