
Journal of Manufacturing Systems 59 (2021) 522–534

Available online 10 April 2021
0278-6125/© 2021 The Society of Manufacturing Engineers. Published by Elsevier Ltd. All rights reserved.

Physics-guided logistic classification for tool life modeling and process 
parameter optimization in machiningz.star; 

Jaydeep Karandikar a,*, Tony Schmitz a,b, Scott Smith a 

a Manufacturing Science Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA 
b Department of Mechanical, Aerospace, and Biomedical Engineering, University of Tennessee, Knoxville, TN, 37996, USA   

A R T I C L E  I N F O   

Keywords: 
Machine learning 
Classification 
Machining 
Tool life 
Optimization 
Uncertainty 

A B S T R A C T   

This paper describes a physics-guided logistic classification method for tool life modeling and process parameter 
optimization in machining. Tool life is modeled using a classification method since the exact tool life cannot be 
measured in a typical production environment where tool wear can only be directly measured when the tool is 
replaced. In this study, laboratory tool wear experiments are used to simulate tool wear data normally collected 
during part production. Two states are defined: tool not worn (class 0) and tool worn (class 1). The non-linear 
reduction in tool life with cutting speed is modeled by applying a logarithmic transformation to the inputs for the 
logistic classification model. A method for interpretability of the logistic model coefficients is provided by 
comparison with the empirical Taylor tool life model. The method is validated using tool wear experiments for 
milling. Results show that the physics-guided logistic classification method can predict tool life using limited 
datasets. A method for pre-process optimization of machining parameters using a probabilistic machining cost 
model is presented. The proposed method offers a robust and practical approach to tool life modeling and process 
parameter optimization in a production environment.   

1. Introduction 

Tool life is one of the significant limitations to machining produc
tivity. The wear mechanisms that lead to tool wear are abrasion, adhe
sion, diffusion, and attrition [1,2]. In a production environment, 
pre-process prediction of tool life as a function of process parameters 
for a given tool-material combination is important for process parameter 
optimization. This is because there exists a trade-off between machining 
time per part and tool life; this is due to a reduction in tool life with an 
increase in material removal rate. This is illustrated in Fig. 1 which 
shows the dependence of machining cost per part with cutting speed. At 
low cutting speeds, machining time dominates the total machining cost 
per part due to low material removal rates. An increase in cutting speed 
increases the material removal rate, which reduces the machining time. 
However, tool life reduces with cutting speed. Therefore, at high cutting 
speeds, tool life and tool change time dominate the machining cost per 
part due to low tool life requiring multiple tool changes. The optimal 

cutting speed balances the trade-off between machining time and tool 
life. 

There have been three distinct approaches for modeling tool wear 
and tool life presented in the literature: empirical [3–5], physics-based 
[6–9], or stochastic methods using probabilistic and reliability ana
lyses [10–15]. The three approaches need model coefficient calibration 
through tool wear experimentation. For example, the wear model pro
posed by Usui et al. [7,8], requires experimentation for calibration of the 
model coefficients A, and B. Response surface methods or empirical 
models need experiments to calibrate the model coefficients. Similarly, 
probabilistic methods such as reliability analysis [11,12], or Bayesian 
updating [13,11–15] need experimentation to calculate the probability 
distributions for tool life as a function of process parameters. This pre
sents a significant limitation in implementing any approach for tool life 
modeling in a production environment. Although the predictive capa
bilities for these approaches are good after the model coefficients are 
calibrated, they cannot be generalized for different tool-material 
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combinations. The calibrated model coefficients and the associated tool 
life predictions are specific to the tool and material combination tested, 
so the calibration experiments must be repeated for all unique 
tool-material combinations. Furthermore, the model coefficients are 
only valid in the range of the test parameters. The extensive tool life 
experimentation needed to calibrate the tool life predictive models is 
expensive and time-consuming and, therefore, infeasible in a production 
environment for many tool-material combinations. 

This paper presents the application of machine learning (ML) for tool 
life modeling using production parts tool wear data as a practical 
method for predicting tool life and process parameter optimization in a 
production environment. Machine learning methods enable the identi
fication of patterns from underlying data [16,17]. The concept imple
mented here is to consider the production of real parts as tool wear 
experiments and use the collected tool wear data in a machine learning 
framework for predicting tool life. The advantage of the proposed 
approach is that separate tool wear experiments need not be performed 
to calibrate model coefficients. Instead, the tool wear information 
collected during part production can be used to model tool life. 
Furthermore, data collected during the production of actual parts is 
more representative of the tool performance as opposed to tool wear 
experiments performed in a controlled laboratory environment on a test 
workpiece. The proposed approach is motivated by two challenges. 
First, in a production environment, tool wear can typically be measured 
only at the time of tool change resulting in a single data point on the tool 
wear and machining time curve. The exact time for the end of tool life 
(when the tool wear reaches the predetermined wear limit) is not 
available. Therefore, a regression on tool life values at different process 
parameters cannot be performed. Second, process parameters in a pro
duction environment tend to be clustered at a few preferred parameters. 
These parameters are selected by the programmer based on experience, 
tool manufacturer recommendations, or other ad hoc resources. As a 
result, the machine learning classification model must be extrapolated 
outside the input data range to predict tool life and optimize process 
parameters. To address these challenges, this paper presents a 
physics-guided logistic machine learning classification method for 
modeling tool life through input variable transformation. Since the exact 
time for the end of tool life cannot be typically measured in a production 
environment, tool life is modeled with machine learning classification. 
Two classes are defined: tool not worn (class 0) and tool worn (class 1), 
based on the measured tool wear level. If the predefined wear limit is 
greater than the measured tool wear, the tool is not worn (class 0); 
otherwise, it is worn (class 1). For a given set of process parameters, the 
predicted tool life is the ML classification decision boundary in time that 
separates the two classes. 

