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Uncertainty Propagation Through
An Empirical Model of Cutting
Forces in End Milling

Empirical mathematical models of cutting forces in machining processes use experimentally
determined input parameters to make predictions. A general method for propagation of
input parameter uncertainties through such predictive models is developed. Sources of
uncertainty are identified and classified. First, a classical uncertainty procedure is
employed to estimate uncertainties associated with the data reduction equation using a
first-order Taylor series expansion. Small values of input parameter uncertainties justify
this local linearization. Coverage factors required to estimate confidence intervals are com-
puted based on appropriate underlying statistical distributions. A root sum of squares
method yields the overall expanded uncertainty in force predictions. A popular model
used for predicting cutting forces in end milling is selected to demonstrate the procedure,
but the demonstrated approach is general. The analysis is applied to experimental data.
Force predictions are quoted along with a confidence interval attached to them. An alter-
native analysis based on Monte Carlo simulations is also presented. This procedure yields
different insights compared with the classical uncertainty analysis and complements it.
Monte Carlo simulation provides combined uncertainties directly without sensitivity calcu-
lations. Classical uncertainty analysis reveals the impacts of random effects and systematic
effects separately. This information can prompt the user to improve the experimental setup if
the impact of systematic effects is observed to be comparatively large. The method of
quoting an estimate of the uncertainty in force predictions presented in this paper will
permit users to assess the suitability of given empirical force prediction models in specific
applications. [DOI: 10.1115/1.4049508]

Keywords: cutting force uncertainty, cutting coefficient uncertainty, force model
uncertainty
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1 Introduction

End milling is a machining process which is widely used in the
metalworking industry. Modeling of cutting forces in end milling
is important for predicting power requirements while specifying
milling equipment [1], analyzing the stability of the machining pro-
cesses [2], analyzing surface location errors [2], and estimating the
load on end mills [3]. A large number of predictive cutting force
models for end milling are available in the literature [1,4].

It is usual to present a model along with experimental results that
validate it. The current practice is usually to present the theoretical
predictions and the experimental results on a common graph. A
visual comparison is made, and the modeler then claims that the
theory predicts the experimental results well. This practice is so
ingrained in the community, that the question, “quantitatively,
how good is the prediction?” is rarely asked.

The majority of the cutting force models are empirical, lumped
parameter models [1,2,4]. The geometry of the process is captured
analytically, and all other factors such as work material properties,
friction effects, tool material effects, and tool wear effects are cap-
tured in lumped parameter form. Values of these lumped parameters
are found by experimental measurements and used as inputs in the
model to predict forces for any combination of machining
parameters.

This document presents a technique that captures the uncertain-
ties associated with measured values of the input parameters.
These uncertainties are propagated through a popular empirical
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cutting force model. Predicted force values are accompanied by a
quantitative statement of the prediction uncertainties corresponding
to a specified confidence interval.

2 Force Prediction Model With Input Parameter
Uncertainty

A specific form of a widely used empirical model for predicting
cutting force components previously described by Tlusty [1] is
reproduced in the Appendix A and B for ready reference and to
clarify the terminology used here. The model applies to straight-
flute end milling cutters. The axial force component vanishes.
The feed force, F,, and the lateral force, F), are the two relevant
components in the plane where x—y is a rectangular coordinate
system fixed to the machine. Components of the cutting force, F,,
y» are functions of input parameters that are either fixed or that
have uncertainties associated with them, i.e., the data reduction
equation (Eq. (B3) in the Appendix B) has the functional form

Fx,y=Fx,y A, D, b, z, fo’Kt’ Ky (D
—— —————
fixed uncertain

where 4 is the helix angle and is zero for a straight-flute cutter, D is
the cutter diameter, b is the axial depth of cut, z is the number of
teeth, fr, is the effective feed per tooth for the ith tooth, and K,
and K, are the empirical cutting coefficients.

If fr,, K;, and K, could be measured directly, propagation of the
associated uncertainties through the data reduction equation (1)
would be a straightforward problem. However, the cutting coeffi-
cients are themselves variable, as shown in the Appendix B
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where cutting constants I';, ¥, I',,, and ¥, are defined. Uncertainties
associated with cutting coefficients have to be deduced indirectly by
first assessing the uncertainties associated with cutting constants.
The effective feed per tooth is also measured indirectly. Thus,
two more data reduction equations (Eqs. (B9) and (B10) in the
Appendix B) are obtained having the functional forms

K, K,=K;, K, j_/ and

fixed

> Fta rn’ qu’ an
—_—

uncertain

@

fro=fm\ fr, »
- =

fixed  uncertain,

where the commanded feed per tooth, f7, and the average chip thick-
ness, A, are fixed quantities, whereas the radial runout over succes-
sive teeth, p, and the cutting constants, I',, I',,, ¥;, and ¥,,, are factors
that have uncertainties associated with them.

The idea of quantifying uncertainties in cutting coefficients, for
their propagation through models for stability and surface location
analysis, has appeared in the literature [5,6]. However, the idea of
quantifying variances in model input parameters for placing confi-
dence intervals on predicted cutting forces and the determination of
the variance-covariance matrix of cutting constants to capture the
random effects for the logarithmic cutting coefficient model
chosen here are contributions of this research. Capturing the error
introduced in the effective feed per tooth due to radial runout is
also a contribution of this research. The general approach to uncer-
tainty propagation through the mathematical model is outlined in
Fig. 1.

3 Sources of Uncertainty in Model Input Parameters
and Their Classification by the Method of Evaluation

The sources of uncertainty in model input parameters are sum-
marized in Table 1. The analytical method of uncertainty analysis
presented in this research is based on the 1995 Guide to the Expres-
sion of Uncertainty in Measurement (GUM) [8]. The NIST Techni-
cal Note 1297 [7] is a more compact guideline authored by two of
the primary authors [9] of the GUM and open to the general public.
These documents classify uncertainties into the following:

(1) Type A: Uncertainty components evaluated by statistical
methods
(2) Type B: Uncertainty components evaluated by other means

Measured values® of the lumped parameter cutting constants, 7,
Y W; and y;,, are subject to random effects owing to random

(Model input parameters having fixed values: )
(AN, Db, fr,z)
Model input parameters having uncertainties:
(IO7 Kt,n» Ft,na Wt,n)

. J

!

e )
Mathematical model used to predict
cutting forces in peripheral milling

Predicted cutting force components
F,, = F, + Uncertainty (f5,,)

Y ‘ nominal

Fig. 1 The uncertainty propagation approach
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Table 1 Sources of uncertainty® in measured values of input
parameters

Symbols used for
variance/
covariance

Input parameter Source(s) of uncertainty

Random effect due to variations
in work material properties,
tool-chip interface friction,
cutting fluid, etc. (Type A
uncertainty component)

Cutting Systematic effect due to
coefficients K, variations in measured values of
K, average force components, fm,,
found using a multicomponent
dynamometer having
piezoelectric charge devices.
(Type B1 uncertainty
component)

Systematic effect due to
measurement uncertainty in
runout measurement owing to the
use of a dial indicator. (Type B2
uncertainty component)

(7). o7 (), etc.,
& o(ys, y), ete.

