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Force and Stability Modeling for
Non-Standard Edge Geometry
Endmills
This paper describes a reverse engineering solution for modeling the behavior of non-
standard edge geometry endmills. Structured light scanning is used to produce a solid
model of the endmill and spatial coordinates for the points that define the cutting edges
that are extracted. These points are then used to determine the cutting edge radius and
angle at equally spaced points along the tool’s axis. This cutting edge geometry is
applied directly in a time domain simulation that predicts the cutting force and tool/work-
piece deflection for user-selected operating parameters. A good agreement between pre-
dicted and measured cutting forces is first demonstrated for two non-standard edge
geometry endmills. Second, the results of stability tests are compared with simulation pre-
dictions for multiple spindle speed-axial depth of cut combinations using one of the end-
mills. The time records are analyzed by periodically sampling the measured and
predicted displacement and velocity. Third, the time domain simulation is used to generate
a stability map that separately identifies stable (forced vibration) behavior, secondary Hopf
bifurcations, and period-n bifurcations. [DOI: 10.1115/1.4045057]
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1 Introduction
Multi-axis machining is a cornerstone manufacturing capability

for discrete part production. Technology improvements are consis-
tently pursued and implemented to increase productivity and effi-
ciency. Examples include the following: new machine designs to
increase part access, work volume, acceleration, velocity, stiffness,
and accuracy; controller improvements to reduce positioning and con-
touring errors; new spindle designs to increase power, torque, rotation
speed, and thermal stability; new tool holder designs to increase
clamping stiffness and reduce runout; andnew tool designs to increase
stiffness, provide localized cooling/lubrication at the tool/chip
interface, control chip formation, and increase material removal rates.
For endmills, design modifications to the cutting teeth include

non-uniform spacing (or pitch), variable helix angle from one tooth
to the next and along a single cutting edge, edge honing, and serrated
edge geometry, among others. The purpose of these design updates is
to affect chip formation and disturb the tooth-to-tooth chip thickness
regeneration that serves as the mechanism for self-excited vibration,
or chatter, in endmilling operations. While modeling of machining
operations has received continuous international attention since
the mid-twentieth century (see Refs. [1–3] for comprehensive

overviews), relatively less effort has been expended on modeling
the behavior of these non-standard geometry endmills, particularly
those with serrated cutting edges. Notable exceptions are summa-
rized here.
Wang and Yang [4] presented force models in the angle and fre-

quency domains for a cylindrical roughing endmill with sinusoidal
cutting edges. Merdol and Altintas [5] modeled the serration profile
by fitting points along a cubic spline projected on the helical flutes.
This geometric model was used in a time domain milling model.
Dombovari et al. [6] used the semi-discretization method to
analyze the stability of serrated endmills. Later, he and others
created general models for various tool geometries [7,8]. Koca
and Budak [9] used a linear edge-force model and the semi-
discretization method for force and stability modeling and opti-
mized the serration waveform shape to reduce milling forces and
increase stability. Grabowski et al. [10] extended their mechanistic
model to calculate the process forces for serrated endmills. Tehrani-
zadeh and Budak [11] proposed a genetic algorithm to optimize the
design of serration shapes. Comak and Budak [12] modeled the
stability behavior of variable pitch and helix endmills using both
a frequency domain solution and the semi-discretization method.
Experimental results were compared with the simulations. Munoa
et al. [13] summarized chatter suppression techniques, including
special tool geometries with discrete time delays (helical, variable
pitch, and serrated) and continuous time delays (variable helix
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and harmonically varied helix). The work described here builds on
these prior efforts by enabling the actual edge coordinates of the
endmill under test to be extracted from a structured light scan and
implemented directly in a time domain simulation.
As noted, a reverse engineering solution for modeling the beha-

vior of non-standard edge geometry endmills is provided. The pro-
cedure include: (1) structured light scanning to produce a solid
model of the endmill (this is useful because the tool geometry
may not be available from the manufacturer); (2) identification of
the spatial coordinates for the points that define the cutting edges;
(3) analysis of those points to extract the cutting edge radius and
angle at equally spaced slices along the tool axis; (4) time domain
simulation of the cutting force and tool/workpiece deflection
using the measured edge geometry; and (5) periodic sampling of
the simulation outputs to analyze stability.
The paper outline is as follows: In Sec. 2, the structured light