There have been many efforts in the literature on the application of 
data-driven and ML methods for tool life monitoring. Wang et al. used a 
Bayesian learning approach for an event-driven tool condition 

monitoring approach; the Bayesian method was used to predict the 
remaining useful life using monitored sensor data [18]. Liu et al. used 
spindletorque to monitor tool wear for repitive operations using a sim
ilarity metric [19]. Wang et al. developed a physics-guided neural 
network using force and vibration to predict in-process tool wear [20]. 
Corne et al. used spindle power in drilling with neural network to 
monitor tool wear [21]. Additional examples in the literature on the 
application of machine learning for tool wear monitoring are provided 
by references [18–24]. As seen in references [18–24], the objective of 
using ML for tool life monitoring is the real-time prediction of tool wear 
or remaining useful tool life using in-process sensor data such as cutting 
force or vibration. The application of ML for tool life monitoring does 
not address the pre-process selection of process parameters and the 
associated expected tool life. A pre-process modeling of tool life as a 
function of process parameters enables a pre-process optimization for 
the cycle time and tool life trade-off presented in Fig. 1. The application 
of ML classification for pre-process modeling of tool life using wear data 
has not been presented in the literature. The method proposed in this 
paper differs from the tool wear monitoring using ML studies presented 
in the literature as follows. First, the objective is a pre-process prediction 
of tool life as a function of process parameters. Second, the proposed 
approach uses direct tool wear measurements completed after the tool is 
replaced and does not need any additional sensors to monitor the 
in-process tool wear. As a result, the method can be used in conjunction 
with the real-time in-process tool wear monitoring methods presented in 
the literature. The method described in the paper can be used for a 
pre-process selection of optimal process parameters and the expected 
tool life. The methods in references [18–24] can be subsequently used 
for in-process tool wear monitoring to account for stochastic tool wear. 
This paper expands on the previous work by the authors [25] by vali
dating the physics-guided logistic model results through experimental 
validation in milling and providing interpretability for the model results 
through a direct comparison with the well-known Taylor tool life model. 
Additionally, a method for optimizing the process parameters using the 
logistic model predictions and a probabilistic cost model is presented. 

The proposed solution has three main advantages. First, modeling 
tool life using the shop floor tool wear data eliminates the need for 
expensive tool life experimentation. Second, using the physics-guided 
logistic model, the process parameter-dependent tool life model can 
be quickly identified using limited datasets collected from production 
parts for each tool-material combination. The model can be subse
quently used to determine the optimal machining parameters to mini
mize machining cost per part. Third, as noted, the method does not need 
in-process sensors to monitor tool wear. The tool wear data can be 
collected by measuring tool wear at the time of tool replacement using a 
low-cost microscope. The remainder of the paper is organized as follows. 
Section 2 describes milling experimental tool life results at different 
cutting speeds and a method to simulate production tool wear data as a 
function of cutting speed. Section 3 shows tool life modeling results for 
the neural network classification method and presents the motivation 
for a physics-guided machine learning classification method. Section 4 
describes the physics-guided logistic classification method using a log
arithmic transformation of the input variables. A method for model 
interpretability is described and the model predictions are validated 
using experimental results. Section 5 describes a modified cost equation 
and the method to select optimal process parameters using the physics- 
guided logistic model tool life predictions. A discussion is provided in 
Section 6 which presents a method to augment imbalanced datasets, a 
hybrid logistic classification model that combines linear and logarithmic 
inputs, and a method to extend the model to multiple variables. 
Conclusion and future work are presented in Section 7. 

2. Experimental results 

This section describes the experimental results used to simulate tool 
wear data from a production environment. Tool wear tests were 

Fig. 1. Machining cost per part as a function of cutting speed.  
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completed on 1018 steel workpiece material in down-milling. The tool 
was a 19.05 mm diameter single-insert endmill (Kennametal 
KICR073SD30333C) with a square uncoated carbide insert (Kennametal 
107,888,126 C9 JC). Three tool wear tests were performed at 149.6 m/ 
min (2500 rpm) and 299.2 m/min (5000 rpm). The feed per tooth was 
0.06 mm, the axial depth of cut was 3 mm, and the radial depth of cut 
was 4.7 mm (25 % radial immersion), respectively. The insert wear 
status was measured at regular intervals using a handheld microscope. 
Fig. 2 shows the progression of flank wear as a function of cut time for 
the first test at 149.6 m/min. No rake wear was observed. Fig. 3 shows 
the maximum flank wear width (FWW) as a function of cut time at 149.6 
m/min and 299.2 m/min. The end of tool life was reached when the 
maximum FWW was 0.3 mm [26]. If the flank wear width exceeded 0.3 
mm at the time of measurement, the tool life was calculated by linear 
interpolation between the two adjacent FWW measurements. The tool 
life results are listed in Table 1. As seen from Fig. 3, the tool life reduced 
with spindle speed. Tool life results listed in Table 1 show variation in 
tool life from repeat tests. 

The experimental results listed in Table 1 were used to simulate 
representative tool wear data collected from production parts in a pro
duction environment. The tool life for both spindle speeds was modeled 
as a normal distribution. The mean tool life, denoted by tm, and the 
standard deviation of tool life, denoted by ts, was calculated from the 
three test results at each speed shown in Table 1. The production envi
ronment data was generated at each cutting speed as follows. First, a tool 
life value was sampled from the normal distribution given by the Table 1 
test results at the selected cutting speed. Second, the tool wear mea
surement time was set by sampling from a uniform distribution in the 
interval [0, tm + 3 × ts]. Third, the tool life sample was compared to the 
tool wear measurement time sample. If the tool life sample is greater 
than the tool wear measurement time, the tool was considered not worn 
(class 0). Otherwise, the tool was worn (class 1). Fig. 4 shows the 
simulated data points; the left panel displays 10 data points at 149.6 m/ 
min and the right panel displays the data points at 299.2 m/min. In 
Fig. 4, blue denotes tool not worn (class 0) and red denotes tool worn 
(class 1). The data shown in Fig. 4 can be interpreted as data collected 
for a tool-material combination from multiple machines making 
different parts in a production environment. The two cutting speeds, 
149.6 m/min (2500 rpm) and 299.2 m/min (5000 rpm), can be 
considered as preferred speeds for the tool-material combination. As 
noted, in a typical production environment, the cutting speed is selected 
by the programmers based on experience, tool supplier recommenda
tions, or other resources. Since the tool life is not known, a tool is used 
for an interval informed by experience, part geometry, and/or volume 
removed for a given material removal rate. As seen in Fig. 4, the data has 
more points where the tool is not worn (16) than when the tool is worn 
(4). This is illustrative of the data collected from different production 
parts during operation in a production environment. The simulated data 
is not perfectly separable because the tool worn and the tool not worn 

data points overlap. This accounts for the tool life non-repeatability (and 
subsequent uncertainty) observed in Table 1. Note that the objective of 
the data simulation is to test the ML models on a dataset that mimics 
data collected from a typical production environment. 

