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Abstract: This paper introduces the Manufacturing-Uber concept for dynamic assignment of operators in 

the Connected Factory. In traditional non-IoT machining environments it is common to assign an 

operator to a (small) number of machines, clustered in close proximity within a cell.  In contrast to 

“fixed” assignment within a cell, the Manufacturing-Uber approach leverages the connectivity of the IoT 

environment to allow on-demand “floating” operator assignment across cells. An intelligent assignment 

engine determines and assigns the operator to achieve best system performance. Results show that 

Manufacturing-Uber outperforms fixed assignment with respect to reduction in required operators, 

increased machine up-time and more parts completed. 
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1. INTRODUCTION 

With the rise of the smart, connected factory, operations both 

inside and outside the four walls are being transformed from 

traditional rigid operational processes and standard 

automation to a fully connected and flexible system—one 

that can use a constant stream of data from connected 

operations and production systems to learn and adapt to new 

demands.  The smart factory becomes a flexible system that 

can self-optimize performance across a broader network of 

connected entities—machines, people, robots, and others.  As 

the capabilities and technologies move further towards the 

Industry 4.0 vision, the flexible system can self-adapt to and 

learn from new conditions in real or near-real time, and 

autonomously run entire production processes. Smart 

factories can be implemented within the four walls of the 

factory, but they can also connect to a global network of 

similar production systems, and even to the digital supply 

network more broadly in a completely distributed system. 

Integration of the physical environment of machines and 

factories with the virtual world is enabled by the application 

of cognitive computing and data science to the operational 

management of the manufacturing enterprise.  As more and 

more entities on the manufacturing floor are embedded with 

sensors, actuators and computational power, today’s centrally  

controlled manufacturing environment will give way to a new 

system capable of self-management and self-organization.   

In this manufacturing future, each entity, whether machine or 

robot or part, is self-aware and able to make decisions 

autonomously and in concert with other entities. At the core 

of this vision is the notion of cyber-physical systems—

systems composed of physical objects or entities that have 

embedded software and computing power that blend the 

physical and virtual to move towards self-aware 

manufacturing (Lee et al., 2014; Shariatzadeh et al., 2016).   

A lot has been written about the potential benefits of the 

Connected Factory and IoT as industry moves in this 

direction.  There is, however, a need for a deeper 

understanding of how the various operational processes can 

be implemented within this environment, what the realized 

operational benefits will be, and how to create a roadmap for 

moving to a system of distributed machining operations in an 

Internet-of-Things environment (Zhang et al, 2017). In this 

paper, we explore the operator assignment problem in a 

connected factory environment.  We develop and simulate an 

IoT-enabled system for the assignment of operators in a 

cellular machining environment that leverages the 

connectivity of IoT with an intelligent assignment engine that 

matches floating operators and self-aware machines for 

improved allocation of manufacturing resources.    



 

 

     

 

A number of researchers have addressed the problem of 

worker assignment to achieve specific goals.  Azizi et al. 

(2010) address worker assignment to reduce boredom and 

increase skill variation. Others have focused on matching 

assignments with worker skills and proficiency levels (Lian 

et al., 2018). Madhavi et al. (2010) modelled production 

planning considering worker availability and skill levels for 

cellular manufacturing systems in a dynamic environment. 

The problem of assigning jobs to operators that work on a 

non-fixed position and, instead, “float” or rotate among 

different machines or stations has been studied by Gebennini 

et al. (2018) with a focus on increasing system efficiency by 

minimizing travel times from station to station and reducing 

injuries and sick leave. Niakan et al. (2016) proposed a 

Dynamic Cell Formation approach in which the worker's 

assignment, environmental and social criteria are considered 

in worker assignment in an Industry 4.0 environment. 