Cutting constants
r,r,¥, Y,

o>(ky), 6*(k,), and
> (fry)

Cutter tooth a’(p)

radial runout p

“Although the sources are identified as random or systematic (bias) in this
table, the analysis in this document classifies them as Type A or Type B,
based on the method of evaluation as suggested in the NIST document [7].

variations in material properties, tool chip interface friction, etc.,
which can be quantified using statistical evaluation. The variances
of the cutting constants, 02(7,, Yns Wi W), and their covariances,
0(Y:n» Wi n), are estimated using a Type A evaluation.

The source of systematic errors are two measurement devices.
The dynamometer, amplifier, and data acquisition card system
form a chain used to obtain measured values of cutting force com-
ponents, f,,. A dial indicator, having a finite resolution, has been
used to obtain measured values of the radial runout of successive
teeth, p. The effects of these two measuring devices on the variances
of model input parameters are quantified using the Type B
evaluation:

(1) Type B1 analysis refers to evaluation of variances of mea-
sured forces

(2) Type B2 analysis refers to evaluation of variances of mea-
sured radial runouts of successive teeth

Variances of the cutting constants, I';, and ¥,,, due to random
effects are obtained directly by using the Type A evaluation.
However, the variances of the cutting coefficients, K, ,, and effec-
tive feed per tooth, fr,, due to the systematic effects are not obtained
directly using the Type B evaluation, but are obtained indirectly.
The measurement values that are directly affected by systematic
errors are the measured values of average force components, f,,
and the radial runouts, p. Type B1 and B2 evaluations yield the var-
iances of these measurements as will be shown. These variances
need to be propagated to the estimated values of cutting coefficients,
k. ., and effective feeds per tooth, f7,.

4 Experimental Calibration of the Force Model

The cutting force model described in the Appendix B was exper-
imentally calibrated. Measured values of the input parameters dis-
played in Fig. 1 are required to make force predictions.

’Lowercase representations, such as y, 7., W, Y, k, and k,, are used to denote
sample measures that are used as estimates of the corresponding population measures,
r,T, ¥, ¥, K, and K,, respectively.
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Fig. 2 Experimental setup showing the straight-flute endmill
held in a collet chuck and mounted on the vertical spindle, the
laser tachometer, and the workpiece mounted on the dynam-
ometer that is held on the machine table. The setup for radial
runout measurement using the dial indicator is also shown.

Table 2 Experimental setup description

Equipment Make and model® Description
Machine tool ~ Mikron — Five-axis machining center with
UCP-Vario hollow shank adaption HSK-63A and

spring collet holding.

Cutting tool SGS Catalog No.  12.7 mm diameter, uncoated solid

30423 carbide endmill having two straight
flutes.

Dynamometer Kistler Catalog Three-component dynamometer with
No. 9257B charge amplifier

Dial gage Teclock Catalog  Lever-type dial indicator with least
No. LT1-355 count 2.5 um (0.0001 in.)

DAQ card National 12-bit card used to acquire data at a
Instruments sampling frequency of 60 kHz

“In this document, all commercial products are identified for the sake of
completeness, and to enable other investigators to replicate the
experiments. This does not constitute endorsement of any of these products.

4.1 The Partial Radial Immersion Experiment. Figure 2
shows the experimental setups for measurement of cutting forces
and radial runout of cutter teeth. A description of these setups is out-
lined in Table 2. Fixed cutting conditions of 72 m/min cutting
speed, 0.5 mm axial depth of cut, and 70 mm length of cut were
used. A low carbon steel (HV170) workpiece was dry milled
using a square end uncoated solid carbide endmill of diameter
12.7mm having straight flutes with two equispaced teeth. The
nominal total indicated reading (TIR) over the two teeth was
found to be 15 um using a dial indicator having least count
2.5 ym. A multicomponent dynamometer was used to record two
components of the force in the plane, i.e., the feed force, F,, and
the lateral force, F),.

Cutting coefficients were extracted based on a set of experiments
with 25% radial immersion (RI). The average chip thickness was
varied by changing the feed based on Eq. (BS). Values of cutting
coefficients were recorded for each level of average chip thickness,
and linear regression was used to establish relationships between
them.

4.2 Experimental Extraction of Cutting Coefficients. Equa-
tions (B3) and (B7) point to correlation of the cutting coefficients.
Hence, in addition to the variances of the tangential cutting coeffi-
cient, K,, and the normal cutting coefficient, K,,, their covariances
need to be estimated.

Journal of Manufacturing Science and Engineering

Experiments were conducted at seven different values of feed, in
the range 0.050-0.250 mm/tooth, and the cutting force components
were recorded in a fixed frame of reference. The measured average
values of the feed force component, f,, and the lateral force compo-
nent, f”y, were computed.

At each feed rate, the experiment was repeated five times. Forces
were averaged over one rotation, on a per tooth basis. The average
was taken for two successive rotations, which reduces the variabil-
ity. Values of K, and K,,, corresponding to each feed rate, were
derived using Eq. (B7). Seven sets of data, with five replications
in each set, were collected for fitting a linear model according to
Eq. (B9). Two parameters, the slope and the intercept, were fitted
to 35 points in each regression resulting in 33 degrees-of-freedom
[7] for the standard uncertainties associated with each of the four
cutting constants I';, I',,, ¥, and ¥,,.

Since the cutting constants of Eq. (B9) are to be estimated simul-
taneously, a multiresponse linear regression solution enables the
evaluation of the variance-covariance matrix between the responses
and the variance-covariance matrix of the random error in the
regression model, which permits the extraction of the variance-
covariance matrix of the cutting constants. This information is
required for the evaluation of uncertainty from random effects in
the measuring process for the cutting constants.

4.3 Estimation of Cutting Constants and Cutting
Coefficients. For the simultaneous estimation of the cutting con-
stants I'; , and ¥, ,,, of Eq. (B9), a multi response model is necessary.
Such a model has been proposed by Zellner [10] who has provided
an example which shows how to estimate the multiple response
parameters and obtain the variance-covariance matrix of these esti-
mators. Kurdi [5] and Duncan et al. [6] have also used this model to
solve a similar problem. Based on the Zellner’s method, the fitted
regression lines are displayed in Fig. 3. The estimated cutting con-
stants, I'; , and ¥, ,, are calculated and listed in Table 3, and the cor-
responding variance-covariance matrix is displayed in Table 4.

