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INTRODUCTION1 
Hole making is an important machining activity for 
the aerospace, automotive, ship building, and 
biomedical industries, to name a few. The 
associated materials of interest are metal alloys, 
reinforced composites, polymers, bone, and 
others [1-5]. Mechanical techniques include twist 
drilling, vibration assisted twist drilling, ultrasonic 
machining, and rotary ultrasonic machining [1]. 
Among these, twist drilling is the most prevalent 
technique with process parameters that include 
spindle speed, feed rate, drill diameter and 
geometry, drill material, drill coating, work 
material, pilot hole diameter, and 
coolant/lubricant application method and amount. 
 
One limitation to hole quality, drill life, and 
material removal rate in twist drilling is chatter, a 
self-excited vibration caused by regeneration of 
waviness, or the overcutting of the previously 
machined surface with a spindle speed-
dependent time delay [6]. In milling, regeneration 
of waviness causes chip thickness variation due 
to lateral bending of the end mill and other 
vibration modes that give deflection 
perpendicular to the tool axis (i.e., the feed 
direction in peripheral end milling) [7-8]. In drilling, 
on the other hand, regeneration occurs due to 
vibrations in the axial (feed) direction. Axial 
deflection of the twist drill during material removal 
causes chip thickness variation which, in turn, 
can lead to self-excited vibration depending on 
the combination of spindle speed and chip width 
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(i.e., the difference between the twist drill 
diameter and pilot hole diameter, if applicable). A 
primary mechanism for this axial vibration is 
torsional-axial coupling due to the drill geometry. 
The helical drill shape leads to beam twist (about 
the axis) when an axial force is applied and, 
conversely, an axial deflection when a torque is 
applied [9].  
 
While prior modeling efforts differ in approach 
and solution technique, they each treat the drilling 
process as deterministic. However, it is well-
understood that the inputs to these models, as 
well as the analyses themselves, are uncertain. 
To enable a predictive capability, it is essential to 
consider these uncertainties and subsequently 
provide uncertain (probabilistic) model outputs. 
The contribution of this paper is to present the 
first uncertainty analysis for drilling stability using 
the frequency-domain model presented in [6] to 
identify the relationships between uncertainties in 
the measured inputs and output (i.e., the stability 
map). Due to the nonlinear nature of the stability 
model, Monte Carlo simulation is implemented to 
complete the uncertainty propagation. 
Experiments are also performed to compare with 
predictions and stability limit uncertainty bounds. 
 
The paper is organized as follows. First, as a 
convenience to the reader, the twist drilling 
stability algorithm described in [6] is detailed. 
Second, the Monte Carlo uncertainty analysis is 
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described. Third, experimental results are 
presented. Finally, conclusions are discussed. 
 
FREQUENCY-DOMAIN STABILITY ANALYSIS 
Axial feed of a twist drill into the workpiece 
causes the chip thickness to increase. The thrust 
force (aligned with the drill axis, z) required to 
shear away this chip is: 
 

𝐹𝑧 = −𝐶2𝑏ℎ,    (1) 
 
where C2 depends on the drill geometry and work 
material, h is the chip thickness and b is the chip 
width (i.e., the difference between the twist drill 
diameter and the pilot hole diameter, if 
applicable). The associated torque is: 
 

𝑀𝑧 = −𝐶1𝑏ℎ𝑅𝑎𝑣,    (2) 
 
where C1 also depends on the drill geometry and 
work material and Rav is the average radius of the 
force. With vibration in the axial direction, the chip 
thickness varies and its instantaneous value 
depends on the mean (commanded) value, the 
current vibration, and the previous cutting edge 
vibration at the same drill rotational angle: 
 

ℎ = ℎ𝑎𝑣 + 𝑧 − 𝑧(𝑡 − 𝜏),   (3) 
 
where hav is the feed per cutting edge (or flute, 

two flutes total for twist drills) and  is the time 
delay between flutes. This time delay serves as 
the mechanism for regenerative chatter. Although 
the twist drill is stiff in the z (axial) direction, its 
geometry leads to coupling between the torsional 
and axial vibration modes. As noted, an axial 
force causes the beam to twist and a torque 
causes it to change length. 
 