scanning approach is described, and the example results are pre-
sented. In Sec. 3, the time domain simulation is detailed. In Sec. 4,
the experimental setup for milling trials is detailed. In Sec. 5, a
comparison between measured and simulated forces is presented
for stable cutting conditions over a range of axial depths and feed
per tooth values. The results of stability testing and predictions are
also provided. In Sec. 6, a process stability map is presented that
separately identifies stable (forced vibration) behavior, secondary
Hopf bifurcations, and period-n bifurcations. Finally, conclusions
are provided in Sec. 7. Primary contributions of this paper are the
following: (1) structured light scanning to determine the spatial
coordinates of the cutting edges in a reverse engineering strategy;
(2) a time domain simulation that uses the measured edge coordi-
nates directly and models variation in the radius of the serrated
edge as runout; and (3) the identification of period-n bifurcation
behaviour for a selected non-standard geometry endmill.

2 Scanning Metrology for Edge Geometry
A primary challenge associated with modeling the performance

of non-standard edge geometry endmills is that the design details
are not generally available. To overcome this obstacle, the reverse
engineering capabilities made possible by scanning metrology can
be leveraged. One strategy for collecting point clouds from
complex surfaces to develop the corresponding solid model is struc-
tured light, or fringe, projection. In this technique, a common
approach is to project a pattern of parallel lines onto the surface
in question. The reflected lines are distorted due to the surface
geometry. The measurement system uses the relative positions of
the projector and one or more cameras (two cameras is typical)
together with the distorted lines to reconstruct the three-dimensional
surface. While many commercial options are available, the GOM
ATOS Capsule system was used for this research.
The measurements are proceeded by first preparing the endmill

surface using a removable anti-glare coating and attaching reference
targets to the shank surface to enable multiple measurements to be
stitched together and generate the solid model; a photograph is pro-
vided in Fig. 1. Multiple scans were then completed (Fig. 2) to
obtain the point cloud and 3D model (Fig. 3). Mesh details are pro-
vided in Fig. 4. Figures 2–5 display results for an endmill from
Walter Tools (part number 3D1163-6768616). Figures 6–7
present results for a Niagara endmill (part number N68949).
The procedure used to extract the edge coordinates from the solid

model included four steps:

• First, using the best fit cylinder to the tool shank and the fluted
end’s extreme point, the origin was established on the tool’s
centerline.

• Second, the points located on the cutting edges were selected.
This step required manual manipulation within the GOM soft-
ware. In function, it was analogous to update the driving direc-
tions in Google Maps by dragging the original route to new
roads.

• Third, the radius r and angle ϕ for each edge point was calcu-
lated. The teeth angles were normalized to a selected tooth and
constrained to values between 0 and 360 deg; the z value was
retained to obtain a triplet {r, ϕ, z} for each point.

• Fourth, because the point density was higher than required for
the time domain simulation, linear interpolation was used to
obtain the triplet for axial slices located every 0.1 mm over
the full flute length (see Fig. 8), which shows the origin,
edge points, and axial slices for the Walter Tool endmill.

Example radius and angle results for the Walter Tool endmill are
provided in Figs. 9 and 10. It is observed in Fig. 9 that the special-
ized tool geometry incorporates large radius variation along the
cutting edge and that these radius variations are phased from one
tooth to the next (120 deg spacing between the peaks for the three

Fig. 1 Endmill preparation for structured light scanning:
example endmill (left) and application of anti-glare coating and
reference targets (right)