The nominal values of cutting coefficients, obtained from the
experiment, may be computed by using the nominal values of the
cutting constants in the Eq. (B9), whereby

K, =expC)R)" = 1312(1) %% (N/mm?) 3)

K, = exp)(R) ¥ = 1103(R) "3 (N/mm?) )

with the average chip thickness, &, expressed in millimeters.

Adj.R?=0943

n

In[K_(N'mm?)]

In [R(mm)]

Fig.3 Linear regression fitting of cutting coefficients, as a func-
tion of the average chip thickness, for dry milling of low carbon
steel (HV170), using a straight-flute solid carbide endmill,
having two equispaced teeth, and a nominal runout of 15 um.
Experimental points are denoted by small circles.
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Table 3 Mean values of estimated cutting constants

I ¥, I v,

7.179 —0.4145
0.943

7.006 —0.5203
0.903

Estimates
Goodness of fit (Adj. R?)

Table 4 Variance-covariance matrix of cutting constants

F[ \PT F” \I‘n
I, 0.002561 0.000879 0.002046 0.000702
Y, 0.000312 0.000702 0.000249
r, 0.007161 0.002456
¥, 0.000873

The above expressions are derived based on experiments in
which the domain of & was

0.0239 (mm) < & < 0.1194 (mm) 5)

4.4 Variances of Cutting Constants, Average Forces, and
Radial Runout. The two coefficients K, and K, are possibly corre-
lated. Therefore, their covariance needs to be determined. The
covariance of cutting coefficients due to random effects was not cal-
culated directly because of the structure of the cutting coefficient
model. Although the cutting coefficients are nonlinear functions
of h (or h), the linear relationship between the logarithms of K,
and h (or 1) was exploited. This yields the variances and covari-
ances of cutting constants (instead of cutting coefficients) by
linear regression using the Zellner’s [10] method. These variances
quantify the random effects in the estimation of the cutting con-
stants and are designated as having been evaluated using a Type
A analysis.

The variances in measured values of average force components,
GZ(fx’y), may be calculated using a Type B2 evaluation based on
estimates of standard uncertainties in force measurements provided
by the manufacturer of the force measuring instrument [11]. The
multicomponent dynamometer consists of piezoelectric charge
devices. As per the instrument manufacturer’s certificate, the uncer-
tainty may be evaluated as follows assuming an underlying normal
distribution for the variances

o (force measurement): 0.5%
o (charge measurement): 0.5%
Net /c2(force) + 62(charge): 0.707%
Add o (charge amplifier): 0.5%
soo(fyy) = 0.707% + 0.5%: 1.207%

Based on this certificate provided by the ISO 17025 certified
manufacturer, values of the standard uncertainty in measured
values of the average force components, o-(fx’),), are set at 1.207%
of the nominal values of the average force components, i.e.,

o(f,,) =~ 0.01207f 6)

The uncertainty associated with runout measurement is captured
using a Type B2 evaluation as discussed in Ref. [7]. The dial indi-
cator used in runout measurement resolves to 0.0025 mm. The
lever-type indicator has a small cosine error that is neglected in
this analysis. Based on a rectangular (uniform) distribution of the

071002-4 / Vol. 143, JULY 2021

half-open interval, the variance of the radial runout measurement

7] is
2 0.0025)2 ;
P )= (—ﬁ @

5 Uncertainty Analysis Based on the Classical
Approach

The combined uncertainty, 6(y), in the measured value, y, of a
measurand, Y, which is obtained by measuring the values, x;, of N

input parameters, X;, is considered to be the estimated standard
deviation of y, and is given by [7]

N oy 2 , N-1 N by oy
oc(y)= Z i o*(x;)+2 Z Z 556()@, X)) 8)
i 1 J

i=1 i=1 j=i+l

where ¢(x;) are the variances and o(x;, x;) are the covariances of the
measured input estimates. In writing Eq. (8), it has been assumed
that the data reduction equation is

Y=YXy, X3,..., Xy) (€))

Taylor and Kuyatt [7] have explained that the relation described
in Eq. (8) is based on a first-order Taylor expansion of the expres-
sion for Y given by the data reduction equation (9). The implication
is that the values of input parameter uncertainties must be small
enough so that local linearization may be justified.

Inspection of the values of the variances (Table 4) and compari-
son with the mean values of cutting constants (Table 3) show that
the variances in measured values of the cutting constants are
indeed small. Similarly, variances in measured values of average
forces given by Eq. (6), and the variance of radial runout measure-
ment given by Eq. (7), are also small. These pieces of data suggest
that all the directly measured quantities in our experiments: cutting
constants, average cutting forces, and radial runout, have variances
which are small, compared with their individual nominal values.

There is another limitation to the use of the classical approach to
uncertainty propagation as described by Eq. (8). The method works
only if the data are real valued, i.e., it is only valid for the case of
scalar data. If data are multivariate, the method does not apply.
An example of such a case would be complex valued data which
are encountered in frequency response function analysis. In our
case, all the input parameters are scalar quantities.

The ISO GUM [8] does not require an extensive knowledge of
the complete probability distribution functions for the input vari-
ables in order to apply Eq. (8). It propagates estimates of expected
values and standard uncertainties for input parameters through a
linear approximation of the measurement equation to yield an esti-
mate and standard uncertainty for the value of the measurand. It
applies as an approximation in those situations where reasonable
estimates for the expected values and standard deviations are avail-
able [9]. We have reasonable estimates of input parameters and their
variances. For all these reasons, application of Eq. (8) is justified.

Following the uncertainty analysis procedure as outlined in
Taylor and Kuyatt [7], individual standard uncertainties are propa-
gated through the model to obtain an estimate of the combined
uncertainties. The combined uncertainty of predicted force compo-
nents due to the random effects on cutting constants is designated
o., (fxy)- The combined uncertainty of force components due to
the effect of the force measuring instrumentation is designated
6., (fry), and that due to the runout measuring instrument is desig-
nated o (fx,)-

Taylor and Kuyatt [7] refer to Eq. (8) as the law of propagation of
uncertainty. The combined standard uncertainties of the predicted
forces are derived using this law for which the functional relation
“y” is given by Eq. (B3), which defines the function governing
the force components. The sensitivity coefficients are the partial
derivatives of the force components with respect to the model

Transactions of the ASME



input parameters which have uncertainties attached to them,
namely, the cutting constants, the cutting coefficients, and the effec-
tive feed rates owing to radial runout of the cutter teeth upon mount-
ing on the machine spindle.