3. Neural network classification for tool life modeling 

Section 2 described the experimental results and a method to simu
late production environment data. In this section, the simulated data is 
used to train a neural network (NN) classifier. Recall that the tool life is 
given by the classifier decision boundary which separates the tool not 
worn (class 0) and tool worn (class 1) classes. The NN classifier consists 
of multiple layers; the first layer is an input layer, the final layer is an 
output layer, and they are separated by one or more hidden layers. Each 
layer has nodes (or neurons). There is an activation function for each 
node in the hidden layers and the output layer that transforms the sum of 
each output of the previous layer nodes multiplied by a weight and a bias 
term, b [27]. This is shown in Eq. 1, where a is the output of a node, g is 
the activation function, w is the weight, b is the bias, n is the number of 

Fig. 2. Progression of flank wear as a function of cut time; from left to right, the cut time was {23.6, 64.5, 99.8, and 129.6} minutes.  

Fig. 3. Flank wear width as a function of cut time at 149.6 m/min (2500 rpm) 
and 299.2 m/min (5000 rpm). 

Table 1 
Experimental tool life results at 149.6 m/min and 299.2 m/min.  

Experiment 
number 

Cutting speed (m/ 
min) 

Spindle speed 
(rpm) 

Tool life 
(min) 

1 149.6 2500 50.1 
2 149.6 2500 68.5 
3 149.6 2500 72.0 
4 299.2 5000 11.5 
5 299.2 5000 8.5 
6 299.2 5000 9.5  
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nodes in layer l, and j and i correspond to individual nodes in layers l and 
l-1, respectively. 

a[l]
j = g[l]

(
∑n[l− 1]

i=1
w[l− 1]

j,i a[l− 1]
i + b[l]

j

)

(1) 

The hyperbolic tangent activation function is one of the most com
mon type of activation function. See Eq. 2, where z is the total output 
given by the bracket term in Eq. 1. 

g(z) =
sinhz
coshz

=
ez − e− z

ez + e− z (2) 

The activation function of the output layer is the softmax (also called 
normalized exponential) function for binary classification problems. The 
softmax function normalizes the output of each node by the sum of the 
output for all nodes. The output of the softmax function can then be 
interpreted as the probability that the sample belongs to a particular 
class. Eq. 3 shows the softmax activation function. 

g(z) =
ez

∑n

i=1
ez

(3) 

In Eq. 3, i denotes the number of nodes in the output layer. The 
weights and bias values for each layer are learned by minimizing the 
binary cross-entropy loss function shown in Eq. 4, where L denotes the 
loss, m denotes the total number of data points used for training the 
network, yk is the true class for sample k, and ̂yk is the predicted class for 
sample k. 

L = −
1
m
∑m

k= 1
[yk∙log(ŷk) + (1 − yk)∙log(1 − ŷk) ] (4) 

The loss function can be regularized by adding a term α
2m

⃦
⃦w[l]

⃦
⃦2 where 

‖∙‖2 is the L2 norm. The regularization parameter mitigates the over
fitting of the weights by assigning a penalty to the loss function; this 
prevents the weights from taking large values [27]. The loss function is 
minimized through gradient descent-based methods [27]. The idea is to 
take a step in the direction where the local gradient in the loss function is 
the highest. This is calculated using a derivative of the loss function 
through backward propagation starting with the final layer. For brevity, 
the mathematical details of the optimization algorithms and backward 
propagation are not included in this paper. The reader is referred to 
references [27,28] for details on the training methods for the NN clas
sifier. The NN was trained using the data shown in Fig. 4 with cutting 
speed and time as the inputs. The training was implemented with the 
scikit-learn library in the Python programming language [29,30]. The 
simulated data points were shuffled and separated into a training set (15 
data points) and a test set (5 data points). The training set included three 
of the four tool worn (class 1) data points from Fig. 4 and the test set 

included the remaining tool worn (class 1) data point. The structure of 
the neural network was optimized by considering the number of hidden 
layers and the number of nodes in each layer as hyperparameters. The 
number of candidate hidden layers was taken as either 1, 2, or 3 with the 
number of nodes being either 20 or 50. In addition, a regularization 
parameter, α, was also considered as a hyperparameter. The hyper
parameters were tuned using three-fold stratified cross-validation over 
the training set using the f1-score as a scoring metric. The Adam opti
mization algorithm was used for training the neural network [27]. 
Although a five-fold approach is typically recommended for 
cross-validation, three-fold was chosen in this case due to the small 
training dataset. The hyperparameter tuning was performed using an 
exhaustive grid search by the scikit-learn GridSearchCV function [30]. 
The f1-score was used as a metric instead of accuracy since the dataset is 
imbalanced; using accuracy as a metric can produce a less robust result. 
For example, a model that predicts tool not worn (class 1) for all test 
points would have an accuracy of 0.8. The optimal hyperparameters 
maximize the average f1-score from all three folds. The optimal NN 
structure was found to be three hidden layers with 20, 50, and 20 nodes, 
respectively. The regularization parameter was 0.0177. Fig. 5 shows the 
probability of tool worn (left panel) and the decision boundary (right 
panel) as a function of cutting speed using the trained NN, where the 
probability of tool worn (class 1) for the given {cutting speed, time} 
combination is identified by the gray scale. The decision boundary 
(Fig. 5 right panel) was based on a threshold probability for tool worn 
equal to 0.5. The probability of tool worn is determined from the NN 
output for each cutting speed and time combination discretized with an 
interval of 1 m/min in cutting speed and 0.1 min in time. The training 
data points are represented by the lighter color and the test data points 
by the darker colors. As seen from Fig. 5, the NN classifies the five test 
points accurately. 