2. THE MANUFACTURING-UBER (M-UBER) CONCEPT 

2.1   Concept Introduction 

As a first step towards this vision on intelligent 

manufacturing in a Connected Factory, we propose 

Manufacturing-Uber (or M-Uber)—a concept that leverages 

the embedded connectivity and computational capabilities 

among various entities on the shop floor (machines, devices, 

people, etc.), along with remote wireless interconnectivity, to 
dramatically expand operational capabilities.  In the case of 

M-Uber, this data serves as input to an intelligent assignment 

engine with cognitive computing capabilities that delivers 

business value through increased manufacturing throughput, 

higher yields, improved efficiency and reduced downtime. 

Like the taxi-hailing web app, M-Uber brings on-demand 

assignment to the manufacturing shop floor allowing real-

time job scheduling and process control. Computer 

numerically-controlled (CNC) machining is largely 

automated with only periodic tasks that require operator 

intervention, such as tool changes, part loading/unloading, 

etc.  It is common practice to have an operator oversee more 

than one machine simultaneously. The traditional approach is 

to assign one operator to two (or perhaps three) machines in a 

cell. That operator is responsible for serving only those 

machine interventions within his/her assigned cell. 

As an extension to this paradigm, we propose a new 

approach, realized in a mobile software application, that 

enables Uber-type oversight of all machines in a production 

facility by a collection of operators, none of which are 

assigned to a particular machine or group of machines.  In 

this scenario, each machine is equipped with sensors that 

enable real-time self-reporting of their state of operations to a 

cognitive computing engine that sends an alert when operator 

intervention is required.  The cognitive engine can assign an 

operator based on geographic proximity to the machine in 

question (and, therefore, the travel time), other pending 

interventions, estimated time for the selected intervention, 

and the operator skill set that matches the reported machine 

diagnostics. These alerts and assignments will be digitally 

distributed (e.g., by smartphone) to the assigned operator.   

Over time, the cognitive engine is capable of “learning” 

dynamic patterns of part production on the shop floor (e.g. 

chip making in machining operations), machine availability 

and wear, and anticipation of needed interventions.  

Operators will be selected based on “learned” intelligence 

about their demonstrated skills. To track operator location, 

radio frequency identification (RFID) tags can be embedded 

in a name tag, for example. The operator skill set will be 

archived in a database that is part of the software application. 

The operator availability will be set by monitoring his/her 

status through responses to other queries. Similar to Uber, the 

most feasible “driver” (operator) will be requested and the 

call will either be accepted or rejected. If rejected, the next 

best operator will be contacted. In this way, operator 

efficiency can also be tracked and reported. 

2.2 Motivating Example 

The M-Uber concept is demonstrated in Figure 1. In the left 

panel, the traditional approach of one operator-to-two 

machines is depicted for six total machines. In the middle 

panel, the M-Uber concept is implemented in a single cell, 

again with three operators. In the right panel, after the 

distributions of machine usage have been studied, the M-

Uber solution was found to be two, rather than three, 

operators. In the figure the machines are blue and hatched if 

an operator intervention is required. They are white without 
hatching if operational (making chips). The operators’ spatial 

location is identified by the position of the indicator (circle 

with operator number). The indicator is unfilled if the 

operator is idle and filled if engaged. For the traditional 

“fixed” assignment approach (left), operators 1 and 2 are idle 

for the selected intervention state; operator 3 is only able to 

service one machine while the other assigned machine waits 

until the first intervention is completed. For M-Uber 

(middle), operators are no longer restricted to specific 

machines but float within their assigned cell.  Operator 1 

remains idle, but floating operators 2 and 3 are free to service 

the two required interventions. Under “floating” M-Uber the 

number of required operators is matched to the intervention 

rate (on average) and operator productivity is increased. 

 

Fig. 1.  Illustration of M-Uber Advantage 



 

 

     

 

Fixed assignment of operators is typically utilized in factories 

so that operators can stay within visual distance of the 

machines for which they are responsible.  Thus, an operator 

is able to “see” when a machine requires intervention and 

respond accordingly.  Operators are typically assigned to one 

or more machines depending on the frequency of required 

interventions and the physical distance of the machines from 

the operator so they can quickly respond.  