The second-order, time delay differential 
equation of motion for the drilling process can be 
written as: 
 

𝑀𝑢̈ + 𝐶𝑢̇ + 𝐾𝑢 = 𝐹,   (4) 
 
where u is the generalized coordinate that 
includes translations in the x, y, and z directions 

and rotations, , about the z axis: 
 

𝑢 = [
𝑥1 𝑥2 ⋯ 𝑥𝑁 𝑦1 𝑦2 ⋯ 𝑦𝑁
𝑧1 𝑧2 ⋯ 𝑧𝑁 𝜃1 𝜃2 ⋯ 𝜃𝑁

]
𝑇

.      (5) 

 
and the subscripts indicate the axial location (N is 
the tip). Returning to Eq. 4, F is the generalized 
force: 

 

𝐹 = [
𝐹𝑥1 𝐹𝑥2 ⋯ 𝐹𝑥𝑁 𝐹𝑦1 𝐹𝑦2 ⋯ 𝐹𝑦𝑁
𝐹𝑧1 𝐹𝑧2 ⋯ 𝐹𝑧𝑁 𝑀𝑧1 𝑀𝑧2 ⋯ 𝑀𝑧𝑁

]

𝑇

. 

(6) 
 
In Eq. 6, Fx and Fy are the unbalanced forces in 
the x and y directions and the other entries were 
defined in Eqs. 1 and 2. To convert from physical 
to modal parameters using modal analysis, the 

mode shapes are required. Let n be a vibration 
mode (mode number n) that can contain 
contributions from bending, torsion, and axial 
deformations of the twist drill. 
 


𝑛
= [

𝑞1𝑛 𝑞2𝑛 ⋯ 𝑞𝑁𝑛 𝑟1𝑛 𝑟2𝑛 ⋯ 𝑟𝑁𝑛
𝑠1𝑛 𝑠2𝑛 ⋯ 1 𝛼1𝑛 𝛼2𝑛 ⋯ 𝛼𝑁𝑛

]
𝑇

. 

(7) 
 

𝑢 = 
𝑛
𝑝.    (8) 

 
Substitution of Eq. 8 into Eq. 4 yields: 
 

𝑀
𝑛
𝑝̈ + 𝐶

𝑛
𝑝̇ + 𝐾

𝑛
𝑝 = 𝐹.  (9) 

 

Pre-multiplying both sides by 
𝑛
𝑇 gives: 

 


𝑛
𝑇𝑀

𝑛
𝑝̈ + 

𝑛
𝑇𝐶

𝑛
𝑝̇ + 

𝑛
𝑇𝐾

𝑛
𝑝 = 

𝑛
𝑇𝐹.   (10) 

 
Considering excitation at the twist drill tip only, 
Eq. 6 simplifies to: 
 

𝐹 = [
0 0 ⋯ 𝐹𝑥𝑁 0 0 ⋯ 𝐹𝑦𝑁

0 0 ⋯ 𝐹𝑧𝑁 0 0 ⋯ 𝑀𝑧𝑁
]
𝑇

. (11) 

 
Applying the orthogonality of eigenvectors and 
assuming proportional damping [34], the 
equation of motion in modal coordinates is: 
 

𝑀𝑞𝑞̈ + 𝐶𝑞𝑞̇ + 𝐾𝑞𝑞 = 
𝑛
𝑇𝐹.  (12) 

 
Considering only the torsional-axial contributions 
to Eq. 7, the mode shape simplifies to: 
 


𝑛
= [

0 0 ⋯ 0 0 0 ⋯ 0
0 0 ⋯ 1 𝛼1𝑛 𝛼2𝑛 ⋯ 𝛼𝑁𝑛

]
𝑇

 (13) 

 
In this case, the generalized modal force vector 
simplifies to: 
 