3.1. Motivation for a physics-guided classification method 

As noted, in a production environment, the objective of a classifier is 
to predict tool life as a function of cutting speed, which can subsequently 
be used for pre-process optimization of machining parameters to mini
mize the machining cost per part. To validate the result from the trained 
NN network, an experiment was performed at an intermediate cutting 
speed of 224.4 m/min (3750 rpm); the experimental procedure is 
described in Section 2. A tool life of 35.5 min was observed based on the 
0.3 mm maximum FWW criterion. Fig. 6 shows the probability of tool 
worn (class 1) for the trained NN at 224.4 m/min. From a tool life 
modeling standpoint, the probability of tool worn can also be inter
preted as the probability that the tool life is less than or equal to the time 
value on the horizontal axis. The experimental result of 35.5 min is 
shown as a dashed vertical line. Based on the single experimental result 
of 35.5 min, the tool life is slightly underpredicted by the NN; as seen 

Fig. 4. Simulated production tool wear data from laboratory tests at 149.6 m/min (left panel) and 299.2 m/min (right panel). Note the difference in scales for the 
vertical axis. 
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from Fig. 6, the predicted probability of tool worn at 35.5 min was 0.75. 
However, since tool life is non-repeatable, Fig. 6 shows that the trained 
NN can capture the experimental tool life in the predicted distribution. 
This is because, as seen From Fig. 6, the probability of tool life to be 
between 30 min and 40 min is 0.58. 

To evaluate the performance of the NN model outside the training 
data range, a prediction for the probability of tool worn was made in the 
range from 89.7 m/min (1500 rpm) to 448.8 m/min (7500 rpm). Vali
dation tool wear experiments were performed at 89.7 m/min and 448.8 
m/min. Tool life values of 255.3 min and 3.3 min were observed at 89.7 

m/min and 448.8 m/min, respectively. Fig. 7 shows the probability of 
tool worn from the trained NN with cutting speed in the range from 89.7 
m/min to 448.8 m/min. As seen from Fig. 7, the NN performs poorly 
when extrapolating the results outside the input data range. The NN 
predicts a tool life smaller than 0 min at cutting speeds greater than 350 
m/min. At cutting speeds less than 149.6 m/min, the NN cannot 
incorporate the non-linear increase in tool life, and therefore, under
predicts the tool life significantly at 89.7 m/min. This is seen in Fig. 7 
where the NN predicts a tool life of 89.2 min for a 0.5 probability of tool 
worn (class 1) at 89.7 m/min. This is expected since the NN is a data- 
driven approach and cannot generalize at parameters beyond the 
training data set. This is especially true when training a NN with a small 
data set. Results shown in Fig. 7 demonstrate the need for a physics- 
guided ML classification method for tool life modeling. With a small 
dataset, traditional machine learning methods cannot generalize beyond 
the training data and cannot consider the underlying physics or con
straints for a given process. Note that if the number of tool wear data 
points were large (> 100) and uniformly distributed in the entire cutting 
speed range, NN (as well as other ML algorithms) will be able to model 
the underlying tool life accurately. 

4. Physics-guided logistic classification for tool life modeling in 
milling 

This section describes a physics-guided logistic classification for tool 
life modeling. A logistic classifier calculates the probability of class 
membership given input data using the sigmoid function [28] shown in 
Eq. 5 and Eq. 6, where p is the probability, k is the number of input 
features x, y is the class membership, θn are the logistic model param
eters, and g(x) is a linear combination of the k input features. 

p(y = 1x, θ) =
1

1 + e− g(x) (5)  

g(x) = θ0 + θ1x1 + θ2x2 + … θnxk (6) 

The sigmoid function converts the linear output to a value between 
zero and one. In training the logistic classifier, the parameter θn is 
calculated by minimizing the binary cross-entropy loss function shown 
in Eq. 4. The logistic classifier was trained using the simulated data 
shown in Fig. 4. As noted, the simulated data points were shuffled and 
separated into a training set (15 data points) and a test set (5 data 
points). As with the NN, the inputs to the logistic classifier are the cut
ting speed and time. The logistic regularization parameter, λ, was 
treated as a hyperparameter and tuned using three-fold cross-validation 
with the f1-score as a metric. This was done with the GridSearchCV 
function in scikit-learn with a range of λ values from 0 to 1010 [30]. 
Fig. 8 displays the probability of tool worn (class 1) as a function of 
cutting speed from the trained logistic classifier. The probability of tool 
worn shown in Fig. 8 is calculated from the trained logistic model for 

Fig. 5. Probability of tool worn (left panel) and decision boundary (right panel) as a function of cutting speed from the trained NN model; the train data points are 
shown in light and the test data points are shown in dark. 

Fig. 6. Predicted probability of tool worn at 224.4 m/min from the trained NN 
model (solid line) and the experimental result (dashed line). 

Fig. 7. Probability of tool worn from the trained NN model as a function of 
cutting speed; the cutting speed range is extended from 89.7 m/min (1500 rpm) 
to 448.8 m/min (7500 rpm). 
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each cutting speed and time combination discretized with an interval of 
1 m/min in cutting speed and 0.1 min in time. In addition to the 
extrapolation challenges faced by the NN, the logistic classifier is also 
linear and cannot capture the non-linear relationship between tool life 
and cutting speed. 

Even though the logistic classifier is linear, it has three characteris
tics that make it suitable for modeling tool life. First, as shown in Eqs. 5 
and 6, the logistic classifier is easy to interpret, and implement. Second, 
the logistic classifier provides a probabilistic view of class predictions. 
This is important for tool life modeling due to the non-repeatable and 
stochastic behavior of tool life. Third, the logistic classifier can be used 
to model complex non-linear decision boundaries through a simple 
transformation of the input features. For tool life modeling, the input 
features can be modified based on the knowledge of tool life in 
machining. The following assessments can be made from machining 
process knowledge regarding the relationship between tool life and 
cutting speed in machining. First, it is known that tool life reduces non- 
linearly with cutting speed [1,2]. Tool wear is a temperature-driven 
process and the cutting temperature increases with cutting speed. It 
has been established that this relationship can be described by a power 
law [1,2,31–33]. The power law relationship between tool life and 
cutting speed is given by the Taylor tool life equation [31]: 

VTn = C (7) 

In Eq. 7, n and C are coefficients that depend on the tool-workpiece 
combination, T is the tool life, and V is the cutting speed. Taking the 
logarithm of the Eq. 7 Taylor tool life equation gives Eq. 8. 

log(V) + nlog(T) = log(C) (8)  

log(T) = −
1
n

log(V) +
log(C)

n
(9) 