6 Variances of Cutting Coefficients and Effective Feed
Rates

In Sec. 4.4, it was observed that the variances of model input
parameters due to random effects were directly available from
Type A evaluation in the form of a variance-covariance matrix
for the cutting constants I',,, and ¥, ,,. However, the variances of
model input parameters due to systematic effects were not available
directly from Type B1 and B2 evaluations. Type B1 evaluation pro-
vided an estimate of the variances of the measured average forces
(Eq. (6)), and Type B2 evaluation gave an estimate of the variances
of measured values of radial runout of successive teeth (Eq. (7)).
These variances need to be propagated to obtain estimates of the
variances of cutting coefficients and effective feeds per tooth,
which are model input parameters required for force predictions
using Eq. (B3).

6.1 Propagation of Average Force Uncertainty to Cutting
Coefficients. Equation (B7) yields the following sensitivity coeffi-
cients for use in propagation of the uncertainty in average force
measurements to the uncertainties in cutting coefficients

Stx 0K,/ OF,
Sty oK; / aF) 2(0cx — Os1)
= 7 [ S aha2 107 (10)
Snx 6[("/6[7}[ afT(ﬂ + v )
sny aKn/ afy —H

Using the above sensitivities in Eq. (8), the variances of cutting
coefficients, due to the systematic effects, can be obtained

[az(k,)] R {02@)}
Gz(kn) Sﬁx Siy Uz(fy)
The values of a(]_‘x’y) in the Eq. (11) above are set at 1.207% of the
nominal values of the average force components based on the
instrument manufacturer’s estimates, as detailed in Sec. 4.4. For

simplicity, any possible correlation between K, and K,, from mea-
surement channel cross talk is neglected, i.e., o(k;, k) is set to zero.

amn

6.2 Propagation of Radial Runout Uncertainty to Effective
Feeds. Equations (B10) yield the following sensitivity coefficients
for use in propagation of the uncertainty in relative runout to the
uncertainties in effective feeds

ale _ af ;[‘2
- 1 and o

Equations (7) and (12) may be used in Eq. (8) to estimate the var-
iances of the effective feed for each individual tooth

=-1

(12)

ofr \* 0.0025\2
62(fr.)=<—£') 62@>=( > ) (13)

ofr\° 0.0025\2
()oY a

7 Propagation of Uncertainties Through the Cutting
Force Model

The three components of uncertainty in input parameters have to
be propagated through the force model equation (B3).

Journal of Manufacturing Science and Engineering

7.1 Sensitivity Coefficients of Component Uncertainties.
Sensitivity coefficients used to determine Type A component uncer-
tainties are

S, OF, /0T K, sin 26,

s, OF /0, [K; In k] sin 20,

Sps OF,/or, K, (1 — cos 26,)

S| _ OF, /0¥, =% [K,, InA](1 — cos 26,) (15)
S, OF, /eI, 2 Ki(1 —cos20,)

5, OF, /0%, (K, InA](1 — cos 26,)

S,y OF, /oI, —K, sin26,

S5, OF, /0¥, —[K, In h] sin 26,

where K, and K|, are parameterized in I',,, and ¥, ,, according to
Eq. (B9).

Sensitivity coefficients with respect to the cutting coefficients are
used in the determination of the Type B1 component uncertainties
and may be found using Eq. (B3).

Sk, OF, /0K, sin 26,

Sve | OF, /0K, B % 1 —cos26, (16)
Syke OF /0K, 2 | 1—-cos26,

Syen OF, /0K, —sin 20,

Sensitivity coefficients with respect to the effective feeds are used
in the determination of Type B2 component uncertainties. These are
found using Eqgs. (B3), (B8), and (B9)

{w}_{an/afT}_b( sin 26, 1 —cos29,,)
Sy oF, /ofr 2\1-cos20, —sin26, a7
(1+¥Y)K,
{ (I +¥)K, }

The sensitivities in Egs. (15)—(17) are functions of the angular
position of the pth tooth, 8,. For illustrative purposes, they are
plotted in Fig. 4 for a particular combination of machining
parameters.

7.2 Combined Uncertainties of Type A. Let y,,, and y,, be
the input estimates for the values of the cutting constants I';,, and
¥, ., respectively, which are available from Table 3.

The estimated variances and the estimated covariances of the
cutting constants are available from Table 4. These uncertainties
have to be propagated to the predicted forces using the sensitivities,
sy, given by Eq. (15).

These sensitivities are themselves a function of the cutting con-
stants. Hence, they are evaluated at the estimated parameters y;,
and y;,. The combined component uncertainties of predicted
forces for the pth tooth, o, (f:y), due to the uncertainties in the
cutting constants, are obtained using the sensitivities, s;, in the
propagation law equation (8) which assumes the following form:

o*(v,)
o(r,yy)
(¥ 7n)
+2(Sllslz S]lsl3 SIISM s12S13 SIZSM S13S14>X a(yt’y/n)
SZISZZ SZISZS S21S24 S22S23 s22524 SZSSZA G(Wt’ Yn)
oWy,
(V> W)

(18)
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Fig. 4 Variation of sensitivity coefficients with angular position
of the pth tooth: feed 0.150 mm/tooth, 50% radial immersion,
up-milling, nominal runout 15 zm. Other conditions as in Table 5.

7.3 Combined Uncertainties of Type B1. The variances of
cutting coefficients due to average force measurement uncertainties
are available from Eq. (17) based on Type B2 evaluation. These
uncertainties may be propagated to the predicted forces using
Eq. (B3), and the sensitivities expressed in Eq. (16), to yield the
combined component uncertainties of predicted forces for the pth

tooth by applying Eq. (8)
= (s);l(t s)gKn ){ 62(kt) }
sth syKn Gz(kn)

2, )
aiyl )

7.4 Combined Uncertainties of Type B2. The uncertainties
in effective feed per tooth due to radial runout measurement uncer-
tainties are available from Egs. (13) and (14) based on Type B2
evaluation. These uncertainties may be propagated to the predicted
forces using Eq. (B3) and the sensitivities expressed in Eq. (11) to
yield the combined component uncertainties of predicted forces for
the pth tooth using Eq. (8)

2
(Tcli‘z (ﬂ) _ 2 [S,\f ]2
{ oC,, () } - (f”{ Ly }

where the subscript on fr, is dropped for convenience.

19)

(20)

8 Expanded Uncertainty

To specify the 95% confidence intervals on predicted forces, cov-
erage factors for component expanded uncertainties are first com-
puted based on the associated probability distributions of the
component combined uncertainties. To determine the appropriate
coverage factor for expanded uncertainty corresponding to a 95%
confidence interval, an appropriate convolution of the various prob-
ability distributions needs to be considered [12,13].

071002-6 / Vol. 143, JULY 2021

8.1 Expanded Uncertainty Coverage Factor Type A. Type
A standard uncertainty components, owing to the variances and
covariances in the cutting constants, are combined using the law
of propagation of uncertainty to yield the combined standard uncer-
tainties, o, (fy) and o, (f,), which are assumed to have an approx-
imately normal distribution. This happens when the conditions of
the central limit theorem are met. When this is the case, o, (fey)
themselves have negligible uncertainty [7], and a +2 o, (fey)
width about the nominal value defines an interval in which the mea-
surement result is believed to lie with a level of confidence of
approximately 95%, i.e., the coverage factor for the expanded
uncertainty is k4 =2.

