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1 Introduction

Scientists and engineers often expend considerable effort in
performing measurements and developing models to predict the
results of future experiments. These are naturally significant activ-
ities in the manufacturing community, where the ability to achieve
“first part correct” production and verify the dimensional accuracy
and performance of these components is critical in today’s com-
petitive global marketplace. Modeling activities for manufactur-
ing processes generally include identifying the relevant inputs (in
milling, for example, these include spindle speed, axial and radial
depth of cut, feed per tooth, tool geometry, force model coeffi-
cients, and machine capabilities) and describing the relationship
between these inputs to produce the desired outputs (e.g., part
dimensions and surface/subsurface quality) using numerical and/
or analytical algorithms. Whether considering a measurement or
model prediction, however, the result is incomplete if it is
not accompanied by a quantitative assessment of its uncertainty'
[1,2].

Because the effects of uncertainty in modeling efforts for manu-
facturing processes, and measurements and modeling in general, is
an issue of significant importance, a National Science Foundation-
sponsored workshop was organized and held from Feb. 24-26, 2010
in Arlington, VA. The conference chair was Dr. Tony Schmitz, Uni-
versity of Florida, and the cochairs were Dr. Ali Abbas, University
of Illinois at Urbana-Champaign, Dr. O. Burak Ozdoganlar, Carne-
gie Mellon University, Dr. K. Scott Smith, University of North
Carolina at Charlotte, and Dr. John Ziegert, Clemson University.
The workshop participants are listed in Appendix A.

2  Workshop Objective

The purpose of this “Uncertainty in machining” workshop was
to discuss and address uncertainty and risk in machining and
related manufacturing operations. Because the majority of models
currently used to support manufacturing decision making are
deterministic, results produced by these models often provide

"The uncertainty (of a measurement) is defined in Ref. [1] as a “parameter,
associated with the result of a measurement, that characterizes the dispersion of the
values that could reasonably be attributed to the measurand,” or a particular quantity
subject to measurement.
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only approximate guidance for many manufacturing decisions
and, therefore, many manufacturing decision makers rely heavily
on rules of thumb and conservative choices. Such behavior can
result in considerable economic loss to the manufacturer. The key
notion underlying this workshop was that rigorous mathematical
treatment of uncertainty and decision making under uncertainty
and risk can provide substantial economic benefit to the industry
and enhance the competitiveness of the manufacturing sector.

The proposed value of this workshop was based on its goal to
broaden the perspective on engineering decision making from one
of applied science and problem solving, which does not rely on the
mathematics of prediction and decision theory, to one that does
incorporate this mathematical framework. While this workshop was
focused on manufacturing with a concentration on machining, it is
believed that the findings of the workshop and follow-on research
could have profound effects that permeate all of engineering prac-
tice. The proposed impact of this workshop included the economic
benefit to the manufacturing sector, which will come about from
improved decision making. Its aim was to provide a new perspective
on engineering decision making, in general, that will eventually
influence both engineering practice and engineering education.

3  Workshop Outcomes

Thirteen participants presented their perspectives on topics
related to the workshop objectives. These presentations yielded
extensive discussions and resulted in three primary group activ-
ities. First, the perceived needs required to move this research
topic forward were identified. These included the following:

1. develop case studies at multiple scales (manufacturing proc-
esses to plant level) to teach Bayesian analysis and decision
making within the context of manufacturing problems

2. develop guidelines for framing and specifying objective
functions for manufacturing problems

3. introduce probability assessment concepts and applied
Bayesian analysis into undergraduate engineering curricula

4. develop strategies for teaching decision analysis concepts to
“deterministic” engineers

5. provide training for Bayesian updating

6. form partnerships to develop success stories from smaller-

scale problems (e.g., tool wear)

. formulate agenda to connect research to industry needs

. establish a list of “big payoff”” opportunities.
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Second, a list of research opportunities was generated during a
brainstorming session. These were framed as the following
research questions:

1. What optimization tools are necessary and how can they be
applied to more effectively couple design and manufactur-
ing and, subsequently, motivate the in-sourcing of manu-
facturing capabilities?

2. An expensive part with critical tolerances was produced
and then measured. The measurements show that the
dimensions are close to the tolerances provided by the cus-
tomer. Based on the measurement uncertainty, what guide-
lines should the manufacturer use in deciding if the part
should be shipped?

3. How can a machinist decide if she/he should change a cut-
ting tool while using it?

4. How can a manufacturer decide if she/he should make a
part and, if so, set the selling price?

5. Given a prior (or initial belief), what is the value of new
knowledge obtained by testing?

6. How does a manufacturer manage the potential conflict
between the short and long term consequences of a deci-
sion? For example, a large equipment manufacturer may
choose to outsource the manufacture of specific compo-
nents to reduce cost today, but what effect would the deci-
sion have on future design/manufacturing capabilities?

7. How can a manufacturer compare different processes for
producing a given part (e.g., machining versus sheet metal
forming)?