𝑛
𝑇𝐹 = 𝐹𝑧𝑁 + 𝛼𝑁𝑛𝑀𝑧𝑁,   (14) 

 
where 𝛼𝑁𝑛 serves as a coupling parameter that 
relates the torque to the torsional-axial vibration 
mode. The simplified mode shape in Eq. 13 



enables the chip thickness equation (Eq. 3) to be 
written in modal coordinates by direct 
substitution: 
 

ℎ = ℎ𝑎𝑣 + 𝑞 − 𝑞(𝑡 − 𝜏).   (15) 
 
Substituting Eqs. 1 and 2 in Eq. 14 yields: 
 

𝐹𝑧𝑁 + 𝛼𝑁𝑛𝑀𝑧𝑁 = −𝐶2𝑏ℎ − 𝛼𝑁𝑛𝐶1𝑏ℎ𝑅𝑎𝑣 . (16) 
 
Rewriting Eq. 16 gives: 
 

𝐹𝑧𝑁 + 𝛼𝑁𝑛𝑀𝑧𝑁 = −(𝐶2 + 𝛼𝑁𝑛𝐶1𝑅𝑎𝑣)𝑏ℎ = −(
𝐶1

𝐶2
+

𝛼𝑁𝑛𝐶1𝑅𝑎𝑣)𝐶1𝑏ℎ.    (17) 

 

Substituting 𝛽 =
𝐶1

𝐶2
 and inserting the chip 

thickness from Eq. 15 yields: 
 

𝐹𝑧𝑁 + 𝛼𝑁𝑛𝑀𝑧𝑁 = −𝛽𝐶1𝑏(ℎ𝑎𝑣 + 𝑞 − 𝑞(𝑡 − 𝜏)). (18) 

 
Considering only the time-varying component of 
Eq. 18, the new equation of motion is: 
 

𝑀𝑞𝑞̈ + 𝐶𝑞𝑞̇ + 𝐾𝑞𝑞 = −𝛽𝐶1𝑏(𝑞 − 𝑞(𝑡 − 𝜏)). (19) 

 
Converting Eq. 19 to the frequency domain using 
the Fourier transform, the result is: 
 

𝑄(𝜔)(−𝑀𝑞𝜔
2 + 𝑖𝜔𝐶𝑞 + 𝐾𝑞) = −𝛽𝐶1𝑏𝑄(𝜔)(1 −

𝑒−𝑖𝜔𝑐𝜏),     (20) 
 

where c is the chatter frequency. Substituting 
the torsional-axial mode receptance, 𝐻𝑛(𝜔) =

(−𝑀𝑞𝜔
2 + 𝑖𝜔𝐶𝑞 + 𝐾𝑞)

−1
, in Eq. 20 gives: 

 

𝑄(𝜔) = −𝛽𝐶1𝐻𝑛(𝜔)𝑏𝑄(𝜔)(1 − 𝑒−𝑖𝜔𝑐𝜏). (21) 
 
Moving all terms to the left hand side of Eq. 21 
and factoring yields: 
 

𝑄(𝜔) (1 + 𝛽𝐶1𝐻𝑛(𝜔)𝑏(1 − 𝑒−𝑖𝜔𝑐𝜏)) = 0. (22) 

The (, b) pairs that define the stability limit satisfy 
the characteristic equation: 
 

1 + 𝛽𝐶1𝐻𝑛(𝜔)𝑏(1 − 𝑒−𝑖𝜔𝑐𝜏) = 0.  (23) 
 
The torsional-axial mode receptance is complex-
valued, i.e., 𝐻𝑛(𝜔) = Re(𝐻𝑛) + 𝑖Im(𝐻𝑛). 
Additionally, the Euler identity can be used to 

rewrite the exponential term, 𝑒−𝑖𝜔𝑐𝜏 = cos𝜔𝑐𝜏 −
𝑖 sin𝜔𝑐𝜏. Substituting both in Eq. 23 gives: 
 