Fig. 2 Scanningmetrology setup using the GOMATOS Capsule
system
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teeth). In Fig. 10, it is seen that the angle variation from the nominal
helix Δϕ is not significant. The mechanism for increased stability
with this design is, therefore, the segmentation of the cutting edge
into bands using the radius variation. This effectively reduces the
axial depth of cut on each tooth, while simultaneously increasing
the thickness of the chip. The tooth-dependent axial depth is

smaller than the commanded axial depth because the large radius
variation causes only a portion of the helical length to be engaged
in the cut at an instant in time. Also, the point cloud data were
used to determine the macro-geometry: 8 mm shank radius,
28.3 deg helix angle, and 2.785 mm bull nose radius.
Due to the manual manipulation in the second step, it was desired

to determine the sensitivity of the cutting edge coordinate identifi-
cation and, by extension, the radius and angle values used in the
time domain simulation. To assess this sensitivity, the manual
manipulation used to identify the cutting edges was performed
five times for each edge (15 total data sets) for a single tool scan
of the Walter Tool endmill. This isolated the contribution of the
edge identification from potential non-repeatability in the scan
(this uncertainty was not evaluated in this study). The standard devi-
ations in the radius, σ(r), and angle, σ(ϕ), are displayed in Figs. 11
and 12. It is seen that the deviations are small, and the data are there-
fore sufficient to make meaningful process performance predictions
when incorporated in the time domain simulation. For example, the
standard deviation in radius is approximately 5 µm on average. This
is only 1% of the overall radius variation (480 µm).
Example radius and angle results for the Niagara endmill are pro-

vided in Figs. 13 and 14. It is observed in Fig. 13 that there is no
appreciable radius variation in this case. Figure 14 shows that the
angle variation is periodic and progressively offset by 90 deg
between teeth (harmonically varied helix). The mechanism for
increased stability with this design is, therefore, disruption of regen-
eration from one tooth to the next by the periodically variable
cutting edge angle on each tooth and the offset from one edge to
the next. The point cloud data were again used to determine the
macro-geometry: 9.5 mm shank radius and 35.1 deg helix angle.

3 Time Domain Simulation
Time domain simulation enables the numerical solution of the

coupled, time-delay equations of motion for milling in small time
steps [1]. It is well suited to incorporating the inherent complexities

Fig. 3 Point cloud (left) and model (right) for the Walter Tools endmill obtained from
scanning

Fig. 4 Model (left) and mesh details (right) for the Walter Tools endmill

Fig. 5 Scale for the Walter Tool endmill to visualize edge
geometry
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of milling dynamics, including complicated tool geometries
(runout, or different radii, of the cutter teeth, non-uniform teeth
spacing, and variable helix) and the nonlinearity that occurs if the
tooth leaves the cut due to large magnitude vibrations. The simula-
tion applied here is based on the regenerative force, dynamic deflec-
tion model described by Smith and Tlusty [14]. As opposed to
analytical or semi-analytical stability maps that provide a global
picture of the stability behavior, time domain simulation provides
information regarding the local cutting force and vibration behavior

for the selected cutting conditions. The simulation used in this study
is described in the following paragraphs.
The strategy used to model the large radius variation for each

tooth on the Walter Tool endmill (Fig. 9) was to define a nominal
tooth shape with no serration and then incorporate the radial devia-
tion as runout. It is observed in Fig. 15 that tooth 3 follows the
nominal bull nose profile up to the shank diameter. The tooth 3
geometry was therefore selected as the reference (up to
−2.4 mm). The radius was set to a constant value of 7.974 mm
(i.e., the value at −2.4 mm) for z values of −2.5 mm and beyond.
The runout was then determined for each tooth as the difference
between the reference profile and the actual radius value at each z
interval. The runout, RO, is displayed in Fig. 16. The peak-to-peak
variation is approximately 0.48 mm. For the Niagara endmill, the
runout was small, but the intentional z-dependent variation in
edge angle and, therefore, the tooth spacing (or pitch) was incorpo-
rated by specifying the tooth angle at each z location using the inter-
polated data from the 3D model edge identification.
The time domain simulation had three special requirements for

the selected tools: use the actual tooth angles, include the radius var-
iation as runout, and incorporate the bull nose geometry. For the
tooth angles, the measured angles from the scanned edge were
arranged in an array, where the columns were the individual teeth
and the rows were the z locations (in steps of 0.1 mm). These z loca-
tions extended over the entire cutting length, but the array was