  

With M-Uber, operators are not limited to a single machine 

cell. This eliminates two scenarios that decrease factory 

efficiency in the fixed assignment scheme: 1) operator idle 

while no machines in the cell require intervention; and 2) 

service delays when more than one machine assigned to an 

operator in the cell requires intervention. In the first case, the 

operator is not needed at that time (operator idle). In the 

second, both machines will be waiting and one will be idle 

longer than necessary because the operator can only service 

one at a time. With conversion to the “floating” operator 

concept and the support of a “smart” assignment tool, M-

Uber offers the potential for improved responsiveness to 

machine stoppages, a corresponding increase in machine 

usage, and optimization of the number of required operators. 

The advantages of the M-Uber concept include: 

Reduced Machine Downtime.  Since most modern factories 
run 24x7 to keep their operating costs competitive, time lost 

due to machine downtime can have a significant impact.   

Optimally, downtime can be anticipated and avoided through 

condition-based maintenance.  When downtime cannot be 

anticipated, M-Uber allows problems to be addressed 

immediately.  M-Uber results in better asset utilization and 

improved throughput. 

 

Reduced Operators Needed.  Traditionally, one operator is 

assigned to two (or perhaps more) machines in a cell. S/he is 

then responsible for serving only those machine interventions 

within his/her cell to ensure that the machines produce 

quality parts at the highest possible rate.  Under M-Uber, the 

number of operators, and this idle time, is reduced without 

compromising machine uptime.   M-Uber results in reduced 

operator costs and improved scheduling. 

 

Matching of Operator Skills to Needed Intervention.    

Operator capabilities to successfully implement interventions 

vary according to experience and problem-solving skills.  

When operators are dedicated to specific machines, operators 

may not have the best skills to address the problems that 

occur in the assigned cell.  M-Uber allows the flexibility to 

assign operators to problems based on skill and experience.  

This also helps to minimize the impact that absenteeism and 

operator turnover have on production. 

3. SIMULATION ENVIRONMENT 

We model a cellular manufacturing environment consistent 

with a typical aerospace parts manufacturer producing high-

precision, high-cost, high-volume parts for an OEM jet 

engine manufacturer.  Our research and experimental design 

was motivated by a large OEM aerospace manufacturer that 

fabricates fan blades and other rotable parts for turbofan jet 

engines. These parts are machined, i.e. cut, from titanium 

blocks by computer-numerically-controlled cutting machines.  

Each part requires approximately four hours to achieve final 

form—removing excess material from a block of raw 

material using diamond cutting tools.  The cutting force and 

path are programmed to provide the right geometry part with 

tight tolerances and high surface finish. Titanium is one of 

the hardest materials to machine, and the diamond cutting 

tools need to be replaced often by operators. 

 3.1  Manufacturing Environment  

The simulation environment, shown in Figure 2 and 

consistent with the target company, includes four machining 

cells, each with six identical cutting machines—totalling 24 

machines. All the machines are capable of producing the 

same single titanium part for a jet engine by machining to 

meet target tolerances and surface finish.  The factory runs 24 

hours per day—equivalent to 10,080 minutes per week. No 

changes of shifts are implemented in the simulation which 

runs continuously for 7 days. 

 

Fig. 2.  Cellular Manufacturing Simulation Environment 

3.2  Operator Interventions 

The simulation models four operator interventions to events 

on the factory floor.  Human operators respond to specific 

events, c.f. intervene, on the factory floor to make sure that 

the machine tools continually perform at a high level to 

minimize downtime.  We have generalized the types of 

events that may require intervention into four event types. 

Event Type 1:  Tool change.  Because of the hardness of 

titanium, cutting tools must be replaced frequently by the 

operator.  As the tools become dull, they start to “chatter” 

which signals to the operator that the tools must be changed.  

Tools are changed frequently during machining, typically on 

a prescribed schedule, to avoid chatter.  The machine is not 

operational during tool changes. 

