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Abstract 

Physics-guided machine learning offers a new approach to stability 

modeling for self-aware machining that leverages experimental 

data generated during the machining process, while incorporating 

decades of theoretical process modeling efforts.  Physics-guided 

machine learning is a new paradigm of artificial intelligence that 

addresses some specific limitations of both machine learning mod-

els and physics-based models.  Machine learning models are black 

box models that typically do not provide insight into the underlying 

physics and do not reveal physical constraints for the modeled sys-

tem, sometimes yielding solutions that violate physical laws or op-

erational constraints.  In addition, acquiring the large amounts of 

manufacturing data needed for machine learning can be very 

costly.   On the other hand, many physical processes are not com-

pletely understood by domain experts, so physics-based models 

must make simplifying assumptions that compromise accuracy.  In 

this research,  we ask the question whether data generated by an 

uncertain physics-based milling stability model to train a machine 

learning stability model, and then updated with experimental data, 

provides useful approximation to the “true” stability model for a 

specific set of factory operating conditions, therefore reducing un-

certainty in optimal parameter selection to avoid chatter during the 

machining process.  Using a numerical experiment, we demon-

strate that the accuracy of a machine learning model trained using 

an uncertain physics-based model with errors, and subsequently 

updated with “true” experimental data shows improved conver-

gence towards the underlying true stability model with minimal in-

vestment in data collection. 

 Introduction  

Self-aware machines, as their name suggests, maintain 

“self-awareness” of both their own health and operational 

constraints and, as required, “self-control” to make paramet-

ric adjustments that maintain their continued performance to 

target levels.  For example, self-aware machines can make 

parametric adjustments to keep themselves operational 

while waiting for service; they can adjust their machining 

parameters to assure process stability during machining; and 

they can adjust their load to balance production yields in 

their cell in the event of excess demand or machine down-

time.  This level of machine intelligence has considerable 

potential to enhance productivity in the manufacturing envi-

ronment and to maintain optimal operational performance 

for maximum efficiency. 

 As a key enabler of self-aware manufacturing, machine 

learning has been an area of keen and accelerating interest 

by academic researchers (Sharp et al. 2018; Olega et al. 

2018; Cherukuri et al. 2019; Tao et al. 2019).  A range of 

methods have been studied to optimize processes for mill-

ing, turning and grinding and several recent review papers 

have been published (Kim et al. 2018; Wang et al. 2018).   

Due in part to the aging installed machine base, industrial 

manufacturers have been slower to take practical advantage 

of tools of artificial intelligence when compared with indus-

tries such as healthcare and finance.  However, most large 

machine tool manufacturers now offer product suites desig-

nated as “smart”. The majority of these “smart” applications 

address aspects of predictive maintenance to anticipate and 

avoid machine failure and support process control for CNC 

machining.  Machine learning models can learn normal op-

erational performance in order to track performance degra-

dation and anticipate machine failure.   Similarly, machine 

learning can be used to determine appropriate machining pa-

rameters, thereby minimizing problems such as tool break-

age, tool deflection, and tool wear.  Tool paths can also be 

optimized using machine learning to improve productivity 

and minimize cost.   

 This research builds on the existing trajectory of research 

on data-driven machine learning in machining by exploring 

a new paradigm—a new hybrid modeling approach referred 

to as physics-guided machine learning (PGML).  In this ap-

proach, physics-based process models are combined with 

data-driven models to enable a new approach for machining 

and measurement applications for products ranging from 

aerospace components to freeform optics. The innovation of 

PGML is to combine process measurements with physics-

based assessments that penalize model predictions that are 

inconsistent with physical knowledge. This capability will 

enable physically meaningful model output that not only 

provides increased accuracy and optimized processes, but 

also be incorporated into new scientific discovery efforts, 

such as improvements in physics-based models themselves. 