By rearranging terms in Eq. 9, it is seen that the Taylor tool life 
equation is linear in the logarithmic space. This behavior can be incor
porated in the linear logistic classifier by performing a logarithmic 
transformation of input variables: cutting speed and time. This helps 
mimic the behavior of tool life described by the Taylor tool life equation 
and incorporates process knowledge in the logistic model. With this 
transformation, the classifier’s decision boundary is linear in the loga
rithmic domain and follows the non-linear power-law relationship in the 
non-transformed original domain. The logistic classification model was 
trained with the logarithmic values of cutting speed and time shown 
provided in Fig. 4. Fig. 9 shows the probability of tool worn (class 1) 
from the trained logistic model using a logarithmic transformation of the 
input variables; the left panel shows the probability on the logarithmic 
scale for cutting speed and time and the right panel shows the original 
values. As seen from Fig. 9, the logarithmic transformation of the input 
variables enables the logistic classifier to mimic the non-linear expo
nential decrease in tool life with cutting speed. As a result, the logistic 
classifier tool life prediction can be extrapolated outside the data space 
since the exponential decrease in tool life is explicitly modeled in the 
logistic classifier. The tool life prediction increases exponentially at 
cutting speeds smaller than 149.6 m/min and does not become zero at 
cutting speeds greater than 299.2 m/min. As noted, from a tool life 
modeling standpoint, the probability of tool worn (class 1) is also the 
probability that the tool life is less than or equal to the time value on the 
horizontal axis. Fig. 10 shows the probability of tool worn (class 1) as a 
function of time and the experimental result at 89.8 m/min (1500 rpm) 
(top left panel), 224.4 m/min (3750 rpm) (top right panel), and 448.8 
m/min (7500 rpm) (bottom left panel). As seen from Fig. 10, the 
experimental data lies in the predicted distribution of worn tool class at 
all three cutting speeds. Note that the tool life is underpredicted at 224.4 
m/min since the probability of tool worn at 35.5 min is 0.9. However, as 
noted, since tool life is non-repeatable, tool life is better characterized by 
the probabilistic output of the logistic classifier (as opposed to a deter
ministic value given by the decision boundary of the classifier). 

Machine learning (ML) models are generally considered “black box” 
where the ML model provides the relationship, but its structure is not 
interpretable by humans. As noted, cutting speed and time inputs for the 
physics-guided logistic classifier were transformed into the logarithmic 
domain. For a logistic classifier, tool life is given by the decision 
boundary between the two classes which satisfies the equation g(x) =
0 as shown in Eq. 5 and Eq. 6. The logistic decision boundary for the log- 
transformed variables can be rearranged as shown in Eq. 10 and Eq. 11. 

θ0 + θ1log(V) + θ2log(T) = 0 (10)  

log(T) = −
θ1

θ2
log(V) −

θ0

θ2
(11) 

Fig. 8. Probability of tool worn as a function of cutting speed from the trained 
logistic model; the train data points are shown in light and the test data points 
are shown in dark. 

Fig. 9. Probability of tool worn as a function of cutting speed from the trained logistic model with logarithmic transformation of input variables; the train data points 
are shown in light and the test data points are shown in dark. The left panel shows the results in the logarithmic space and the right panel in the original space. 
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Comparing Eq. 9 and Eq. 11, the logistic classification model pa
rameters may be directly related to the empirical Taylor tool life co
efficients as shown in Eq. 12. This provides the desired interpretability 
for the trained logistic classification model. 

n =
θ2

θ1
;C = e− nθ0

θ2 (12) 

To illustrate the approach, the trained logistic model parameters 
using the logarithmic transformation of the input data were θ0 = -89.57, 
θ1 = 13.57, and θ2 = 5.26. The logistic model parameters were con
verted into the equivalent Taylor tool life coefficients using Eq. 12 to 
obtain n = 0.388, and C = 735.2 m/min. A Taylor tool life model fit to 
the Table 1 data results in C = 698.8 m/min and n = 0.372. Fig. 11 

shows a comparison between the Taylor tool life model fit and the lo
gistic classification decision boundary. It is seen that the logistic clas
sification decision boundary shows good agreement with the Taylor tool 
life equation. Note that the logistic classifier input was obtained from 
binary data for tool worn (class 0) or tool worn (class 1); the time for the 
end of tool life was not provided. 

To evaluate the influence of the input data on the logistic model 
predictions, a Monte Carlo simulation was performed. The procedure to 
generate ten data points at each cutting speed, as described in Section 2, 
was repeated 100 times. For each dataset, the logistic model was trained 
using a logarithmic transformation of the inputs. Fig. 12 shows the 100 
decision boundaries from the Monte Carlo simulation. The Taylor tool 
life fit is also included for reference. As expected, the decision boundary 
depends on the underlying dataset. If the underlying dataset has large 

Fig. 10. Probability of tool worn (class 1) as a function of time and the experimental result at 89.8 m/min (1500 rpm) (top left panel), 224.4 m/min (3750 rpm) (top 
right panel), and 448.8 m/min (7500 rpm) (bottom left panel). Note that the scale in the horizontal axis for each cutting speed is different. 

Fig. 11. Comparison between the Taylor tool life fit and logistic classifier de
cision boundary with logarithmic transformation of the inputs; results show 
good agreement. Fig. 12. Decision boundaries from the Monte-Carlo simulation.  
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uncertainties where the tool worn (class 0) and tool not worn (class 1) 
data points overlap, or if a cutting speed does not include tool worn 
(class 1) data points, the decision boundary deviates substantially from 
the Taylor tool life model. To illustrate, in Fig. 12, three distinct decision 
boundaries predict a small increase in tool life as a function cutting 
speed. The probability of tool worn (class 1) and the associated dataset 
for one decision boundary is shown in Fig. 13. For the dataset shown in 
Fig. 13, there were no tool worn (class 1) data points recorded at 299.2 
m/min. As a result, the logistic model with the logarithmic trans
formation cannot capture the non-linear exponential decrease in tool life 
with cutting speed. The equivalent Taylor tool life coefficients calcu
lated using Eq. 12 were n = -6.5, and C = 0 m/min. The equivalent 
Taylor tool life coefficients can quickly indicate the quality of the 
trained model. For example, it is known that the coefficient n in the 
Taylor tool life equation is typically between 0.1 and 0.4 [1]. Therefore, 
a trained model where the value of n is negative or large indicates that 
there is insufficient data. Similarly, the value C is the cutting speed to 
obtain a tool life of 1 min. An extremely large value indicates that the 
model is overpredicting tool life. In such cases, additional data can be 
collected to retrain the model. This can be done by running the tools at 
some cutting speeds to the end of life to get the tool worn data points. 
Note that for the given dataset, the trained model still accurately pre
dicts the test data points. However, as shown, an examination of the 
Taylor tool life model coefficients calculated from the trained logistic 
model can indicate the quality of the trained model. 