Fig. 6 Point cloud (left) and model (right) for the Niagara endmill

Fig. 7 Scale for the Niagara 3D model to visualize edge
geometry

Fig. 8 Cutting edge points and axial slices (not to scale) for
linear interpolation. The origin is also identified (Walter Tool).
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truncated to include rows only up to the commanded axial depth
when the simulation was executed. This enables any axial depth
to be simulated (up to the cutting length). A row array of closely
spaced tooth angles for use in the time domain simulation was
then defined. The resolution in this array was Δϕ= 360/SR,
where SR is the number of steps per revolution in the simulation.
Once this array was defined, the measured tooth angles were

specified in an index array with each entry given by the ratio
ϕ/Δϕ rounded to the nearest integer, where ϕ is the measured
angle of the tooth at the selected z location. This index array was

Fig. 9 Radius value at each axial slice for all three endmill teeth
(Walter Tool)

Fig. 10 Deviations of teeth angles from nominal helix (Walter
Tool)

Fig. 11 Standard deviations in the radius, σ(r), from the manual
edge identification step (Walter Tool)

Fig. 12 Standard deviations in the teeth angles, σ(ϕ), from the
manual edge identification step (Walter Tool)
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then used to specify the angle of any tooth at any z location by iden-
tifying the nearest preselected value from the closely spaced tooth
angle array for use in the simulation. The reason for this approach
is that the current chip thickness in milling depends not only on
the commanded chip thickness and current vibration but also on
the surface left by the previous teeth at the current tooth angle.
To be able to do so conveniently, this information must be orga-
nized according to specified tooth angles.
The tool’s radius variation was included as the runout, as noted.

The z-dependent RO values for each tooth were also arranged in an
array, where the columns were the individual teeth and the rows
were the z locations (again in steps of 0.1 mm). Note that the RO
values are negative as shown in Fig. 11. A negative RO value

Fig. 13 Radius value at each axial slice for all four endmill teeth
(Niagara)

Fig. 14 Deviations of teeth angles from nominal helix (Niagara)

Fig. 15 Selection of tooth 3 as the reference tooth shape (Walter
Tool)

Fig. 16 Runout, RO, for three teeth used in time domain simula-
tion. The peak-to-peak variation is approximately 0.48 mm
(Walter Tool).
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reduces the chip thickness for the current tooth but leaves behind
material that the next tooth must remove (and therefore increases
that chip thickness).
Two other data organization requirements were (1) the surface

that was left behind by the current tooth; and (2) the commanded
chip thickness. To keep track of the previously machined surface,
another array was defined that recorded the surface location in the
tool’s normal direction for each simulation time step. The
columns of this matrix were the number of steps per revolution,
and the rows were the z locations. The influence of runout on sub-
sequent chip thickness values was captured in this matrix. Because
there were variations in the tooth angles from the nominal helix
profile, the commanded chip thickness was also modified to
account for the actual tooth angle using the circular tooth path
approximation. This approximation calculates the nominal chip
thickness from the product of the feed per tooth and the sine of
the tooth angle. Finally, the bullnose portion of the Walter Tool
endmill was incorporated in the simulation by projecting the
forces in the appropriate directions using the nose surface normal
at each z location. Also, the axial depth was updated to account
for the nose radius arc length [1].
Given this information, the simulation proceeded as follows:

(1) The instantaneous chip thickness h(t) was determined
using the commanded chip thickness, runout, and vibra-
tion of the current and previous teeth at the selected tooth
angle.

(2) The cutting force components in the tangential t and normal n
directions were calculated at each axial slice using the fol-
lowing equation:

Ft(t) = ktcbh(t) + kteb (1)

Fn(t) = kncbh(t) + kneb (2)

where b is the slice width (0.1 mm) and the cutting force
coefficients are identified by the subscripts: t or n for direc-
tion, and c or e for cutting or edge effect. These forces
were then summed over all axial slices engaged in the cut.

(3) The summed force components were used to find the new
displacements by numerical solution of the differential

equations of motion in the x (feed) and y directions:

mxẍ + cxẋ + kxx = Ft(t)cos + Fn(t)sin (3)

myÿ + cyẏ + kyy = Ft(t)sin − Fn(t)cos (4)

where m is the modal mass, c is the modal viscous damping
coefficient, and k is the modal stiffness. The subscripts iden-
tify the direction and multiple degrees-of-freedom in each
direction can be accommodated by summing the modal
contributions.

(4) The tool rotation angle was incremented by adding one to
each entry in the tooth angle index array, and the process
was repeated.