This new research stream is being explored under the lead-

ership of the Center for Self-Aware Manufacturing and Me-

trology (CSAM), a consortium of universities in North Car-

olina focused on providing a physical and computational 

testbed for evaluating self-aware machining and 
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measurement strategies enabled by physics-guided machine 

learning. CSAM’s research goal is to develop physics-

guided machine learning approaches that improve the accu-

racy, physical consistency, traceability, and generalizability 

of model predictions over traditional data-driven or physics-

based methods solely. CSAM serves as a resource for both 

academic researchers and industry practitioners in develop-

ing and promoting best practices when applying physics-

guided machine learning models to the manufacturing com-

munity.  Current use cases being explored include chatter 

avoidance during machining, ultra-precision machining of 

freeform optics, semantic data management for machining 

and metrology, and machining force diagnosis. CSAM in-

cludes more than 20 industry members, as well as research-

ers from the collaborating universities. 

Physics-Guided Machine Learning 

Physics-guided machine learning is emerging as a new par-

adigm for modeling and scientific discovery that combines 

scientific theory with data science techniques such as ma-

chine learning.  Traditionally, theory-based models of phys-

ical processes have served as the foundation for both aca-

demic research and operational best practices in the manu-

facturing environment.  More recently, with the introduction 

of CNC machines and advances in sensor technology, data-

driven techniques have become both popular and useful.  In 

recognition of the limitations of solely data-driven models 

with respect to generalizability and physical interpretability 

however, a new approach—physics-guided machine learn-

ing—has been proposed.  These models use physical princi-

ples to inform the search for the best machine learning 

model, thereby capturing the best attributes of both physics-

based and data-learning models, as shown in Fig. 1 below. 

 

FIGURE 1.  Physics-Guided Data Learning. 

When modeling complex machining processes, the practical 

choice—and associated best practice—has been to choose 

between physics-based and data-driven models for predic-

tion. Both approaches have distinct advantages when ap-

plied to complex systems with integrated mechanical, elec-

trical, and software components.  However, individually, 

they fall short of delivering the broad capability needed for 

self-aware machining. The hybrid models proposed herein 

are a relatively unexplored multidisciplinary methodology. 

Successful integration of physics-based and data-driven 

models represent a transformative breakthrough in intelli-

gent system development for manufacturing, broadly, and 

self-aware machining, in particular.   

 Data-driven approaches such as statistical models and 

machine learning are built on historical and/or real-time data 

and can learn directly from sensor data (e.g. vibration, tem-

perature, acoustic emissions, etc.) collected during machin-

ing.  Advantages include the ability to model highly com-

plex physical systems for which there is no underlying phys-

ical model that completely defines the system, or where the 

relationships between the input and output variables are dif-

ficult to describe using physics, or when the ability to in-

clude contextual data (e.g. environmental conditions, 

changes in operating regime, etc.) is important. 

 A challenge with data-driven (black box) models is that 

they are agnostic to physical laws because they rely only on 

data. They are, also, therefore dependent on data quality 

which can lead to relationships that do not generalize be-

yond the training data set.  Data-driven model predictions 

are subsequently limited to the training data range and can-

not, in general, be used for generating new scientific 

knowledge. Physics-based models are still preferred for sci-

entific discovery.  However, especially for highly complex 

physical systems, obstacles to their implementation include: 

1) every model is an approximation of reality; 2) the model 

input parameters require identification, estimation and cali-

bration; and 3) the model may be more complex and com-

putationally intensive than required. 