There have been recent studies in the literature for physics-guided 
neural networks. This is achieved either by modifying the loss func
tion or adding constraints on the weights and the bias terms for the NN 
[34,35]. The proposed physics-guided logistic model with logarithmic 
transformation of the inputs has the following advantages over a 
physics-guided NN. First, the power law relationship between tool life 
and cutting speed can be explicitly modeled with the logarithmic 
transformation of the inputs. Second, as shown in Eq. 12, the logistic 
model coefficients can be converted to the Taylor tool life constants. The 
Taylor tool life constants calculated from the logistic model can be used 
to quickly validate the model results. Third, the Taylor tool life constants 
can be archived for different tool-material combinations. Finally, the 
model is simple to implement using in-built ML libraries (such as 
scikit-learn for Python [28,29]). 

5. Process parameter optimization for minimizing cost 

This section describes a probabilistic cost equation for pre-process 
optimization of machining parameters using the physics guided logis
tic model tool life predictions. It does not currently include the {spindle 

speed, depth of cut} constraints imposed by unstable cutting conditions 
(or chatter) [36] but can be expanded in future work. As noted in Section 
1.0, there exists a machining cost trade-off between material removal 
rate and tool life. The machining cost per part is shown in Eq. 13 [1], 
where Cp is the machining cost per part in $, rm is machine tool rate in 
$/min, tm is the machining time in minutes, tch is the time required to 
change the tool in minutes, Cte is the cost per tool edge in $, and T is the 
tool life in minutes. 

Cp = tmrm +
(tchrm + Cte)tm

T
(13) 

The deterministic cost per part equation is modified in two ways. 
First, as shown from the results in Table 1, tool life is non-repeatable due 
to tool-to-tool performance variation. Therefore, the non-repeatability 
of tool life needs to be included in the machining cost per part equa
tion. This is achieved by considering tool life as a probability distribu
tion. The probability distribution in tool life can then be propagated to 
the machining cost per part. The optimal process parameters minimize 
the expected cost calculated using the machining cost per part distri
bution. Second, in a production environment, it is often infeasible to 
complete a fractional number of parts per tool edge or tool edge per part 
because it requires changing the tool in the middle of a cut. An integer 
number of parts per tool edge or tool edges per part also ensures that the 
tool change location remains constant and does not change for every 
part. For example, if the tool life is 12 min and the machining time per 
part is 10 min, it is convenient to use a new tool edge per part. In this 
case, the part per insert edge would be one. To address this, a new term 
called parts per tool edge is defined. If the tool life is greater than the cut 
time, the parts per tool edge is the maximum integer number of parts 
that can be machined with a single tool edge. If the tool life is less than 
the machining time per part, the parts per tool edge is the reciprocal of 
the minimum integer number of tools required to machine the part. The 
modified cost equation per part is shown in Eq. 14, where pte is the 
number of parts per tool edge. 

Cp = tmrm +
(tchrm + Cte)

pte
(14) 

The parts per tool edge can be calculated using Eq. 15, where ⌊ T
tm

⌋ 

denotes ‘floor’ of the ratio of tool life to cutting time and ⌈tm
T ⌉ denotes the 

‘ceiling’ of the ratio of machining time to tool life. 

pte =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⌊
T
tm

⌋ if T ≥ tm

1

⌈
tm

T
⌉

if T < tm

(15) 

To illustrate, if the tool life is 12 min and machining time is 10 min, 
pte = 1. If the tool life is 8 min and the machining time is 10 min, pte = 0.5 
(corresponding to two tool edges per part). The probability distribution 
of tool life is taken from the prediction of the trained logistic classifier. 
At a selected cutting speed, the probability distribution in tool life is first 
propagated to parts per tool edge using Eq. 15. This results in a discrete 
distribution for parts per edge. The parts per edge distribution is then 
propagated to machining cost per part using Eq. 14. The expected cost 
per part is calculated as the sum of the product of the discrete cost per 
part values and the associated probabilities. 

To illustrate the method, consider a part with a volume to be 
removed of 1 × 105 mm3. As a simplification, the machining time at each 
spindle speed may be calculated using the (mean) material removal rate 
and the volume to be removed. The cost per tool edge was taken as 
$2.50, the tool change time was 2 min, and the machine tool rate was 
$2/min. Fig. 14 shows the expected cost as a function of cutting speed; 
the optimal spindle speed to minimize the expected cost is 374 m/min 
(6250 rpm). Fig. 15 shows the tool life distribution (top left panel), the 

Fig. 13. Probability of tool worn (class 1) for the outlier predictions; no tool 
worn (class 1) data is available at 299.2 m/min so the model accuracy is 
compromised. 
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parts per edge distribution (top right panel), and machining cost per part 
distribution (bottom left panel) at 374 m/min. The different distribu
tions shown in Fig. 15 can be explained as follows. As noted, the prob
ability of a tool worn classification from the trained logistic classifier is 
the probability that tool life would be less than or equal to the values on 
the horizontal axis. The part per tool edge distribution gives the prob
ability that the number of parts per tool edge would be less than or equal 
to the value on the horizontal axis. The part per tool edge distribution is 
calculated using Eq. 15 for different tool life values, sampled from the 
tool life distribution. Note that the part per tool edge distribution is 

discrete instead of continuous; this is because the parts per tool edge is 
an integer if tool life is greater than the machining time or a reciprocal of 
an integer if the tool life is less than the machining time. This is shown in 
Eq. 15. Since the tool life prediction is less than the machining time at 
374 m/min, more than one tool edge would be required to machine the 
part. The most likely outcome is four tool edges per part (or 0.25 parts 
per tool edge); this is seen from the distribution of parts per tool edge 
shown in Fig. 15 (top right panel). Each value of part per tool edge 
corresponds to a machining cost per part which results in a probability 
distribution for machining cost per part. Since the machining cost per 

Fig. 14. Expected cost per part as a function of cutting speed; the minimum expected cost is $65.90 at 374 m/min (6250 rpm).  