If 6., (fy,) themselves have non-negligible uncertainty, a conven-
tional procedure may be used to produce a coverage factor that pro-
duces an interval having the approximate level of confidence
desired. The effective degrees-of-freedom for the combined uncer-
tainties are estimated based on the Welch—Satterthwaite (W-S)
expression [7] as follows:

df, 6:"40&)
ff =
‘ oc, 60 shio*(r) | sho'w) | skt | shet ()
Slogy  dlowy  Hlovy o,
ey
df, - NG
ff =
¢ oy B 53164(71) 53254(1/’1) 3“2‘30'4(}/,,) 534(74(1101)
flogy — dflowy  Hlogy A low,
(22)
and
dfegr S dflog, + dfloq,) + dfleg,) + dfleg,,  (23)
e, G
where dfes and dfes are the effective degrees-of-
¢, () o, 0

freedom for the combined Type A component uncertainties of the

measured values of the cutting force components, f; and f;, respec-

tively. The superscript *, used in the terms ¢ (f;,) in Egs. (21) and
A

(22), indicates that no correlation is considered among the inputs in
calculating these combined uncertainties, i.e., the covariance terms
in Eq. (18) are not considered, as suggested by Willink [14] in his
generalization of the W-S expression for use with correlated uncer-
tainty components.

The coverage factor for Type A component expanded uncertainty
is determined based on the Student’s #-distribution for any desired
confidence interval and may be read off Table B1 in Ref. [7]
knowing the value of dfeff‘o_c Fon)’ The effective degrees-of-freedom

are functions of the angular position of the pth tooth, 8,. Therefore,
the coverage factor is also a function of 6,. The functional depen-
dence is illustrated for an example case in Fig. 5. For this particular
case, it may be noted that the effective degrees -of-freedom is quite
large (>31), so that the coverage factor approaches 2. By inspection
of the Fig. 5, k4 ~2.04 may be taken as a good conservative value of
the coverage factor for Type A component expanded uncertainty for
a 95% confidence interval for both the x and y components of the
force.

8.2 [Expanded Uncertainty Coverage Factor Type B1. For
Type B1 uncertainties due to systematic effects in the force measur-
ing chain, underlying approximately normal distributions are
assumed for the combined component uncertainties. Based on this
the coverage factor for Type B1 component expanded uncertainty
is kp, ~ 2 for a 95% confidence interval.
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Fig. 5 Variation of the effective degrees-of-freedom of com-
bined uncertainties of Type A, and the corresponding coverage
factor, x4, for a 95% confidence interval, with angular position
of the pth tooth: feed 0.150 mm/tooth, 50% radial immersion,
up-milling, runout 15 zm. Other conditions as in Table 5.

Table 5 Experimental conditions used for verification of force
predictions with a 12.7 mm diameter, 2-fluted endmill, cutting
mild steel at speed 72 m/min speed, and axial depth of cut 0.5 mm

Results Feed Radial Up-, down- or mixed
displayed in (mm/tooth) immersion mode (RI > 0.5) milling
Fig. 8 0.150 50% Up-milling
Fig. 9 0.050 50% Up-milling
Fig. 10 0.150 75% Mixed mode with 7 =0 at
the entry
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8.3 [Expanded Uncertainty Coverage Factor Type B2. For
Type B2 uncertainties due to systematic effects of the runout mea-
suring device, the rectangular distribution is assumed with infinite
degrees-of-freedom owing to the fact that a single measurement is
used. Based on this the coverage factor for the Type B2 component
expanded uncertainty is kg, ~ 1.65 for a 95% confidence interval.

8.4 Opverall Expanded Uncertainty. This problem has both
Type A and Type B uncertainties with different types of underlying
probability distributions (approximately normal and rectangular).
To calculate the overall expanded uncertainty, a convolution of
these probability distributions has to be considered, which is a dif-
ficult problem. According to the ISO GUM [8], Type A and Type B
evaluations can be logically combined. Turzeniecka [12] has sug-
gested various approximate methods of calculating the expanded
uncertainty in such situations. The best choice depends on the rela-
tive magnitudes of Type A and Type B uncertainties. In the problem
at hand, this ratio is not fixed. This fact is clarified with an example
shown in Fig. 6. Moreover, the ratio is a function of the angular
position of the pth tooth, 8,, and process parameters such as the
feed and radial immersion. For such a situation, Turzeniecka [12]
has suggested the vector sum method, i.e., the root sum of
squares (RSS) method as a good solution. The overall expanded
uncertainty, U(f,,) is the RSS of the component expanded uncer-
tainties

Ufuy) = \/Kgag/‘ (o) + 13,02, (Fo) + K302 (hy) (24

The predicted nominal forces, F ,, are quoted with an accompa-
nying uncertainty, +%(f, ,), corresponding to a specified confidence
interval, where F , are calculated based on Eq. (B3).

The above analysis considers the forces and uncertainties associ-
ated with the engagement of a single tooth. For multiple tooth
engagement, the forces due to each tooth are merely summed.
However, the uncertainties must be obtained by the root sum of

= =0, (f)
Y (fy)
OB (fy)
—_] «
707 l - “;!
a5 “e e o1
U(F y)95% cl
0 90 180 270 360
Bp (deg)

Fig. 6 Variation of component combined uncertainties, and overall expanded uncertainty
for a 95% confidence interval, with angular position of the pth tooth: feed 0.150 mm/tooth,
50% radial immersion, up-milling, runout 15 um. Other conditions as in Table 5.
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Fig. 7 lllustration of 95% confidence interval bounds on pre-

dicted cutting forces using classical uncertainty (upper panels)
and error bar placement on predicted forces by Monte Carlo
simulation (lower panels): feed 0.150 mm/tooth, 50% radial
immersion, up-milling, runout 15 zm. Other conditions as in
Table 5.

squares method by considering the sum of the squares of each of the
component combined uncertainties for every tooth individually and
taking the square root of this overall sum.

All the uncertainties, combined as well as expanded, are func-
tions of the angular position of the pth tooth, 8,, an example of
which is given in Fig. 6. For this same example, confidence inter-
vals are placed on predicted forces and shown in the top two
panels in Fig. 7.

9 Uncertainty Analysis Based on Inferential Statistics

To complement the classical uncertainty analysis presented in the
earlier part of this paper, an alternative approach is proposed which
is based on inferential statistics: the Monte Carlo simulation. This
method offers a quick assessment of the estimated error in force pre-
diction once the numerical values of input parameters and their var-
iances are determined from experiment.