 Early work in theory-guided data learning focused on ap-

plications characterized by degrees of complexity that re-

sisted capture by traditional physical models, but for which 

large amounts of data were available for machine learning 

(Karpatne et al. 2017).  These included physical phenomena 

such as turbulent flow (Singh, Medida and Duraisamy, 

2017) and geoscience applications such as hydrologic mod-

eling and climate change [Karpatne et al. 2017; Sheikh and 

Jahirabadkar 2018; Faghmous and Kumar 2014].  This re-

search addresses the modeling of industrial processes where 

data is often limited by cost or time constraints but for which 

the underlying physical models are often more specific.  A 

critical difference for mainstream manufacturing applica-

tions is that the models much keep pace with the surround-

ing industrial processes. The application presented here is 

focused on determining the optimized operational parame-

ters offline.  However, a major challenge for future applica-

tions in manufacturing is to develop sensor-enabled physics-

based machine learning models with decision-making laten-

cies that match the speed of the process in real-time. 



Motivation for Physics-Guided Data Learning 

There is currently no universal reference model for combin-

ing physics-based and data-driven models.  In this paper we 

focus on the application of physics-guided machine learning 

to determine operational parameters that maintain the stabil-

ity of the machining process when milling complex metal 

parts that require excellent surface quality, for example pre-

cision aviation or automotive parts.  Milling is a cutting pro-

cess that uses a cylindrical cutting tool to remove material 

from the surface of a workpiece.  During the milling process, 

the cylindrical tool follows a predetermined tool path to 

achieve the desired geometry in the workpiece.  Under cer-

tain dynamic conditions, the milling process will exhibit 

chatter—a self-excited vibrational state that leads to insta-

bility and uncontrollability of the system.   Chatter is asso-

ciated with undesirable effects such as poor surface quality 

of the part, poor part accuracy, and accelerated tool wear.  

Fig. 2 illustrates poor surface quality due to chatter. 

 

FIGURE 2. Poor Surface Quality Due to Chatter 

Machine learning approaches have been directed towards 

predicting and detecting chatter in order to control the mill-

ing process [Oleaga et al., 2018; Cherukuri, et al. 2019].  

The stability model governing milling is the physics-based 

model that predicts stable and unstable milling regimes as a 

function of machining parameters such as spindle speed and 

axial depth of cut. The representation of the stability model, 

the Stability Lobe Diagram or SLD, contains errors that re-

flect both the incompleteness of the model and the variabil-

ity from one operating environment to another.  In this nu-

merical experiment, we use data generated by the SLD to 

train a machine learning stability model (“theory-based” 

machine learning model), and then update this model with 

experimental data to better approximate the “true” stability 

model, thereby reducing uncertainty in parameter selection.  

 Although many advances in machining have been 

achieved in recent decades, challenges for high productivity 

machining remain. First, CAD/CAM software generally 

treats machining as a geometric effort. Provided the cylin-

drical tool follows the required path through the prismatic 

work material to leave the desired geometry, it is assumed 

that the machining process is acceptable. This approach 

does not consider the constraints imposed by the process dy-

namics. For example, as noted above, some spindle speed-

depth of cut combinations will exhibit self-excited vibra-

tions, or chatter, which produces large forces, large vibra-

tions, unacceptable surface finish, and potential damage to 

the tool, part, and spindle. Additionally, even if stable be-

havior is obtained, the geometric accuracy of the machined 

part may not satisfy design tolerances, again depending on 

the selected spindle speed-depth of cut parameters.  Machin-

ing dynamics models are therefore required to select spindle 

speed-depth of cut combinations that avoid chatter, while 

providing the required geometric accuracy. 

 Second, the ability to predict process behavior by under-

standing vibrational behavior of the tool (and sometimes the 

part) imposes a specific measurement need. Vibration be-

havior is traditionally described by the frequency response 

function (FRF), which is obtained through modal testing. A 

popular approach is to excite the structure in question using 

an instrumented hammer and a low mass accelerometer at-

tached to the structure to record the subsequent time domain 

vibration response. The frequency domain displacement-to-

force ratio is the FRF, or receptance, for the tool or part. 

While the measurement procedure is well-understood, the 

lack of widespread availability of modal testing equipment 

and associated expertise has hindered the implementation of 

machining modeling on the shop floor. This points to a sec-

ond modeling need; the tool point receptances must be iden-

tified without a measurement of each.  Because the tool is 

clamped in a holder that is inserted in a spindle attached to 

the machine, tool point receptance prediction is not trivial. 