1 + 𝛽𝐶1(Re(𝐻𝑛) + 𝑖Im(𝐻𝑛))𝑏(1 − cos𝜔𝑐𝜏 +

𝑖 sin𝜔𝑐𝜏) = 0.    (24) 
 
Expanding Eq. 24 results in: 
 

1 + 𝛽𝐶1𝑏((Re(𝐻𝑛) − Re(𝐻𝑛) cos𝜔𝑐𝜏 +

𝑖Re(𝐻𝑛) sin𝜔𝑐𝜏) + 𝑖(Im(𝐻𝑛) − Im(𝐻𝑛) cos𝜔𝑐𝜏 +

𝑖Im(𝐻𝑛) sin𝜔𝑐𝜏)) = 0.   (25) 

 
Both the real and imaginary parts of Eq. 25 must 
equate to zero. The real part is: 
 

1 + 𝛽𝐶1𝑏(Re(𝐻𝑛) − Re(𝐻𝑛) cos𝜔𝑐𝜏 −
Im(𝐻𝑛) sin𝜔𝑐𝜏) = 0.   (26) 

 
The imaginary part of Eq. 25 is: 
 

𝛽𝐶1𝑏(Re(𝐻𝑛) sin𝜔𝑐𝜏 + Im(𝐻𝑛) −
Im(𝐻𝑛) cos𝜔𝑐𝜏) = 0.   (27) 

 
Rewriting Eq. 27 gives: 
 

Im(𝐻𝑛)

Re(𝐻𝑛)
=

−sin𝜔𝑐𝜏

1−cos𝜔𝑐𝜏
= tan ,  (28) 

 
which relates the chatter frequency and the time 
delay. Also, from the receptance definition, the 
ratio of the imaginary part to the real part is the 

tangent of the phase, . Returning to Eq. 26 and 
solving for the limiting chip width, 𝑏𝑙𝑖𝑚: 
 

𝑏𝑙𝑖𝑚 =
−1

𝛽𝐶1(Re(𝐻𝑛)(1−cos𝜔𝑐𝜏)−Im(𝐻𝑛) sin𝜔𝑐𝜏)
. (29) 

 
Rewriting the denominator gives: 
 

𝑏𝑙𝑖𝑚 =
−1

𝛽𝐶1Re(𝐻𝑛)((1−cos𝜔𝑐𝜏)−
Im(𝐻𝑛)

Re(𝐻𝑛)
sin𝜔𝑐𝜏)

. (30) 

 
Substituting Eq. 28 into Eq. 30 gives: 
 

𝑏𝑙𝑖𝑚 =
−1

𝛽𝐶1Re(𝐻𝑛)((1−cos𝜔𝑐𝜏)+
sin𝜔𝑐𝜏

1−cos𝜔𝑐𝜏
sin𝜔𝑐𝜏)

.  (31) 

 
Equation 31 simplifies to: 
 

𝑏𝑙𝑖𝑚 =
−1

2𝛽𝐶1Re(𝐻𝑛)
.   (32) 

 

Because  is negative, only the positive portion of 
the frequency-dependent Re(𝐻𝑛) is considered 

(i.e., Re(𝐻𝑛) > 0) in order to obtain positive 
limiting chip width values. Returning to Eq. 28, the 
sine and cosine terms can be rewritten using the 



double angle trigonometric formulas provided in 
Eqs. 33 and 34. 
 

sin𝜔𝑐𝜏 = 2 sin
𝜔𝑐𝜏

2
cos

𝜔𝑐𝜏

2
   (33) 

 

cos𝜔𝑐𝜏 = cos2
𝜔𝑐𝜏

2
− sin2

𝜔𝑐𝜏

2
  (34) 

 
Substituting these formulas in Eq. 28 yields: 
 

Im(𝐻𝑛)