Event Type 2:  Part Changeover.  After a part has been 

completed, the operator must remove the completed part and 

set-up a new titanium blank in preparation to machine the 



 

 

     

 

next part. The machine is not operational during part 

changeover. 

Event Type 3:  Low-level corrective maintenance.  During 

normal operations, a number of corrective or preventive 

maintenance operations may be performed.  For example, 

adjustments may need to be made to the tool to correct for 

any deviations from the prescribed cutting path. Or oil 

pressures may fall triggering a machine stop requiring fluid 

adjustments to prevent a more serious breakdown. The 

machine is not operational during corrective maintenance.   

Event Type 4: High-level breakdown maintenance. 

Infrequently, a serious unpredicted maintenance problem is 

encountered. The machine breaks for a reason that is not 

known and can no longer perform its function until it is 

repaired.  This type of event may take more time to diagnose 

and fix, and may require additional skill or training.  The 

machine is not operational during breakdown maintenance. 

3.3 Intelligent Assignment Engine 

Under M-Uber assignment, the task of assigning the “best” 

operator falls to an intelligent assignment engine that uses 

local and global information, as available and relevant to the 

assignment rule, to match operators with events that need 

intervention (c.f. tool change, set-up, low-level maintenance 

and high-level maintenance).  When an event occurs, and 

there is only one operator available, that operator is assigned 
to that machine.  When an event occurs and there is more 

than one operator available, the engine controller uses a 

“shortest distance” policy to assign the “best” operator.   

The engine controller calculates the walking times for all 

available operators to reach the event and assigns that 

operator who is the closest.  In highly stressed shop floor 

operating regimes, more events may be occurring than 

available operators.  In this case, the machines go into a 

queue waiting for assignment of the next “available” 

operator.  Once in a queue, the intelligent assignment engine 

can use different policies to assign operators to machines, as 

the operators become available.  In this paper, the controller 

implements a “first-in first-out” scheduling policy. 

3.4  Operator Assignment Rules 

In this paper we compare two simple operator assignment 

policies:  traditional fixed operator assignment and M-Uber 

floating operator assignment. 

Traditional (i.e. Fixed) Assignment.  Each cell of 6 machines 

has 3 operators, each of which is assigned to two machines as 

shown in Figure 1 above.  Machines are “dumb” and not 

networked.  Since operators are “fixed” they are also not 

networked and their location on the factory floor is assumed 

to be confined to a particular cell.  An operator must visually 

assess the operational state of the machine which requires 

physical proximity in order to observe its current operational 

state (c.f. functioning, chatter, warning lights, etc.). The 

operator can only service one machine at a time.  If the 

second machine requires attention while the operator is 

intervening with respect to the first machine, the second 

machine must wait until the operator has completed the 

intervention on the other machine.   

M-Uber (i.e. Floating) Assignment. Operators are allowed to 

“float” among any of 24 machines on the factory floor as 

needed (6 machines in 4 cells of the simulation).  Machines 

are “aware” and networked in an IoT environment.   

Similarly, operators are “networked” and their location on the 

factory floor is visible and can be tracked in real time.  

Machines are aware of their operational status in real time, 

that is they know whether they are capable of working or not 

and can convey that information to a central controller.  In 

addition, when they break, they are able to convey to the 

network the type of event (c.f. event types 1-4) that caused 

them to stop operating.  Operators can only service one 

machine at a time.  However, if an operator is available (i.e. 

idle), and a machine in another cell requires an intervention, 

that operator can move to that machine regardless of location 

on the floor, if the central controller determines that operator 

is the “best” operator to assign. 

4. EXPERIMENTAL DESIGN 

During the simulation, operators are matched with machine 

events, as described above, that require intervention based on 

either fixed assignment or M-Uber assignment. The 

occurrence of each of the above four event types (tool 

change, part changeover, low-level corrective maintenance 
and high-level breakdown maintenance) is described by a 

distribution with mean, standard deviation, minimum and 

maximum values.   