 Third, the tool point receptance and machining models 

are deterministic, but include inherent uncertainties. The 

predicted machining parameters are therefore also uncer-

tain. This establishes the need for uncertainty reduction 

through testing. In this research, the (uncertain) physics-

based process models are used to train machine learning 

models. Once these machine learning models are created, 

they are updated as process data is gathered. This leverages 

Industry 4.0 practices, where data collected during and after 

machining is used to achieve process improvement.  In this 

way, each part becomes an experiment and operating param-

eter uncertainty can be reduced over time. The physics-

guided machine learning approach is summarized in Fig. 3. 

 

FIGURE 3. Physics-Guided Machine Learning Approach 



Physics-Based Model Descriptions 

Three physics-based models are used collectively to predict 

the stability lobe diagram (SLD) for milling. First, re-

ceptance coupling substructure analysis (RCSA) is used to 

predict the tool point receptance. Second, a mechanistic 

force model is used to relate the cutting force to the com-

manded chip area through cutting force coefficients. Third, 

a mean force frequency domain analysis is used to predict 

the stability limit using the first two models as input. 

Receptance Coupling Substructure Modeling 

Using three-component RCSA for tool point dynamics pre-

diction has been demonstrated. In prior efforts, the free-free 

boundary condition tool and holder were modeled as cylin-

drical cross-section Timoshenko beams. These beam re-

ceptances were coupled analytically to measured re-

ceptances of the spindle-machine [Schmitz and Donaldson 

2000; Schmitz and Duncan 2005; Schmitz and Smith 2009].  

The sequence of steps for tool point receptance prediction 

are: 1) calculate the tool receptances (free-free boundary 

conditions) using the Timoshenko beam model; 2) calculate 

the holder receptances (free-free boundary conditions) using 

the Timoshenko beam model; 3) measure the spindle-ma-

chine receptances using impact testing; and 4) couple these 

receptances to predict the tool-holder-spindle-machine as-

sembly dynamics using either rigid or flexible-damped com-

patibility conditions. 

Force Model 

In mechanistic force modeling for milling, the cutting force 

components, k, are calculated using the commanded axial 

depth of cut, b, and chip thickness, h. The model shown in 

Eq. 1 includes force components that are tangential, t, and 

normal, n, to the rotating cutting edge. Force coefficients 

that relate the force to chip area, bh, are identified by a c 

subscript (cutting or shearing force). Those that relate the 

force to axial depth alone have an e subscript (edge or rub-

bing force). 

𝐹𝑡 = 𝑘𝑡𝑐𝑏ℎ + 𝑘𝑡𝑒𝑏
𝐹𝑛 = 𝑘𝑛𝑐𝑏ℎ + 𝑘𝑛𝑒𝑏

       (1) 

These coefficients may be determined by experiments 

where the cutting force is measured using a force dynamom-

eter and the commanded axial depth of cut and chip thick-

ness are known. Linear regression over a range of chip thick-

ness values and nonlinear least squares fitting to the time 

domain force have been applied [Rubeo and Schmitz 2016]. 

As an alternative, the material behavior can be defined using 

a constitutive model and the cutting force predicted using 

finite element simulation [Shi and Liu 2014]. 

Frequency Domain Stability Analysis 

The analytical stability limit may be determined using the 

mean Fourier force analysis [Altintas and Budak 1995] to 

transform the dynamic milling equations into a time 

invariant, but radial, immersion dependent system. This 

analysis expands the frequency domain dynamic milling 

equations into a Fourier series and then the series is trun-

cated to include only the mean component. This analysis 

uses the tool point receptance and force model as inputs. The 

output is the limiting axial depth of cut as a function of spin-

dle speed for a selected radial depth of cut, milling orienta-

tion (up and down), and number of teeth on the endmill. 