Fig. 15. Probability of worn tool at 374 m/min; the top left panel shows the probability of tool worn from the logistic model, the top right panel shows the dis
tribution of parts per tool edge, and the bottom left panel shows the distribution of machining cost per part. 
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part increases with a reduction in the number of parts per tool edge at a 
given cutting speed, the distribution of machining cost per part gives the 
probability that machining cost would be greater than or equal to the 
value on the horizontal axis (shown in the Fig. 15 bottom left panel). The 
expected cost from the cost per part distribution shown in Fig. 15 
(bottom left panel) is $65.90. Note that the actual cost at 374 m/min will 
depend on the actual number of parts per tool edge, which, in turn, 
depends on the observed tool life and machining time. In a production 
environment, the optimal cutting speed can be validated as follows. Tool 
checks can be added at regular intervals in a toolpath based on the parts 
per tool edge distribution. If the tool wear is near or exceeds the 
threshold limit, the tool can be replaced and the parts per tool edge 
noted for subsequent parts. This reduces the risk of validating the 
optimal cutting speed by preventing damage to the part due to excessive 
tool wear or catastrophic tool breakage. 

To confirm the optimal cutting speed, a tool life experiment was 
performed at 374 m/min. The FWW was measured as 0.21 mm at 6.9 
min and 0.37 mm at 10.0 min. The tool life for FWW to reach 0.3 mm 
was calculated by linear interpolation between the two measurements as 
8.6 min. Based on a machining time of 18.9 min, the parts per tool edge 
is 0.33, giving a cost of $58.90 (calculated using Eq. 14. and Eq. 15). 
Note that the tool life needs to be between 6.3 minutes–9.5 minutes to 
enable 0.33 parts per edge. 

6. Discussion 

In this section, a method for data augmentation for imbalanced 
datasets, a hybrid model that combines the linear and logarithmic input, 
and a method for extending the model to multiple variables are 
presented. 

6.1. Data augmentation 

As shown in Section 4, the logistic model predictions depend on the 
underlying data. Fig. 13 showed a dataset where zero tool worn (class 1) 
data points were recorded at 299.2 m/min. As a result, the logistic model 
with the logarithmic input transformation could not model the non- 
linear reduction in tool life with cutting speed. In such a scenario, 
additional data may be collected to retrain the model. However, in a 
production environment, additional data at different tool replacement 
times or different cutting speeds may not be feasible. In this case, syn
thetic tool worn (class 1) data points can be added based on user ex
periences. The user assigns a tool life value based on experience; the 
objective is to add synthetic tool worn data points where the tool will be 
worn with certainty based on user experience. A tool worn (class 1) data 
point can be added at the user-assigned value. Alternatively, the 
maximum measured wear value from the tool not worn (class 0) data 
points can be linearly extrapolated to the threshold wear limit to obtain 
the desired tool worn (class 1) data point. To illustrate the approach, 

consider a case where the user assigns a tool life of 15 min at 299.2 m/ 
min. The value of 15 min is decided by the user as the value where the 
tool will be worn (maximum FWW exceeds 0.3 mm) with certainty. 
Fig. 16 shows the probability of tool worn from the logistic classifier 
with two synthetic tool worn data points added at {15 min, 299.2 m/ 
min} to the training dataset. In Fig. 16, the right panel shows the 
magnified view of the data at 299.2 m/min, where the synthetic tool 
worn data points are observed at 15 min. Note that the mean tool life 
from the three tests at 299.2 m/min (listed in Table 1) was 9.8 min. As 
seen from Fig. 16, the logistic model can describe the relationship using 
the augmented dataset. Recall that the tool life is the logistic classifier 
decision boundary that separates the two classes: tool worn (class 0) and 
tool not worn (class 1). Adding synthetic tool worn data at 299.2 m/min 
enables the classifier to model the boundary that separates the two 
classes. The logarithmic transformation of the inputs enables the logistic 
classifier to model the exponential decrease in tool life with cutting 
speed. To evaluate the influence of the synthetic data on the trained 
logistic model, the logistic model was trained separately with 10 min 
and 20 min data points added to the training dataset. Fig. 17 shows the 
probability of tool worn with synthetic data added at 10 min (left panel) 
and 20 min (right panel). 

As seen from Figs. 16 and 17, the probability of tool worn distribu
tion is wider for the augmented dataset with the 15 min and 20 min data 
as compared to 10 min augmented data. For the 10 min augmented 
dataset, there is a separation of 6 min between the two classes at 149.6 
m/min and 1 min at 299.2 m/min. As a result, the model finds the 
boundary separating the two classes, but the probability distribution of 
tool worn (class 1) is narrow. The separation between the two classes 
increases with the 15 min and 20 min datasets resulting in a wider 
distribution. Therefore, as stated, synthetic tool worn data should be 
added where the tool wear will exceed the threshold limit with certainty. 
This is important since the predicted tool life from the logistic classifier 
separates the two classes. As stated, the objective of the tool life pre
diction model is pre-process optimization of process parameters. If the 
‘true’ tool life lies in the predicted probability distribution, checks can 
be added when testing at the optimum cutting speed to reduce the risk in 
testing. 

6.2. Hybrid logistic model 

As shown in Section 4, the non-linear relationship between tool life 
and cutting speed defined by the Taylor tool life equation can be 
modeled using a logarithmic transformation of the inputs. The logistic 
model parameters can then be directly correlated to the Taylor tool life 
coefficients. However, there may be certain tool and material combi
nations where tool life does not follow the exponential decrease with 
cutting speed as defined by the Taylor tool life equation. For example, 
ceramic tools may not show the exponential decrease in tool life with 
cutting speeds [37,38]. In such cases, the logistic model with 

Fig. 16. Probability of tool worn with the trained logistic model with logarithmic transformation of input variables with 10 data points at 149.6 m/min and 299.2 m/ 
min each; two tool worn (class 1) data points were added to the training data for 299.2 m/min (shown in the right panel). 
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logarithmic transformation may overpredict tool life when extrapolating 
outside the input data range. To make the logistic model generalizable to 
different tool life responses as a function of cutting speed, a hybrid 
model consisting of the original input values in addition to the 
log-transformed inputs was evaluated. For a one-dimensional case with 
cutting speed and time as inputs, the decision boundary equation for the 
hybrid model is given by Eq. 16. 