Values of input parameters and their variances are available from
experimental results. Mean values of cutting constants are available
from Table 3 and their variances from Table 4. The variances of
effective feed for individual teeth are available from Egs. (13)
and (14) which return the same numerical value as the variance in
radial runout obtained in Eq. (7). The reason is that effective
feeds of individual teeth are linearly related to radial runout with
unit sensitivities as seen in Eq. (12).
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Fig. 8 Predicted versus experimental forces: feed 0.150 mm/
tooth, 50% radial immersion, up-milling. Runout 15 zm. Other
conditions as in Table 5. Comparison of classical uncertainty
analysis (the top panels) with Monte Carlo simulations (the
bottom panels).

With the known values of input parameters and their variances, a
Monte Carlo simulation is run using the analytical equations describ-
ing the cutting force components (5000 iterations for results pre-
sented in this paper). Values of the input parameters are varied
individually in each iteration based on the individual standard devia-
tion using a pseudorandom number generator available in commer-
cial software. For cutting coefficients (alternatively, cutting
constants), pseudorandom numbers are drawn from an approxi-
mately normal distribution, whereas for the radial runout they are
drawn from a rectangular distribution. The result may be displayed
by plotting mean values of predicted forces with a one standard
deviation error band. An alternative way of displaying the Monte
Carlo simulation results is to show predicted force values using the
one standard deviation variation error bars as shown bottom two
panels in Fig. 7.

The contributions of individual input parameters to variability of
predicted cutting forces is assessed using the Monte Carlo simula-
tion by varying only that input parameter while holding other
input parameters to their mean values. A visual estimate of the con-
tribution of each input parameter may be made by plotting the fre-
quency distributions of predicted force components at some
selected cutter rotation angle. For instance, one may choose the
cutter rotation angle at which a force component has a peak
value. It is noted that the feed force and lateral force peak at differ-
ent cutter rotation angles. An example of this type of visualization is
presented in Sec. 11.
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Fig. 9 Predicted versus experimental forces: feed 0.050 mm/
tooth, 50% radial immersion, up-milling. Runout 15 zm. Other
conditions as in Table 5. Comparison of classical uncertainty
analysis (the top panels) with Monte Carlo simulations (the
bottom panels).

Certain characteristics of the Monte Carlo simulations presented
here are worth noting. Covariances of cutting coefficients have been
ignored in the analysis. The uncertainty contributors propagating
through the cutting force equations directly yield the combined
uncertainties in the predicted force values. A comprehensive analy-
sis to determine combined uncertainties is not warranted.

10 Force Prediction With Uncertainty Bounds

Various combinations of radial immersion and feed rates were
used to make force predictions for up milling (50% RI) and
mixed mode (75% RI) using different values of feed as shown in
Table 5. Confidence intervals were placed on predicted forces
based on the classical uncertainty analysis, and one standard devia-
tion error bounds were placed about the mean predicted force based
on Monte Carlo simulations. Experimental force signals are super-
imposed on the predicted force signals to display the results graph-
ically in Figs. 8—10. In each of these figures, the top two panels
illustrate the placement of 95% confidence intervals on predicted
forces based on the classical uncertainty approach, and the two
lower panels display the +/- one standard deviation bounds about
the mean predicted force based on the Monte Carlo approach.
Experimental results are superimposed on the top two panels
alone. Additional results are documented in Ref. [15].
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Fig. 10 Predicted versus experimental forces: feed 0.150 mm/
tooth, 75% radial immersion, h=0 at entry. Runout 15um.
Other conditions as in Table 5. Comparison of classical uncer-
tainty analysis (the top panels) with Monte Carlo (the bottom
panels).
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Fig. 11 Relative contributions of variances in cutting coeffi-

cients (K;, K,) and runout (p) to uncertainty in predicted forces
using Monte Carlo simulation: feed 0.150 mm/tooth, 50% radial
immersion, runout 15 um, up milling. Other conditions as in
Table 5.
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Fig. 12 Contributions of individual variances in cutting coefficients (K;, K,,) and runout
(p) on the frequency distribution of peak values of predicted force components using
Monte Carlo simulation: feed 0.150 mm/tooth, 50% radial immersion, runout 15 um,

up milling. Other conditions as in Table 5.
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Fig. 13 Model improvement example. Improved prediction of
the feed force: feed 0.150 mm/tooth, 50% radial immersion,
up-milling. Runout 15 zm. Other conditions as in Table 5. The
experimental values of the feed force fall slightly outside the pre-
dicted uncertainty band using the constant coefficient model
(the top panel). The instantaneous coefficient model predicts
the feed force better (the bottom panel).
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11 Contributing Factors to Force Prediction
Uncertainty

It is interesting to assess the contributions of different factors to
the total uncertainty in force prediction. The classical uncertainty
procedure and the Monte Carlo procedure offer slightly differing
ways of looking at individual contributions.

On the one hand, families of random and systematic effects in
various measurements may be viewed as separate contributing
factors, and their individual contributions to the total uncertainty
may be assessed. This is the nature of information that is obtained
from the classical uncertainty procedure presented in this paper.
Sources of uncertainty are classified in Table 1. Their individual
contributions to the combined uncertainties are quantified and
graphically displayed in Fig. 6 for a given set of conditions. A
graphical display is convenient because individual contributions
are functions of the cutter rotation angle. For instance, in Fig. 6,
random effects are seen to dominate individual systematic effects
in feed force uncertainty, but the total contribution of the two sys-
tematic effects taken together is about the same as that of the
random effects.

On the other hand, when applying the Monte Carlo approach, it is
convenient to examine the contributions of the variances of individ-
ual input parameters, i.e., the two cutting coefficients (equivalently,
the four cutting constants), and the radial runout. The simulations
can be run by invoking variances of each of these inputs
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individually while holding the other factors constant at their mean
levels. Several possibilities exist for convenience of visualization
of individual contributions. One way is to see the contribution to
the standard deviation as a function of cutter rotation angle, an
example of which is displayed in Fig. 11. Another way to visualize
it is to examine the frequency distribution of the predicted force
components at any specific cutter rotation angle for the given
number of iterations. An example of this is displayed in Fig. 12
where the cutter rotation angle chosen is that where the individual
force component peaks.