 As noted earlier, the deterministic models described in 

the previous section include uncertainty. For example, the 

actual extension length of the endmill from the holder is sub-

ject to setup and measurement uncertainties. This results in 

uncertainty in the tool point receptance which, in turn, leads 

to uncertainty in the stability limit. Propagation of uncer-

tainties in the tool and holder models, spindle receptances, 

and cutting force coefficients to uncertainty in the stability 

limit may be completed using Monte Carlo simulation 

[Karandikar, Zapata and Schmitz 2010]. This provides a 

predictive model, where a probabilistic, rather than deter-

ministic, stability limit is presented. However, if a test is 

performed to determine the actual stability behavior of a 

spindle speed-axial depth combination, there is no straight-

forward mapping between this result and input parameters.  

Numerical Experiments 

A numerical experiment was performed to illustrate how 

physics-based milling stability models, with their associated 

uncertainty, can be updated with experimental data to re-

duce uncertainty in parameter selection.  In this numerical 

experiment, the physics-guided machine learning model is 

trained using an initial approximation of the process and 

then updated with experimental data to better approximate 

the underlying true model.  Errors are intentionally intro-

duced into the inputs to the physics-based model so that the 

predicted stability limit used to train the machine learning 

model includes uncertainty. However, because the input er-

rors are known, it is possible to determine the true (zero un-

certainty) stability limit. This error-free stability model is 

used to generate experimental data, which replaces the un-

certain data in the original uncertain training dataset during 

the updating step. 

 The physics-based stability model is created by adding 

uncertainty to both the RCSA and force models. Errors are 

added to the extension length from the holder in the RCSA 

model and the cutting force coefficients in the force model. 

The stability model with errors is then created from the er-

ror-induced inputs of both these models; the result is pre-

sented in a stability lobe diagram (SLD) that provides the 

limiting axial depth of cut as a function of spindle speed for 

a given radial depth of cut, milling orientation, and number 

of endmill teeth. A second stability model is created without 

errors, representing the unknown true stability limit. To up-

date the machine learning model experimental points are se-

lected from this true stability limit (true experimental da-

taset). Example stability lobe diagrams for the physics-



based stability model (with errors) and the “true” model are 

shown in Fig. 4. 

 In Fig. 4, the model parameters for the tool were: 12 mm 

diameter, 4 teeth, 50 mm extension from the holder (with 

errors); and 12 mm diameter, 4 teeth, 53 mm extension 

(without errors). The force model coefficients were: 𝑘𝑡𝑐 = 

649.0 N/mm2, 𝑘𝑛𝑐 = 262.2 N/mm2, 𝑘𝑡𝑒 = 0, and 𝑘𝑛𝑒 = 0 

(with errors); and 𝑘𝑡𝑐 = 692.8 N/mm2, 𝑘𝑛𝑐 = 400.0 N/mm2, 

𝑘𝑡𝑒 = 0, and 𝑘𝑛𝑒 = 0 (without errors). The same spindle and 

holder receptances were used in both cases. Up milling with 

a radial depth of 2 mm was applied. 

 

FIGURE 4. Comparison of (left) Physics-Based SLD with Errors 

and (right) True SLD without Errors. 

Data points below the stability limit represent stable behav-

ior while data points above the stability limit represent un-

stable behavior (chatter). Using the dataset created from the 

physics-based model with errors, the physics-guided ma-

chine learning stability model is trained to create the “the-

ory-based” machine learning model. During subsequent up-

dating, data points are sampled from the true experimental 

dataset and their true stability values updated in the training 

dataset. As the physics-guided machine learning model is 

updated, it is expected that the “learned” stability model will 

approach the underlying and unknown “true” model. Corre-

spondingly, as true experimental data is added to the phys-

ics-guided machine learning model during updating, the 

number of correct stability predictions is expected to in-

crease. This increasing number of correct predictions after 

updating defines the (stability) convergence of the physics-

guided machine learning model to the true model. 