The event frequency is defined as the time between 

subsequent events of the same kind.  For example, cutting 

tools need to be changed on order every 10 minutes, so the 

event frequency would be 10 minutes between subsequent 

tool change events.  The event duration is defined as the 

length of time that an event can be expected to last.  For 

example, if it takes 3 minutes to replace a cutting tool, then 

the specified event duration is 3 minutes.   

The event frequency reflects the number of events occurring 

for each machine; machines with a high number of events 

demand more operator interventions.  Event duration is a 

proxy for the time is takes an operator, once assigned to a 

machine, to intervene and return the machine to full 

operation. In practice, the values of event duration and event 

frequency can be estimated based on actual factory data.  The 

parameter values will vary depending on the characteristics 

of the factory. In this case, we have estimated these values 

based on real-time data collected by the aerospace company.  

We also define three levels of operational intensity (100%, 

75%, and 50%) to reflect the frequency of demand of events 

requiring operator intervention.  Operational intensity will 

vary, across manufacturing environments, depending on the 

type of machining process, type of material being machined, 

and the reliability of machinery.  

Distribution parameters for the three levels of operational 

intensity for event frequency are provided in Table 1 to 

include mean, standard deviation, minimum and maximum 

values.   



 

 

     

 

Table 1.  Event Frequency Distribution Parameters 

 

Distribution parameters for event duration are provided in 

Table 2 to include mean, standard deviation, minimum and 

maximum values.  The distribution parameters for duration 

are the same for all three levels of operational intensity. 

Table 2.  Event Duration Distribution Parameters 

 

5.  SIMULATION RESULTS 

Simulations were performed for both the fixed assignment 

and the M-Uber assignment scenarios. Comparative results of 

the experiments are described in the sections below.  Metrics 

of interest include: 1) the number of required operators and 

the total number of parts machined over the simulation period 

by those operators, 2) the increased machine up-time, and 3) 

the machine wait times for the four event types.    

 

5.1  Increased Production with Fewer Operators 

One of the advantages of M-Uber is the potential reduction in 

labor costs due to the need for fewer operators to achieve the 

same output under fixed assignment. Figure 3 illustrates, for 

the cases of 100%, 75% and 50% operational intensity, the 

reduction in the number of operators needed to match 

production levels under fixed assignment. For comparison, 

the number of parts produced under fixed assignment is 

indicated by the horizontal line.  As shown in Figure 3, eight 

(8) operators working under M-Uber rules can produce the 

same number of parts as twelve (12) operators working under 

fixed assignment rules for the three levels of operational 

intensity studied. Further, the same twelve (12 operators), 

under M-Uber policy, can produce 7% more parts in a highly 

stressed factory (100% operational intensity) and 3% more 

parts in a lightly stressed factory (50% operational intensity).  

When the number of operators falls below eight (8), M-Uber 

does not outperform a fixed assignment with 12 operators 

where each operator is assigned two machines. 

 

 

Fig. 3. Total Parts Complete 

 

5.2  Increased Machine “Up-Time” 

Table 3 illustrates the percent increase in the total time per 

week that all 24 machines on the factory floor remain 

operational.  Machine “up-time” is defined as the total 

number of minutes out of 10,080 total weekly minutes that all 

of the machines are working.  This time does not include time 

spent waiting for an operator to intervene and the time spent 

servicing the machine.  Results are presented for all three 

levels of operational intensity.  As shown in Table 3, for 

100%, 75% and 50% operational intensity, respectively, the 

increase in machine “up-time” per week is 7.3%, 5.3% and 

4.4%.  The areas in gray in the table indicate the breakpoint 

with respect to number of operators below which M-Uber 

does not perform better than fixed assignment. 

 

5.3  Reduced Machine Wait Time 

Reductions in machine down time under M-Uber can be 

attributed to the increased availability of floating operators 

who are not constrained to a particular cell but are able to 

float between cells.  Table 4 provides the total wait times per 

week per event type.  We expect different wait times across 

events since their frequencies and durations vary.  Machine 

wait time is computed as the total number of minutes out of 

10,080 total weekly minutes that each machine waits for an 

operator to be assigned for an intervention.  Table 5 provides 

the increase in the number of events that are able to be 

serviced under M-Uber compared with fixed assignment.  