12 A Practical Benefit: Model Improvement

A key practical benefit of the uncertainty analysis is that it can
point to the shortcomings in the predictive force model itself.
Since the predicted forces are no longer single valued, but are pre-
dicted to be within a confidence interval, it behooves the actual
forces to lie within the predicted band of uncertainty to some rea-
sonable extent. A look at Figs. 8, 9, and 10 reveals that the
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Fig. 14 lllustration of model improvement for a helical endmill

prompted by a mismatch between experimental force signals
and 95% confidence intervals on model predicted forces. The
feed force and lateral force components obtained experimentally
are seen to lie outside the predicted confidence intervals to a fair
extent in the case of force prediction based on the constant coef-
ficient model (the top three panels). The corresponding model
using instantaneous cutting coefficients (the bottom three
panels) shows a glaring improvement in predicted feed and
lateral forces. Cutting conditions: 45-deg helix endmill, f;=
0.100 mm/tooth, runout 10 um, 100% RI, slotting an aluminum
alloy workpiece: more details available in the corresponding
Figs. 9-14 and 10-12 in Ref. [15].
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experimental feed force signals fall slightly outside the prediction
interval. This prompts the modeler to refine the model. The constant
cutting coefficient model can be replaced with an instantaneous
cutting coefficient model since the coefficients are sensitive to the
instantaneous chip thickness as shown in the Appendix B. Based
on this refined model, the predicted feed forces are seen to better
agree with experimental results as shown in Fig. 13.

An even more glaring illustration is displayed in Fig. 14. This
example is chosen from Ref. [15] in which a force model was devel-
oped for helical endmills, which makes the model more complex
than the one used in this paper. When the constant coefficient
version of the model was used to predict forces for a certain set
of cutting conditions, the experimental force signals were seen to
lie fairly outside the predicted 95% confidence interval band for
the feed force and the lateral force components as seen in the top
panels in Fig. 14. This prompted the modeler to refine the model
using instantaneous cutting coefficients.

The improvement in the accuracy of force prediction is quite dra-
matic as may be seen in Fig. 14. This example also demonstrates the
fact that the uncertainty propagation method outlined in this paper is
easily applied to any empirical cutting force model. Only the details
of the algebraic formulation differ, owing to the individual charac-
teristics of the given model. For instance, in the force model for the
helical endmill, the axial component of the force is also considered,
which adds to the length of the algebra. The relative complexity of
the model, as compared to the straight fluted model, also makes the
algebra lengthier. Lest this gives out the impression that the use of
instantaneous coefficients is the only way to refine a model, it must
be said that there are many ways to do so. For instance, edge coef-
ficients could account for edge roundness effects. The effects of tool
wear could be modeled. Modeling is not the objective of this paper.
Our proposed method is concerned with the propagation of input
uncertainties through any given model. The confidence intervals
served to discriminate between the predictive accuracy of the two
models in this example.

13 Conclusions

An analytical classical uncertainty analysis procedure was
applied to the practical problem of determining confidence intervals
on predicted cutting forces in end milling. An alternative method of
uncertainty analysis based on inferential statistics was also applied
using Monte Carlo simulation. This covers a gap in the literature in
the field of machining. One application, where cutting force sensing
is used for feedback, is the real-time monitoring of tool wear and
tool breakages. In comparing the actual cutting forces with pre-
dicted (expected) forces, the confidence bounds on the predicted
forces need to be considered. One has to be careful in attributing
deviations from nominal predicted forces to wear or breakage,
when these deviations lie within the confidence regions.

Though the uncertainty analysis was performed for a specific
cutting force model applicable for straight-flute endmills, the dem-
onstrated approach is quite general. For other force models, includ-
ing those for helical endmills, even though the basic force model
may differ, the uncertainty analysis procedure would remain the
same [15]. This general technique of uncertainty propagation
through a milling force model is one of the contributions of this
research. The procedure for determining the uncertainties, and the
corresponding confidence intervals, is readily implemented. The
modeler is able to provide a defensible uncertainty statement to
accompany cutting force predictions. This has a practical benefit
for the process planner who can decide on the usefulness of
model based force predictions in any specific application.

The classical uncertainty analysis is supplemented with an uncer-
tainty analysis procedure based on inferential statistics, namely the
Monte Carlo simulation method. This method does not require an
involved analytical procedure to determine combined uncertainties.
It yields the combined uncertainties directly. Covariances of cutting
coefficients were ignored in the Monte Carlo analysis, but it is
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possible to do so even in the classical approach. Using covariances
yields tighter tolerance bands on confidence intervals.

An important observation is that the force prediction band
obtained using the Monte Carlo simulation is not unique. It is
only one of an infinite family of such bands so that it will differ
somewhat every time one runs the simulation for a given number
of iterations. This is a direct function of the specific set of pseudo-
random numbers generated each time the simulation is run. This
fact does not pose any difficulty compared with the classical uncer-
tainty analysis results. Even in the classical approach, the 95% con-
fidence interval generated is not unique. It is, by definition [16],
merely one of a family of intervals in which the value of the
cutting force is predicted to lie approximately 95% of the time.

The classical uncertainty analysis requires the algebra to be done,
but that is a one time activity. It was shown that this analysis can
reveal the impacts of random effects and systematic effects sepa-
rately. This information can prompt the experimentalist to
improve the experimental setup if it is observed that the impact of
systematic effects is comparatively very large. On the other hand,
a comprehensive analysis to determine combined uncertainties is
not warranted when using the Monte Carlo approach because it
yields combined uncertainties directly.

Comparison of the predicted force intervals with experimental
results shows that the chosen model is a simplified one since por-
tions of the experimental force signals do not always lie within
the predicted force intervals. It was shown that this can prompt
the modeler to refine the model for more accurate predictions.
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Appendix A: The End Milling Process Description

The endmill (also called the tool or cutter) is held in a toolholder,
which is mounted on a powered machine spindle. The workpiece is
fed across the tool such that there is a linear relative motion between
the endmill and the part, in addition to the rotation of the tool. Mate-
rial is removed in the form of chips (swarf) via successive passes of
cutting edges (teeth) across the workpiece. Endmills have either
helical flutes or straight flutes. A force model for straight-flute end-
mills is considered in this document.

The geometry of peripheral milling with a straight-flute endmill is
shown in Fig. 15 which describes the process terminology, namely,
the axial depth of cut, b, the radial depth of cut, a,, the endmill dia-
meter, D, the feed per tooth, fr, and the spindle speed, Q. A
two-fluted endmill is illustrated. The shape of the uncut chip can
also be seen in the sectional view. The radial immersion (RI),
expressed as a fraction or a percentage, is defined as the following
ratio:

ar

Radial immersion, RI £ — (A1)
D

Two different types of tooth engagement configuration may be
encountered depending upon the direction from which the teeth
approach the workpiece. The concept is illustrated in Fig. 16
which shows up-milling and down-milling configurations for R/
below 50%. In up-milling, the cut begins with zero chip thickness,
whereas in down-milling the cut ends with a zero chip thickness. Rl
values exceeding 50% result in mixed-mode configurations of two
possible types. The cut may either begin with zero chip thickness or
end with zero chip thickness. A radial immersion of 100% results in
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Fig. 15 Geometry of peripheral milling, with a straight-flute
endmill, illustrating the axial depth of cut, b, the radial depth of
cut, a,, the endmill diameter, D, the feed per tooth, f;, and the
spindle speed, Q. The ratio “a,/D” is defined as the radial immer-
sion (expressed as a fraction or a percentage). The axial depth of
cut, b, is also the chip width. A two-fluted endmill is illustrated.
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Fig. 16 Cutter-workpiece engagement configurations: (a)
up-milling and (b) down-milling. Both the cases illustrated are
for radial immersion below 50%. The tooth engagement angle
is designated ¢. The entry angle is ¢s; and the exit angle is ¢ey-
Total tooth engagement is (pex — Pst)-

machining of double-walled channels and is called slotting.
Figure 16 also illustrates the entry and exit angles of the tooth in
the cut. The angular orientation at which the tooth enters the cut
is the entry angle, ¢, and the orientation at which it exits the cut
is the exit angle, ¢,,. For a given value of radial immersion, the
numerical values of ¢, and ¢, are obtained using simple geometry.