Many data-learning algorithms are available to train the 

physics-based stability model and to predict the stability 

outcome (chatter or stable) for input combinations of axial 

depth of cut and spindle speed. In this study, three machine 

learning methods were used, as follows: 

1) K-Nearest Neighbors (KNN) is one of the simplest 

classification algorithms, which makes decisions by re-

ferring to the k data points closest to the data point of 

interest. The distance between any two data points is 

calculated using several approaches. Common choices 

are Manhattan, Euclidean, and Minkowski distances. 

Euclidean distance was applied here. 

2) Support Vector Machines (SVM) is a supervised 

learning machine learning model that is used largely for 

classification. Binary classification is performed by 

finding the hyper-plane that best differentiates between 

two classes, i.e. maximizes the margin between the hy-

perplane and the support vectors, or closest values to 

the classification margins.  The use of kernels can trans-

form linearly inseparable problems into separate ones.  

3) Nesterov-Accelerated Adaptive Moment Estimation 

(NADAM) is an optimizer used in neural network models 

that minimizes the cost function by finding the opti-

mized values for the weights during updating. NADAM 

is typically used in the case of noisy gradients or gradi-

ents with high curvatures. 

Similarly, three strategies for selecting experimental updat-

ing points were selected, as illustrated in Fig.5 below. Up-

dating the physics-guided machine learning model simulates 

  

 

FIGURE 5.  Concepts for Three Updating Methods 

the process by which experimental data can reduce predic-

tion uncertainty (i.e., converge to the true stability condi-

tion).  The three updating strategies are:  1) a grid-based ap-

proach where experimental points are obtained at regular in-

tervals across the operational domain of spindle speed and 

depth of cut; 2) a “climb-the-hill” strategy  where update 

points are selected at regular intervals as it “climbs” the SLD 

hill; and 3) a “follow-the-curve” strategy where update 

points are selected at regular intervals along the SLD curve.  

For each updating strategy, the density of points increases at 

each iteration. To implement the experimental design in a 

balanced experiment, each of the three machine learning 

methods is paired with each of the updating strategies. 



Implementing Physics-Guided Machine 

Learning 

The training and updating steps of the physics-guided ma-

chine learning approach are summarized below. 

 Step 1: Build a physics-based milling stability model. 

This model is populated by the best information about the 

structural dynamics, relationship between the cutting force 

and chip area, and other process parameters. Using these in-

puts, the model predicts the limiting axial depth of cut to 

avoid chatter over a range of spindle speeds (i.e., the stabil-

ity boundary). For the case study, known errors are inten-

tionally inserted in the input data. This enables the incorrect 

model to be later updated with new points, corresponding to 

experimental data, which are generated using the true error-

free stability limit (Step 4). 

 Step 2: Generate training data from the physics-based 

model.  The stability boundary separates the spindle speed-

axial depth of cut domain into two zones, stable and unstable 

and each combination is associated with a stability value of 

stable or unstable. For the purposes of training and updating 

the model, a grid of 2020 points was defined using: 101 

spindle speeds from 10000 rpm to 20000 rpm in increments 

of 100 rpm; and 20 axial depths of cut from 1 mm to 20 mm 

in increments of 1 mm.  

 Step 3: Train the physics-guided machine learning 

model. A physics-guided machine learning model is trained 

to predict baseline stability values for combinations of spin-

dle speed and axial depth of cut. For the purposes of training, 

all 2020 points defined above are included in the training 

set. For testing, a sample of 500 points corresponding to the 

midpoints between each two consecutive points on the x- 

and y- axis were selected as the test set.  Prediction accuracy 

is determined by computing the percent of the test points for 

which a correct prediction is obtained by the trained model. 