Re(𝐻𝑛)
=

−2sin
𝜔𝑐𝜏

2
cos

𝜔𝑐𝜏

2

1−cos2
𝜔𝑐𝜏

2
+sin2

𝜔𝑐𝜏

2

=
−2sin

𝜔𝑐𝜏

2
cos

𝜔𝑐𝜏

2

2 sin2
𝜔𝑐𝜏

2

=

−cos
𝜔𝑐𝜏

2

sin
𝜔𝑐𝜏

2

= cot
−𝜔𝑐𝜏

2
.   (35) 

 
The final expression from Eq. 35 can be written 
as: 
 

tan (
𝜋

2
+

𝜔𝑐𝜏

2
± 𝑙𝜋).   (36) 

 
Equating Eq. 36 to the right hand side of Eq. 28 
gives: 
 

𝜋

2
+

𝜔𝑐𝜏

2
± 𝑙𝜋 = .    (37) 

 
Solving Eq. 37 for 𝜔𝑐𝜏 results in: 
 

𝜔𝑐𝜏 = 2 − 𝜋 ∓ 2𝑙𝜋.   (38) 
 
Because twist drills have two flutes, the spindle 
speed (in rpm) is written as: 
 

 =
60

2𝜏
=

60

2

𝜔𝑐

2−𝜋∓2𝑙𝜋
=

60𝜔𝑐

4−2𝜋∓4𝑙𝜋
=

60𝜔𝑐

4+2𝜋(2𝑙−1)
, (39) 

 
where 𝑙 = 1, 2, 3, … is the integer number of 
oscillations in the surface profile between cutting 
edges (at the bottom of the drilled hole) and the 
negative values for ∓4𝑙𝜋 were selected to obtain 
positive spindle speeds. The stability map is 
finally obtained by plotting the spindle speed (Eq. 
39) versus the limiting chip width (Eq. 32) for 𝑙 = 
1, 2, 3, …. The stability limit is determined from 
the smallest 𝑏𝑙𝑖𝑚 value at each spindle speed 
considering all stability lobes simultaneously. 
 
MONTE CARLO SIMULATION 
The primary steps for Monte Carlo simulation are: 
1) define the inputs and their probability 
distributions; 2) randomly select a value for each 
input from the probability distributions; 3) perform 
a deterministic computation using the inputs to 
find the output(s); and 4) aggregate the results 
after many repetitions for a statistical analysis. In 
this study, the inputs were selected to be: the 

modal stiffness, k, modal damping ratio, , and 
natural frequency, fn, for the torsional-axial 
vibration mode of the twist drill when clamped in 
the holder and spindle; and the torque coefficient 
C1. For the remaining parameters, it was 

assumed that 𝐶2 =
𝐶1

3
 and 𝛼𝑁𝑛𝑅𝑎𝑣 = −3.2. For the 

former, this means that the tangential force 
component is three times larger than the axial 
force component. For the latter, the negative sign 
indicates that the twist drill extends as it unwinds 
and that the torsional deflection is 3.2 times the 
axial deflection at the drill tip. Both assumptions 
follow the analysis from [6]. 
 

Mean values for the uncertain inputs, {k, , fn, C1}, 
were selected based on testing. Standard 
deviations were chosen using testing, 
experience, and process knowledge; a normal 
distribution was assumed for each input. 
Additional details are provided in Section 4. The 
output was the stability map, which identifies the 
stability boundary as a function of spindle speed. 
The algorithm described in Section 2 was used to 
generate this map over multiple iterations with 
inputs randomly sampled from the pre-defined 
normal distributions. The speed-dependent 
variation in the collection of output stability 
boundaries was then analyzed to determine the 
associated confidence intervals. 
 
RESULTS 
The experimental setup included:  

▪ 9.525 mm diameter, 135 deg split point, 
152.4 mm long, high-speed steel (cobalt 
oxide coating) twist drill with a 116 mm 
extension 

▪ collet holder with CAT-40 spindle 
interface 

▪ Haas TM-1P CNC machining center 
▪ 6061-T6 aluminum workpiece 
▪ Kistler 9257B cutting force 

dynamometer. 
 