A flowchart is provided in Fig. 17 to summarize the simulation
steps.

4 Experimental Setup
The experimental setup for milling forcemeasurement is shown in

Fig. 18. Trials were completed on a Haas TM-1 three-axis computer
numerically controlled milling machine. The 7075 aluminum work-
piece was mounted on a cutting force dynamometer (Kistler 9257B),
and the endmill was clamped in a collet holder and inserted in the
CAT-40 spindle interface. For the Walter Tool endmill, tests were
performed at axial depths of cut from 4 mm to 14 mm. The com-
manded feed per tooth for these down (climb) milling experiments
was 75 µm/tooth, the spindle speed was 4000 rpm, and the radial
depth of cut was 2 mm (12.5% of radial immersion). In a second
set of tests, the axial depth was held constant at 8 mm and the feed
per tooth was varied from 25 µm/tooth to 100 µm/tooth. The same
spindle speed and radial depth were used. The tool and workpiece
frequency response functions (FRFs) were measured by impact
testing, where an instrumented hammer is used to excite the structure
and the response is measured using a linear transducer (a low-mass
accelerometer for this research). The results are presented in
Fig. 19. Modal fitting was applied to extract the modal parameters
for the time domain simulation (Table 1).
For the Niagara endmill, tests were performed at axial depths of

cut from 5 mm to 25 mm. The commanded feed per tooth for these

Fig. 17 Time domain simulation flowchart: setup information (left) and simulation steps (right)
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down (climb) milling experiments was 100 µm/tooth, the spindle
speed was 3000 rpm, and the radial depth of cut was 1.9 mm
(10% radial immersion). The FRF was again measured, and the
modal parameters were extracted for use in the time domain simula-
tion (Table 2).
The setup for theWalter Tool endmill stability testing was similar

to that shown in Fig. 18, but the aluminum alloy workpiece was
mounted on a parallelogram, leaf-type flexure rather than the
dynamometer (the flexible direction for the flexure was oriented
parallel with the machine’s x direction) (Fig. 20). The modal param-
eters are listed in Table 3; note that the workpiece (flexure) x direc-
tion is significantly more flexible than the tool or flexure y direction.
The cutting force coefficients for the 7075 aluminum alloy work-

piece were ktc= 1150 N/mm2, knc= 522 N/mm2, kte= 25 N/mm,
and kne= 25 N/mm. The same values were used for all predictions.

5 Results
5.1 Force Prediction and Measurement for Walter Tool

Endmill. Measured and predicted feed direction force values, Fx,
for b= {4, 8, 12, and 14} mm are shown in Fig. 21. A good agree-
ment is observed in all cases. It is seen that the force progresses
from a smoother profile while engaged in the cut for b= 4 mm to

highly discontinuous at b= 14 mm. This is the result of the tool
design which cuts with approximately 1 mm wide “bands” of
limited axial depth, where the local radius is close to the shank dia-
meter. These bands are separated on each cutting edge by the

Fig. 18 Experimental setup for milling force measurement

Fig. 19 FRFs of tool and workpiece for the force measurement
setup (Walter Tool)

Table 1 Modal parameters for force measurement setup (Walter
Tool)

Direction m (kg) k (N/m) c (N s/m)

Tool
x 0.756 2.50 × 107 522
x 0.257 1.25 × 107 179
x 0.381 4.95 × 107 348
x 0.120 1.85 × 107 75
x 0.209 6.00 × 107 283
y 0.294 1.07 × 107 105
y 1.101 6.65 × 107 106
y 0.392 4.25 × 107 684
y 27.77 4.00 × 107 162
y 0.140 2.27 × 107 2670
y 0.118 3.33 × 107 142

Workpiece
x 0.373 3.37 × 107 496
x 1.039 1.10 × 108 363
x 0.466 6.00 × 107 180
x 0.019 1.12 × 107 232
y 95.58 1.67 × 108 10,610
y 73.65 1.77 × 109 12,280
y 21.05 2.03 × 109 7856
y 2.780 4.32 × 108 3258
y 3.203 7.67 × 108 1983
y 1.616 5.87 × 108 2279

Table 2 Modal parameters for force measurement setup
(Niagara)