 Step 4: Generate true experimental data. The true stabil-

ity model (without errors) is used to predict the limiting ax-

ial depth of cut. Experimental points are then defined using 

this stability limit. The same spindle speed-axial depth 

points of the training and test sets are selected, but the sta-

bility behavior is defined with the true stability limit. 

 Step 5: Update the physics-guided machine learning 

model with true experimental data and retrain. Using the 

designated updating strategy, experimental data points from 

the population of true data points are selected. These stabil-

ity values in the training dataset are updated with the true 

stability values, as necessary, and the model is retrained.  

 Step 6: Evaluate performance of the updating strategy. 

To evaluate performance of the updated model at each iter-

ation, stability convergence C (%) is calculated, where CP 

is the number of correct predictions compared to the true 

stability value and TP is the total number of true predictions; 

see Eq. 2.  A higher C value means that the machine learning 

model agrees more closely with the true stability limit. This 

indicates that updating has improved the model’s predictive 

capability with respect to the true stability limit. 

𝐶 =
𝐶𝑃

𝑇𝑃
∗ 100%         (2) 

Numerical Results 

Once the physics-guided machine learning classification 

model is trained, we evaluate its performance by running the 

model for both the training and testing sets one at a 

time.  The model’s training accuracy is measured by pre-

senting the training set inputs to the trained model and com-

puting the fraction of its predictions that are correct with re-

spect to their expected outputs. Similarly, presenting the 

testing set inputs to the trained model and computing the 

fraction of its predictions that are correct with respect to 

their expected outputs, we measure the testing accuracy.   

 As shown in Table 1, accuracy results obtained with the 

KNN, SVM, and NADAM machine learning methods are 

high and indicate that these methods can become useful in 

improving identification of the chatter phenomenon in the 

manufacturing environment.  Testing accuracy results, for 

the various models, are slightly inferior to their training ac-

curacy counterparts. Usually, accuracy results for the train-

ing set are higher than the accuracy results for the test set, 

because the data points in the test set have not been evalu-

ated, or “seen”, by the model during training.   

 

TABLE 1.  Convergence and Accuracy Results Before Updates  

 Accuracy is a good measure of how well a classification 

model fits the data, especially when the distribution of the 

training and testing sets is similar, such as the two datasets 

generated from the physics-based model for this application 

(cf. step 3 above). However, given that the stability value 

(stable or chatter) provided by the physics-based model may 

contain errors, it is desirable to measure the performance of 

the machine learning methods against the stability values 

generated by the true stability model (without errors).   For 

the purposes of this research, such a measure is called sta-

bility convergence and attempts to express how far the 

model trained with physics-based data is from capturing the 

true stability limit of the operational environment.  The 

model’s stability convergence during training is measured 

by presenting the training set inputs to the trained model and 

computing the fraction of model predictions that are correct 

with respect to the corresponding stability value provided by 

the true stability model. Similarly, stability convergence is 

measured for the test set.  



 As presented in Table 1 above, the convergence results 

are much lower than the accuracy results, as expected, given 

the limitations of the current physics-based model to com-

pletely capture the complex relationships among machining 

parameters. Fig. 6 illustrates the “performance gap” be-

tween the physics-based model and the true stability model, 

when running the KNN model, by computing the misclassi-

fication error for both the accuracy and stability conver-

gence measures as the difference between 1 and each meas-

ured value.  The graph helps visualize that a 20% to 25% 

improvement is possible and additional updating methodol-

ogies need to be attempted to resolve it.  Overall, SVM and 

NADAM algorithms performed better than KNN. 