The workpiece was bolted to the dynamometer, 
which was mounted on the machine table, to 
enable thrust (z) force measurement during 
drilling trials. 
 
Separate drilling tests were completed for a range 
of feed per tooth values to define C1 = 2.69×108 
N/m2 as described in [6]. For these tests, it is 
important to understand that the drill geometry 
varies with radial position along the cutting edge. 
In this study, blind hole stability was evaluated, so 
blind holes were selected to determine C1. 



However, to generalize predictions, pilot hole 
drilling should also be completed. Because the 
force model coefficients changes with pilot hole 
diameter, a mean value can be selected. 
However, this increases uncertainty. 
 
Frequency response functions, or FRFs, were 
measured by impact testing, where a small 
hammer (PCB model 086E80) was used to excite 
the drill tip and an accelerometer (PCB model 
352C23) was used to measure the vibration 
response; both time-domain signals were 
collected and converted to the frequency-domain 
using MLI’s MetalMax TXF software. To identify 
the required torsional-axial mode, three 
measurements were performed. First, the FRF in 
the axial direction, where the accelerometer was 
mounted at the drill tip with its sensitive direction 
aligned (as much as possible) with the drill axis. 
The hammer was used to tap the drill adjacent to 
the accelerometer in the axial direction. Due to 
the angled lips and small surface area, the tap 
direction was not perfectly aligned with the drill 
axis, nor perfectly consistent. 
 
Due to the imperfect alignment of both the 
hammer and accelerometer with the drill axis, the 
drill’s bending modes (in the lateral direction) 
were also excited. To distinguish between the 
torsional-axial and bending modes, two additional 
measurement setups were used. For the lateral 
direction FRF measurements, the drill was 
impacted on the margin perpendicular to the drill 
axis and nominally on its centerline. The 
accelerometer was attached on the opposite 
margin (directly across from the hammer strike), 
where the accelerometer measurement axis was 
colinear with the force vector (again, with some 
alignment uncertainty) to ideally excite only 
bending modes. 
 
For the torsion measurements, the drill was 
excited at the outer edge of the cutting lip to 
intentionally cause rotation about the drill axis. 
The accelerometer was placed on the outer edge 
of the cutting lip with its measurement axis 
parallel to, but offset from, the force vector and 
pointing in the opposite direction. This setup 
inherently excites both bending and torsional 
modes. The three measurement results are 
superimposed in Fig. 1. It is seen that the lateral 
FRF primarily excites the first bending mode with 
a natural frequency of 500 Hz; however, a second 
mode at 535 Hz is also observed. The torsion 
FRF, on the other hand, primarily excites the 
torsional response at 535 Hz although the 500 Hz 

bending mode is still seen with a smaller 
magnitude. The axial FRF shows both modes, but 
it is now possible to isolate the peak at 535 Hz as 
the torsional-axial mode to be used for the 
stability analysis. The mode is inverted due to the 
accelerometer orientation/strike direction and 
relationship between axial and torsional 
deflection. A modal fit provided the following 

values: k = 6×107 N/m,  = 0.005, and fn = 540 Hz 
(note that the measurement was compensated 
for the accelerometer mass, so the modeled 
natural frequency is higher than the measured 
natural frequency in Fig. 1 [35]). 
 

FIGURE 1: FRF measurement results. 
 

 
FIGURE 2: Drilling stability map with 
experimental results, where an × represents an 
unstable (chatter) result, a circle is for a stable 
result, and a square indicates marginal stability. 
 

Torsional-
axial mode 

Stable 

Unstable 



Drilling experiments were completed at spindle 
speeds from 5200 rpm to 6000 rpm in 100 rpm 
increments. A 3.175 mm diameter center drill was 
used to set each hole location prior to drilling and 
avoid bending vibrations during the hole entry 
transient. No pilot hole was used so the chip width 
was equal to the 9.525 mm drill diameter at 
steady-state. The feed per flute was 0.152 mm in 
all cases. The stability map and test results are 
displayed in Fig. 2. The corresponding chatter 
frequency, fc, versus spindle speed plot is 
provided in Fig. 3. The flute passing frequency 
line (equal to the product of the spindle speed and 
number of flutes, 2) is also included to identify the 
stable cuts, where no chatter frequency was 
present. 
 