Direction m (kg) k (N/m) c (N s/m)

Tool
x 20.12 4.08 × 107 4628
x 58.95 5.00 × 108 8584
x 1.208 4.00 × 107 625
x 0.288 1.45 × 107 143
x 0.881 7.25 × 107 799
x 0.799 1.00 × 108 322
x 0.822 1.10 × 108 323
x 0.081 1.30 × 107 41
x 0.088 2.50 × 107 163
x 0.322 1.89 × 108 436
y 23.38 1.03 × 108 4544
y 0.250 9.47 × 106 103
y 3.081 1.70 × 108 1373
y 1.454 9.45 × 107 703
y 6.842 5.50 × 108 2454
y 0.470 5.20 × 107 163
y 0.151 2.25 × 107 74
y 0.147 2.50 × 107 77
y 0.080 2.25 × 107 188
y 0.306 1.75 × 108 413

Workpiece
x 1.988 9.54 × 107 1360
x 8.833 1.62 × 109 24,737
y 76.84 1.38 × 108 13,037
y 317.78 2.15 × 109 33,393
y 89.063 2.29 × 109 21,316
y 49.18 2.39 × 109 63,493
y 11.51 8.08 × 108 13,928
y 5.532 8.02 × 108 4183
y 8.512 4.87 × 109 9040
y 91.50 6.19 × 1010 39,507
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approximately 2.5 mm spatial period (or wavelength) of the radius
variation along the tooth helix (see Figs. 5 and 9). As the axial depth
increases, more bands are individually engaged (with a larger than
commanded chip thickness) and the force is subsequently increas-
ingly discontinuous even though all cuts are stable (forced vibration
only).
Figure 22 displays measured and predicted Fx results for feed per

tooth values of {25, 50, 75, and 100} µm/tooth. While the force
levels grow with the increased chip thickness, they do not
become as increasingly discontinuous as the results presented in
Fig. 21. This is because the axial depth was fixed at 8 mm for
these tests.

5.2 Force Prediction and Measurement for Niagara
Endmill. Measured and predicted feed direction force values for
b= {5, 15, 20, and 25} mm are shown in Fig. 23. As shown in
Figs. 7 and 14, the spatial period (or wavelength) for the
pitch angle variation is approximately 10 mm. This means that
2.5 mm periods were engaged for the highest axial depth.
The force profile progresses from a typical down milling signal
for b= 5, where the pitch angle variation is not fully incorporated,

to nearly constant at b= 20 mm, where two full spatial periods are
engaged.

5.3 Stability Prediction and Validation for Walter Tool
Endmill. Given the validated force results, stability testing was
completed using the setup depicted in Fig. 20. Workpiece
(flexure) displacement and velocity predictions were generated
using the time domain simulation, where the system dynamics are
provided in Table 3. Note that the natural frequency for the flexure’s
x direction changed slightly (small fractions of a Hertz level) after
each cut because the material was removed from the workpiece.
The FRF was measured after each test cut and the actual modal
parameters were used in the time domain simulation for predicting
the process behavior. The down milling radial depth of cut was
3 mm, and the commanded feed per tooth was 100 µm/tooth for
all tests.
To establish stability, the workpiece x direction displacement and

velocity signals were sampled once per revolution (i.e., at the
spindle rotating frequency) [15,16]. The laser tachometer as
shown in Fig. 20 was used to generate the sampling signal. This
periodic sampling approach was used to determine if the milling
response was synchronous with the spindle rotation (or not) by con-
structing Poincaré maps (i.e., the periodically sampled displacement
was plotted versus the periodically sampled velocity) for both
experiment and prediction. To interpret these Poincaré maps, if
the cut is stable (i.e., it exhibits forced vibration only), the data
repeats with each spindle revolution and the sampled points
appear at one location. If self-excited vibration (i.e., regenerative
chatter or secondary Hopf bifurcation) occurs, however, an ellipti-
cal distribution of sampled points is observed due to the presence
of both the (generally) incommensurate chatter frequency and the
tooth passing frequency (and its harmonics). Additionally,
period-n bifurcations can occur, where n represents the number of
periods between repetition. A period-3 bifurcation, for example,
exhibits motion that repeats every three rotations. Results are pre-
sented in Figs. 24–26 for three spindle speed-axial depth combina-
tions, where the once-per-revolution samples (circles) are
superimposed on the continuous x direction workpiece displace-
ment xw and velocity dx/dtw. A good agreement is observed
overall with three different behaviors represented. Disagreements
in scale can be attributed to uncertainties in the structural dynamics
and force model.