The non-shaded areas in both figures indicate the 

combination of event type and operator number for which M-

Uber outperforms fixed assignment. 



 

 

     

 

Table 3.  Comparison of Machine Up-Times 

 

Table 4.  Comparison of Service Wait Times                   

(100% Operational Intensity) 

 

Table 5. Number of Service Interventions                      

(100% Operational Intensity) 

 

6. CONCLUSIONS 

The business impact of M-Uber, once matured, will be 

significant. It can be implemented in any manufacturing 

facility that uses networked CNC equipment; the domain 

includes aerospace, automotive, medical, heavy equipment, 

etc. M-Uber reduces the required number of operators, and 

thus labor costs, while simultaneously enabling a quantitative 

method for assessing operator productivity. It increases 

machine utilization, which results in higher part counts and, 

therefore, greater productivity and profit. Further, by 

continually monitoring machine status, it will serve as a “big 

data” resource for preventive maintenance to anticipate trends 

in machine performance that required intervention. 

Extensions of this research include the incorporation of 

different operator skill levels and “learning” in the 

assignment of operators.  More complex job sequencing 

policies beyond first-in first-out are also being explored to 

improve the overall efficiency of M-Uber operations.  

The cognitive computing capabilities that enable M-Uber to 

intelligently balance machine availability and work flows in 

cells, and to process and negotiate the scheduling of 

competing events across the shop floor, can be scaled to the 

enterprise level—given that correct information is available 

at the right time for the right purpose and to the right 

person/machine for optimal decision-making.  As more 

software and embedded intelligence are integrated into other 

assets on the factory floor such as robots—as well as entities 

across the supply chain—cognitive computing and other data 

science technologies will further integrate functional 

intelligence from the operational manufacturing level into 

higher-level enterprise processes.  

REFERENCES 

Azizi, N., Zolfaghari, S., and Liang, M. (2010). Modeling job 

rotation in manufacturing systems: The study of 
employee’s boredom and skill variations. International 

Journal of Production Economics, 123 (1), 69-85. 

Gebennini, E., Zeppetella, L., Grassi, A., and Rimini, B. 

(2018). Optimal job assignment considering operators’ 

walking costs and ergonomic aspects. International 

Journal of Production Research, 56 (3), 1249-1268. 

Lee, J., Bagheri, B., and Kao, H-A. (2014). A cyber-physical 

systems architecture for industry 4.0 based manu-

facturing systems. Manufacturing Letters, 3, 18-23. 

Lian, J., Liu, C., Li, W., and Yin, Y. (2018). A multi-skilled 

worker assignment problem in seru production systems 

considering the worker heterogeneity. Computers & 

Industrial Engineering, 118, 366-382. 

Mahdavi, I., Aalaei, A., Paydar, M.M., and Solimanpur, M. 

(2010). Designing a mathematical model for dynamic 

cellular manufacturing systems considering production 

planning and worker assignment. Computers and 

Mathematics with Applications, 60, 1014-1025. 

Niakan, F., Baboli, A., Moyaux, T., and Botta-Genoulaz, V. 

(2016). A bi-objective model in sustainable dynamic cell 

formation problem with skill-based worker assignment. 

Journal of Manufacturing Systems, 38, 46-62. 

Shariatzadeh, N., Lundholm, T., Lindberg, L., and Sivard, G. 

(2016). Integration of digital factory with smart factory 

based on Internet of Things. Procedia CIRP 50, 512-517. 

Zhang, Y., Qian, C., Lv, J., and Liu, Y. (2017) Agent and 

Cyber-Physical System Based Self-Organizing and Self-

Adaptive Intelligent Shopfloor. IEEE Transactions on 

Industrial Informatics, 13 (2), 737-747. 

 

 