FIGURE 3: Chatter frequency variation with 
spindle speed (solid lines). Experimental results 
are included, as well as the flute passing 
frequency (dotted line). 
 
The Monte Carlo simulation was next completed 
using the input mean and standard deviation 
values listed in Table 1. The standard deviation is 
presented as a percent of the mean value in each 
case. These percentages were selected based 
on the authors’ experiences with the input 
parameter measurements. For example, in the 
axial direct FRF measurement, it is challenging to 
apply the force and measure the response in the 
drill’s axial direction. Therefore, large uncertainty 
percentages were assigned to the modal stiffness 
and damping for the fit to the torsional-axis mode. 
A much smaller percent was applied to the 
natural frequency, however, because it is not as 
sensitive to the measurement location or 
direction. The C1 uncertainty was based on axial 
force uncertainty and hole-to-hole variation for 

the blind hole calibration tests. This number 
would be increased to incorporate variation in C1 
with pilot hole diameter if the model was 
evaluated at these other blim values. 
 
TABLE 1: Monte Carlo simulation input mean and 
standard deviation values. 

 Mean Standard 
deviation 

k 6×107 N/m 20% 

fn 540 Hz 1% 

 0.005 20% 

C1 2.69 × 108 N/m2 10% 

 

 
FIGURE 4: Monte Carlo simulations results when 
varying all four inputs. (Top) 250 stability 
boundaries obtained by randomly sampling the 
four inputs from normal distributions. (Bottom) 
Mean and 95% confidence intervals. 
Experimental results are included for visual 
comparison. 
 



Monte Carlo simulation results are displayed in 
Fig. 4. The top panel shows 250 stability 
boundaries determined by randomly sampling 
from independent normal distributions defined by 
the mean and standard deviation values in Table 
1. The four inputs were uncorrelated and 
generated using the Matlab randn function. Note 
that C2 also varied, but was correlated to C1 since 

it was calculated using 𝐶2 =
𝐶1

3
. The bottom panel 

in Fig. 4 shows the mean and 95% confidence 
intervals (plus/minus two standard deviations 
with symmetric error bars) for the stability 
boundary when varying all four inputs 
simultaneously. The experimental results are 
also included. It is seen that all stable cuts are 
captured within the uncertain boundary; further, 
the marginal result and two of the four unstable 
results are outside the boundary. 
 
CONCLUSIONS 
In this paper, an uncertainty evaluation for drilling 
stability was presented using a deterministic 
frequency-domain drilling stability model. Monte 
Carlo simulation was used to propagate 
measurement uncertainties in the model inputs to 
the output, where the inputs included the modal 
stiffness, damping ratio, and natural frequency for 
the torsional-axial vibration mode from the twist 
drill-holder-spindle axial frequency response 
function; and the mechanistic coefficients that 
relate the torque and thrust force to chip area for 
the selected drill-workpiece material combination. 
The stability model was used to generate multiple 
stability maps by randomly sampling from the 
input distributions. After many iterations, the 
mean stability boundary and its 95% confidence 
intervals were determined. 
 
Experimental results for blind hole drilling were 
presented. It was seen that the deterministic 
stability boundary obtained from mean input 
values was qualitatively correct, but shifted in 
spindle speed. When incorporating the input 
uncertainties to identify the 95% confidence 
intervals, all stable results (100%) were captured 
within the stable zone and the majority of 
unstable results (3 out of 5) were excluded. 
Practically, the frequency-domain drilling stability 
model offers a useful tool for pre-process drilling 
parameter selection, but conservative choices 
must be made due to the input uncertainties. The 
use of Monte Carlo simulation enables the 
uncertainty in the predicted stability boundary to 
be evaluated so that improved confidence can be 
achieved for parameter selection. 
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