6 Stability Map
Given the validated time domain simulation for the measured

edge geometry, a stability map was next generated to summarize
the process behavior over a range of spindle speeds and axial
depths of cut for the Walter Tool endmill. For the system dynamics,
the mean natural frequency from all test cuts was selected for the
workpiece x direction. All other structural dynamics were obtained
from Table 3. The down milling radial depth of cut was 3 mm, and
the commanded feed per tooth was 100 µm/tooth. For the stability
map, simulations were completed at spindle speeds from
2400 rpm to 4000 rpm (10 rpm steps) and axial depths from
0.1 mm to 10 mm (0.1 mm steps).
The stability behavior was automatically determined by synchro-

nous sampling. As described previously, stable behavior can be
identified from the distribution of periodically sampled points. If
the points repeat each revolution, then only forced vibration is
present and the cut is stable. If they do not repeat, then either sec-
ondary Hopf or period-n bifurcations are present. To distinguish
between the alternatives automatically and qualitatively, the
metrics described in Refs. [15,16] were employed. In this case,
however, the sampling was completed once-per-spindle revolution
rather than with each tooth period. This is because the tooth profiles
differed for the three teeth on the selected endmill, and therefore, the
behavior does not repeat from tooth-to-tooth, even under stable
cutting conditions.Fig. 20 Experimental setup for stability testing

Table 3 Modal parameters for stability testing setup (Walter
Tool)

Direction m (kg) k (N/m) c (N s/m)

Tool
x 0.593 2.01 × 107 416
x 0.328 1.50 × 107 222
x 0.095 1.44 × 107 94
x 0.124 3.50 × 107 333
y 0.325 1.20 × 107 119
y 0.784 5.00 × 107 889
y 0.550 6.00 × 107 228
y 0.338 5.00 × 107 247
y 0.210 3.50 × 107 130
y 0.176 5.10 × 107 394

Workpiece
x 2.976 1.74 × 106 93
y 79.06 2.50 × 107 1067
y 52.48 1.12 × 108 13,800
y 214.84 1.32 × 109 21,301
y 17.03 2.44 × 108 5285
y 2.958 7.07 × 107 1215
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Fig. 21 Measured and predicted force for b=4 mm (top-left), 8 mm (top-right), 12 mm (bottom-left), and
14 mm (top-right)

Fig. 22 Measured and predicted force for ft=25 µm/tooth (top-left), 50 µm/tooth (top-right), 75 µm/tooth
(bottom-left), and 100 µm/tooth (bottom-right)
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The metric, M, for stable cutting was

M =

∑N

i=2
|xs(i) − xs(i − 1)|

N
(5)

where xs is the vector of sampled x direction displacements and N is
the number of samples. To interpret this metric, consider a stable cut
where the behavior repeats each revolution and the sampled points
are nominally equal. The absolute value of the difference between
subsequent points is then zero, and their normalized sum remains

zero. If the cut exhibits secondary Hopf bifurcation, on the other
hand, the points do not repeat. The difference between subsequent
points is then nonzero and, when the sum of the absolute values of
these differences is calculated and normalized to the number of
points, it is greater than zero. The metric is therefore nominally
zero for a stable cut and large for an unstable cut.
Figure 27 displays these binary results, where the single contour

represents an M value of 1 µm. This arbitrarily small value was
selected because the numerical difference between points, even
for a stable cut, is nonzero due to limits on numerical precision. It
is observed that there is a stable zone (white area bounded by the

Fig. 23 Measured and predicted force for b=5 mm (top-left), 15 mm (top-right), 20 mm (bottom-left), and 25 mm
(bottom-right)

Fig. 24 Poincaré maps for period-3 bifurcation at (2750 rpm, 10 mm): predicted (left) and measured (right). The
local jumps in measured velocity are due to chips passing through the laser beam
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contour where M< 1 µm), a complicated stability boundary (at the
contour where M= 1 µm), and an unstable zone (dark area
outside the contour where M> 1 µm).
To distinguish between the various bifurcations in the unstable