 

FIGURE 6.  Accuracy and Stability Convergence Error for 

KNN Machine Learning Model 

 The physics-guided machine-learning model is updated 

in stages to assess the rate at which it approaches the true 

underlying SLD.  In the first updating iteration, a subset of 

update points in the training set is selected depending on the 

updating method.  The stability values in the training dataset 

are corrected with the true stability values, as necessary, and 

the physics-guided machine learning model is trained. At 

the next iteration, the subset of points is expanded, their sta-

bility status is again replaced by the true stability value, and 

the model is retrained. The process can then be repeated for 

increasing subsets of update points. For each updating point, 

additional information is available. If an experimental point 

(at a selected spindle speed-axial depth of cut pair) is stable, 

then all points for that spindle speed at lower axial depths 

are also stable. Conversely, if a point is unstable, then all 

points for that spindle speed at higher axial depths are also 

unstable.  These additional points are incorporated into the 

set of experimental update points. 

 Updating experiments are currently underway for the 

three methods described above. However, preliminary ex-

periments from our research group, shown in Fig. 7, suggest 

that a small number of experimental points selected using 

the Climb-the-Hill updating approach may assist in improv-

ing stability convergence of the initial KNN model (k=3) to 

the true stability limit [Jiang et al., 2019].  The left image in 

Fig. 7 compares the physics-based stability model with the 

true SLD, shown as a solid blue line.  As seen in the figure, 

discrepancies between the physics-based and true model ex-

ist at spindle speed 13,500 rpm and for spindle speeds 

greater than 18,000 rpm. The image on the right illustrates 

stability convergence after sequential updating at axial 

depths of 5mm, 7mm, 10mm and 13mm.  In that image the 

updated model with 133 update points now captures areas at 

13,500 rpm and greater than 18,000 rpm that were not pre-

viously captured by the physics-based SLD. 

 

FIGURE 7.  Preliminary Results Comparing Stability Conver-

gence of the Physics-Guided KNN to True SLD After Updating 

Summary, Conclusions and Next Steps 

Our research focuses on developing new methodologies that 

apply physics-guided machine learning for manufacturing 

process control.  Specifically, this paper reports experiments 

with machine learning models that can classify the stability 

condition of milling operations and assist with milling ma-

chine parameter selections to avoid chatter instability.  We 

have developed novel strategies for updating the machine 

learning model with domain knowledge to improve produc-

tivity on the factory floor and the quality of the final product. 

A numerical case study was presented in which the machine 

learning model was trained using an initial approximation of 

the milling process (with errors) and then updated with new 

data (without errors) to better approximate the underlying 

true stability model.  It was shown that model accuracy was 

improved and converged to the true stability behavior.  

 Since this research is on-going, more questions have 

been raised than answered. Most significantly, we are devel-

oping a framework for combining physics-based and data-

driven models.  There are currently no accepted or universal 

principles for the practical or theoretical application of these 

new methods. Our research explores distinct archetypes that 

represent different approaches to incorporating domain 

knowledge into the machine learning method. Each arche-

type uses a different implementation of machine learning to 

corroborate or contradict the outputs of the physical models. 

Other approaches, such as embedding the machine learning 

components directly into the physical model, are also being 

considered.  



 New research questions have been suggested by the specific 

milling example studied here.  While prior research has pro-

vided guidelines for machine learning model selection and 

associated parameter specification during training, the best 

strategy for update point selection is an open question.  Our 

preliminary results suggest that the strategy for selecting ex-

perimental update points can have a significant impact on 

the magnitude and rate of stability convergence.  For this 

paper, we created three systematic approaches, each with 

implicit assessments about the value of the points selected 

(c.f. near the curve, near an inflection point, etc.).  We are in 

the process of developing an information-theoretic updating 

strategy that uses a “value of information” criterion to deter-

mine which (and how many) points should be selected for 

updating. This question has practical, as well as theoretical 

implications. The cost of gathering manufacturing data can 

be quite costly within a production environment. Thus, 

achieving stability convergence with fewer experimental 

points is desirable in an operational setting. Further, phys-

ics-guided machine learning models will need to be com-

pared against physics-based and data-driven models with re-

spect to trade-offs between complexity and cost, estimation 

accuracy, and suitability across a range of applications. 
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