Appendix B: A Cutting Force Model for Straight-Flute
Endmills

To demonstrate the propagation of input parameter uncertainty, a
very widely used mechanistic model for machining with straight-
flute endmills is chosen. This model is proven in the literature
[1,4,17-19]. Here, it is described in fair detail for the sake of com-
pleteness, as the subsequent uncertainty analysis depends on the
structure of this model. Cutting force components are expressed
analytically as a function of chip geometry. All other factors,
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such as the properties of the workpiece material and tool face fric-
tion effects, are included in lumped parameter cutting coefficients,
making it an empirical model.

Model of Chip Geometry. Chip geometry depends on the chip
width, b, a fixed quantity which equals the axial depth of cut, and
the chip thickness, /, a variable quantity which depends on the
angular position of the tooth. Martellotti [17] showed that the true
path of the milling tooth, in the plane, is trochoidal. His simplified
circular tool path approximation yields the chip thickness

h(@) =frsin@ (B1)

where f7 is the feed per tooth, and @ is the angular orientation at
which 4 is computed.

Force Model for a Single Tooth. For straight-flute cutters, the
tangential cutting force, F,, and the normal cutting force, F,, on
any given tooth are proportional to the uncut chip area, A.=
bh (= f7 sin 0) [1]. The axial force vanishes, allowing this to be
treated as a planar problem. Force components on the pth tooth,
as a function of its angular orientation, 6, are

Fil_ bh 0 K,
F.J \o wn)lk,
=bfT<sin0p -0 ) K;
0 sin 6, K,

where K, and K,, are lumped parameter cutting coefficients which
depend on the tool-workpiece-cutting fluid combination, as well
as on machining parameters such as cutting speed and chip thick-
ness. They are obtained by experiment for any specific situation.
K, and K, are called the tangential and normal cutting coefficients,
respectively.

Transforming to a fixed frame of reference (Fig. 17) we have, for
the force components, when the tooth is in the cut (i.e., when 6, €

[Pst> Pex])
Fy| _bfr( sin26, 1 —cos26, \ [ K,
Fy[™ 2 \I-cos20, —sin26, K,

and F,,=0 when 6, & [(/)m z/)(,x] (tooth out of the cut).

(B2)

(B3)

Average Force-Based Estimate of K, and K,,. Sabberwal [19]
showed that the mean cutting coefficient could be related to the
average values of the cutting force. For a single tooth, the averaged
components of the cutting force, F,, and Fy, may be expressed as

sin 20, 1 —cos 20, a6
—sin 20, P

F, 3 bfr Jt/m
F_v B 2(¢ex - ¢s1) by ( 1 —cos 291,

K;
* {K } B
/ end‘Tl;l'I" | X Fax
Fuil 4F F
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%9\ workpiece Q i E
P (X F Ity
F > .

Fig. 17 Transformation of forces from a rotating frame (t, n) to a
fixed frame (x, y)
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Upon simplification

7)1

where, for convenience, ¢ and v are shorthand for the following
expressions:

H= sin (¢s[ + ¢z?x) sin (¢ex - 4)51)
v= (¢e)c - (f}xt) — Cos (¢st + ¢ex) sin (¢ex - (f}xt)

Inverting
K, — z(d)ex - (/)sl) H v EX
K)o +2)\v —n) | Fy
where the average force components are obtained from experi-

ments, and all other terms on the right-hand side of the above equa-
tion are known.

(B5)

(B6)

(B7)

Multiple Tooth Formulation. For a multiple tooth cutter, indi-
vidual force signatures due to each tooth are qualitatively identical,
except that they are phase shifted by a suitable pitch angle with
respect to the reference (pth) tooth, and differ in magnitude since
the associated effective feed per tooth differs due to radial runout
or differential pitch effects. The components of the total force on
the endmill, Fxy, are a summation of the appropriately phase
shifted force components of the individual teeth.

Average Chip Thickness. Martellotti [17] proposed that the
average undeformed chip thickness could be related to the compo-
nents of the cutting force. The concept of average chip thickness is
invoked to facilitate the experimental determination of cutting coef-
ficients, as well as average cutting forces. Using Eq. (B1), the
average chip thickness is

I T S, —cos b,
h=7j frsin9d9=fT(C°“/’” c0sfe)  pg)

¢ex - (f}xt by ¢ex - ¢st

Cutting Coefficient Models. For fixed levels of cutting speed
and axial depth of cut, the cutting coefficients depend on the the
chip thickness. A logarithmic relationship of the general form

K= er(ﬁ)w, proposed by Sabberwal [19] is adopted, leading to
I

InK, | _(1 mh 0 0 ¥,

nK, [ \0 0 1 Inh)|T,

n

(B9)

where I';,, and ¥, ,, are cutting constants whose values depend on
the combination of tool material and work material, the specific
cutting geometry, as well as cutting conditions, such as the type
of cutting fluid being used. The coefficients also depend on other
process parameters such as cutting speed and axial depth of cut.

The cutting coefficient model described above is based on the
averaged chip thickness but the coefficients are sensitive to the
instantaneous value of the chip thickness. A more refined
model uses the instantaneous chip thickness to calculate instanta-
neous cutting coefficients. The general form of such a relationship
is K=e"(fy sin 0).

Modeling the Tooth Runout Effects. Kline and DeVor [20]
identified the effect of runout on the cutting force system. The
radial runout influences the effective feed rate experienced by an
individual tooth. A static measurement of runout can be taken
using a dial indicator. The total indicated reading (TIR) can be
used as a measure of the radial runout. The relative runout
between successive teeth, p, governs the effective feed experienced
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by each tooth. For a two-fluted cutter, the effective feed rates, fry,
on individual teeth are

fri=fr+lpl and fr2=fr —Ipl

For a cutter with more than two teeth, the expressions for effective
feed can be derived using similar arguments.

(B10)
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