θ0 + θ1(V) + θ2(T) + θ3log(V) + θ4log(T) = 0 (16) 

The idea behind the hybrid model is that if the underlying tool life 
follows the power law given by the Taylor tool life equation, θ1 and θ2 

will be zero giving the log-transformed equation shown in Eq. 10. 
However, if tool life decreases linearly with cutting speed in the selected 
range, θ3 and θ4 will be zero giving the original logistic model decision 
boundary equation shown in Eq. 6. If the tool life follows a curve that 
cannot be fully defined with a linear or the Taylor tool life equation, the 
logistic model coefficients will be comparable. To evaluate the hybrid 
logistic model, it was trained using the data shown in Fig. 4. The pro
cedure to train the logistic model is described in Section 4. Note that the 
input variables need to be normalized due to the magnitude difference 
between the input (cutting speed and time) and the logarithm values of 
the inputs. The input values were normalized between 0 and 1 based on 
the minimum and maximum values for cutting speed and time shown in 
Fig. 9. Fig. 18 shows the probability of tool worn (left panel) and the 
decision boundary (right panel) for the hybrid model. The decision 
boundary for the logistic model with logarithmic input transformation is 
also shown for reference (see the right panel in Fig. 18). As seen from 
Fig. 18, the hybrid model does not predict an exponential increase in 
tool life at cutting speeds less than 149.6 m/min. Fig. 19 shows the tool 
life distribution for the hybrid model at 149.6 m/min and 448.8 m/min. 
The prediction from the logistic model with logarithmic transformation 
is also shown for comparison. As seen from Figs. 18 and 19, the hybrid 
model underpredicts tool life at 89.8 m/min (1500 rpm) and over
predicts at 448.8 m/min (7500 rpm). This is because, with the limited 

dataset, the hybrid model fits a combination of the linear and an expo
nential model. Therefore, tool life does not increase or decrease expo
nentially when extrapolating the results outside the training dataset. 
Note that the results shown in Fig. 19 do not show a clear benefit for the 
hybrid model over the logistic with the logarithmic transformation 
model; however, differences in the model predictions are observed. 

The logistic model coefficients for the hybrid model were calculated 
as θ0 = -79.2, θ1 = 17.7, θ2 = -1.43, θ3 = 18.2, and θ4 = 56.6. Although a 
direct comparison to the Taylor tool life model coefficients cannot be 
made with the hybrid model, assessments on the nature of the logistic 
model fit can be made based on the magnitude of the coefficients. As 
noted, if θ3 ≫ θ1 and θ4 ≫ θ2, the underlying tool life curve follows the 
Taylor tool life equation. If the opposite is true, the tool life relationship 
is linear. If the magnitudes are similar, the tool life curve is a combi
nation of the Taylor tool life and linear equation. Under a limited 
dataset, the hybrid model is a combination of the linear and the expo
nential Taylor tool life models. The hybrid model offers flexibility in 
modeling tool life curves that do not follow the exponential Taylor tool 
life equations. In practical applications, both the logistic model with 
logarithmic transformation of the inputs and the hybrid model with 
linear and logarithmic-transformed inputs may be evaluated and the 
model which performs better may be chosen to optimize machining 
parameters. 

6.3. Extension to multiple dimensions 

The physics-guided logistic method presented in Section 4 can be 
extended to include the effects of feed per revolution using the extended 
Taylor type tool life equation. The new Taylor tool-type tool life equa
tion is given by [1]: 

VpFqT = C (17)  

where p, q, and C are Taylor tool life coefficients and F is the feed per 

Fig. 17. Probability of tool worn with the log-transformed logistic classifier with synthetic data added at 299.2 m/min; 10 min (left panel) and 20 min (right panel).  

Fig. 18. Probability of tool worn (left) and the decision boundary (right) with cutting speed from the trained hybrid logistic model; the train data points are shown in 
light and the test data points are shown in dark. The decision boundary from the log-transformed logistic model is also shown for comparison. 
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revolution. Taking the logarithm and rearranging gives: 

log(T) = log(C) − plog(V) − qlog(F) (18) 

For the three inputs of cutting speed, feed per revolution, and time, 
the decision boundary for the logistic classification with logarithmic 
transformation of the input features is given by: 

θ0 + θ1log(V) + θ2log(F) + θ3log(T) = 0 (19)  

log(T) = −
θ0

θ3
−

θ1

θ3
log(V) −

θ2

θ3
log(F) (20) 

Comparing Eq. 18 and Eq. 20, the logistic classification model pa
rameters may be directly related to the Taylor-type tool life coefficients. 

C = −
θ0

θ3
; p =

θ1

θ3
; q =

θ2

θ3
(21) 

As described in Section 4.0, the logistic classification model can be 
trained with a logarithmic transformation of the inputs, cutting speed, 
feed per revolution, and time. As noted, the value of the Taylor-type 
coefficients determined from the logistic model can be used to quickly 
validate the model. The value of p is typically between 2 and 4 and q is 
typically between 1 and 3 [1]. Furthermore, the hybrid model described 
in Section 6.2 can be used to extend the tool life logistic model to include 
additional variables such as cutting fluid (type and the application 
method) and the tool geometry. In this case, a logarithmic trans
formation for cutting speed, feed rate, and time can be performed while 
cutting fluid and tool geometry inputs are included without any trans
formation. The hybrid model offers the required flexibility to include 
multiple variables in the tool life model. 

7. Conclusions 

This paper presented a physics-guided logistic classifier for tool life 
modeling in production environments. The non-linear relationship be
tween tool life and cutting speed was incorporated in the linear logistic 
classifier by performing a logarithmic transformation of the inputs 
(cutting speed and time). The logistic classifier is therefore linear in the 
logarithmic space and follows the non-linear power-law relationship 
given by the Taylor tool life equation in the original space. A method to 
extract the Taylor tool life coefficients from the trained logistic model 
was presented by comparing the logistic model decision boundary to the 
Taylor tool life equation. Validation results in milling showed that the 
logistic classifier with a logarithmic transformation of the inputs can 
predict tool life with binary data as inputs. The logistic model pre
dictions were used to optimize process parameters using a modified 
probabilistic cost equation. The distribution in tool life was propagated 
to the machining cost equation through a parts per tool edge term. The 
proposed method offers a practical and robust approach for tool life 
modeling and machining parameter optimization in a production envi
ronment. Future work will focus on adding additional variables, such as 
tool geometry and coolant/lubricant use as inputs, and testing and 

validating the algorithm using actual data from a production 
environment. 
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