(dark) zone in Fig. 27, subharmonic sampling was implemented
[16]. Rather than sampling each revolution, the x direction displace-
ment was sampled in every second revolution to identify spindle
speed-axial depth combinations that exhibit period-2 bifurcations.
The metric, M2, for this case is

M2 =

∑N

i=2
|xs2(i) − xs2(i − 1)|

N
(6)

where xs2 is the vector of x direction displacements sampled every
second revolution and N is the number of samples. For a period-2
bifurcation, this metric is nominally zero because the displacement
repeats every other revolution. As with the M value (Eq. (5)), if the
M2 value was less than or equal to 1 µm, then a period-2 bifurca-
tion was identified. The same strategy was implemented for
higher-order period-n bifurcations, where the sampling interval
was n revolutions. Figure 28 shows the corresponding stability
map, where period-2 through period-7 bifurcations are separately
identified; the symbols are defined in Table 4. Note that if the M
value was less than or equal to 1 µm, a black dot was plotted
(stable). If M was greater than 1 µm and a period-n bifurcation
was not identified by the appropriate metric, then nothing was
plotted; the white space in Fig. 28 therefore represents secondary
Hopf bifurcations.

It is now observed that the unstable zone from Fig. 27 is actually
a collection of secondary Hopf and period-n cutting conditions.
For example, the period-3 behavior displayed in Fig. 24 Poincaré
maps at (2750 rpm, 10 mm) is represented as a blue triangle at
the corresponding location in the stability map. Overall, the stability

Fig. 25 Poincaré maps for fully developed regenerative chatter (secondary Hopf bifurcation) at 4000 rpm, for
10 mm: predicted (left), note that two ellipses are visible, which departs from the typical secondary Hopf bifurca-
tion sampled point distribution and may be attributed to the non-standard edge geometry for the Walter Tool
endmill, and measured (right)

Fig. 26 Poincaré maps for marginally stable cutting at (3400 rpm for 10 mm): predicted (left) andmeasured (right)

Fig. 27 Stability map for a down milling radial depth of 3 mm
and commanded feed per tooth of 100 µm/tooth. The stable and
unstable zones are separated by the stability boundary (M=
1 µm).
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behavior for the non-standard edge geometry tool significantly
departs from the traditional stability boundary. Increased axial
depths are available for most spindle speeds.

7 Conclusions
This paper provides a reverse engineering solution for modeling

the behavior of non-standard edge geometry endmills. Structured
light scanning was used to produce a solid model of two different
endmills; this is an important contribution of the effort. From these
models, spatial coordinates for the points that define the cutting
edges were extracted. The points were used to determine the
cutting edge radius and angle at equally spaced points along the
tool axis. The cutting edge geometry was then incorporated directly
in a time domain simulation that was used to predict cutting force and
tool/workpiece deflection for user-selected operating parameters.
Variation in the radius of the serrated edge was modeled as runout;
this is a second contribution of the paper. A good agreement
between predicted and measured cutting forces was obtained.

The simulation was next used to predict stability via a period
sampling strategy. Poincaré maps were produced using both the
predicted and experimental displacement and velocity signals.
Marginally stable, regenerative chatter (secondary Hopf bifurca-
tion), and period-3 bifurcation results were obtained; this also rep-
resents a key contribution. Again, a good agreement between
prediction and measurement was observed for the non-standard
edge geometry endmill. Finally, a stability map was generated to
observe the process behavior over a range of spindle speeds and
axial depths of cut. Subharmonic sampling was employed to sepa-
rately identify the different bifurcation types (secondary Hopf and
period-n).
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Fig. 28 Stability map for a down milling radial depth of 3 mm
and commanded feed per tooth of 100 µm/tooth with bifurcations
separately identified by the symbols listed in Table 4

Table 4 Legend for Fig. 28

Symbol Description

Black dot Stable
Red circle Period-2
Blue triangle Period-3
Cyan square Period-4
Green + Period-5
Magenta diamond Period-6
Red × Period-7
No symbol Secondary Hopf
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