8. How can a manufacturer select the correct machine to pro-
duce a selected part?

9. Given a set of machines and parts, how should the available
resources be allocated?

10. When should production begin in order to meet a deadline?

11. How can expert information be used in a Bayesian decision
making framework?

12. How can the yield for multi-operation parallel path machin-
ing systems (with redundant flow paths) be predicted in the
presence of uncertainty?

13. How can multi-operation parallel path machining systems
be controlled with uncertainty in part flow?

14. How can schedules be set for manufacturing facilities (at
any scale) in the presence of uncertainty?

Third, a list of answers to the open question “Wouldn’t it be
nice if...?” was compiled.

1. it was possible to determine the distribution in outputs of a
process without performing experiments

2. it was possible to predict variability in a process in real-time

3. variables that most strongly drive cost could be identified

4. an integrated data system, including both the process and
subsequent metrology, could be developed

5. the allowable variation in input parameters for a desired out-
put uncertainty could be predicted

6. there were standardized data collection and sharing formats
(including uncertainty) for machining data

7. undergraduate education emphasized probability theory
(which describes the future), rather than just statistics (which
describes only the past)

8. an improved understanding of uncertainty contributors to
machining process performance could be achieved

9. the cost associated with each uncertainty contributor for a
given process output could be determined.

Finally, a unifying theme, which developed over the course of
the workshop, was the close coupling of design and manufactur-
ing. It was the group consensus that manufacturing capabilities
drive design options. In order to optimize designs, an understand-
ing of manufacturing capabilities and limitations by the designer
is necessary. For companies with significant research and develop-
ment activities, developing new processes can lead to increased
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design options provided the designer is aware of the research out-
comes. It was emphasized that this is a strong argument against
outsourcing manufacturing activities, particularly outside the
United States. Research and development budgets for manufactur-
ing naturally decrease as a result of outsourcing, which limits
future design options.

4 Decision Theory

Given the workshop objective and its focus on decision making,
a primary topic of discussion was decision theory, which defines
how rational decision makers should make decisions in the pres-
ence of uncertainty in all activities, including science and engi-
neering; see Refs. [3—5], for example. The approach incorporates
information, preferences, and available alternatives to derive the
best decision alternative. Information is described in terms of a
joint probability distribution that captures the uncertainty about
the possible outcomes for each alternative and uses Bayesian anal-
ysis to improve knowledge when new information is revealed.
The Bayesian approach uses a prior that captures the available in-
formation. As such, it can incorporate data and/or existing models;
this makes it an attractive candidate to update information in ex-
perimental settings. The Bayesian approach can then be used in
aggregating experimental results and can determine a posterior
distribution based on all data or models that are collected.

In decision theory, preferences are captured using a von
Neumann—-Morgenstern [6] utility function. Given a value model
that converts parameter settings in a deterministic setting into dollar
equivalents, a von Neumann—Morgenstern utility that captures pref-
erences under uncertainty can be constructed over a monetary
amount. The optimal decision is the one that maximizes the von
Neumann—Morgenstern expected utility. While many milling deci-
sions may involve multiple objectives, it is often preferred in manu-
facturing problems to formulate the selected optimization problem
as a single objective function, profit. This requires only a single at-
tribute utility function over profit. Decision theory also enables the
value of a decision situation, given an arbitrary knowledge state to
be determined when the outcomes are expressed in monetary terms.
As a result, a value can be assigned to gaining knowledge, such as
the outcome of an experiment. With this approach, optimal experi-
ment design can be formulated as a sequential decision problem
under uncertainty. The type and number of experiments that maxi-
mize expected utility are selected to determine the optimal
sequence of experiments. The value of different available experi-
ments can then be compared.

While decision theory fundamentals are well-established within
the field, there are limited examples of its application to manufac-
turing problems. However, applications of decision theory to other
domains are well-documented. For example, the theory has been
extensively implemented to value oil (petroleum) properties and
make decisions about new well drilling [7—-15]. The similarities to
machining are clear: there are significant uncertainties, new knowl-
edge can be gained by testing, and profit drives the decisions. To
aid manufacturing researchers in adopting decision theory, the
application of Bayesian inference to the well-known mechanistic
turning force model is presented in the following section.

5 Bayesian Inference Example

During the workshop, several participants from industry
expressed appreciation for the Bayesian methodology, but required
some guidance for implementation. Therefore, they requested a
simple and specific example that demonstrates the use of Bayesian
analysis in manufacturing. After the workshop, the authors com-
pleted the following example in order to satisfy this request and
convey the Bayesian approach to the manufacturing community.
The simple turning force model described in Sec. 5.1 was selected
because it is well-known in the machining field.

5.1 Force Model Description. To demonstrate Bayesian in-
ference, the mechanistic turning force model for orthogonal cutting
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Fig. 1 Schematic of orthogonal cutting model (a positive side
rake angle is shown; the tool’s rake face is inclined above the
horizontal for a negative rake angle)

was selected [16]; see Fig. 1. This model describes the tangential
(or cutting), F,, and feed (or thrust), Fy, forces in turning as:

F, = K;bh

F; = Kybh @)
where K, and K; are the (specific) cutting force coefficients, b is
the chip width, and /% is the uncut (commanded) chip thickness.
The chip width and uncut chip thickness are specified by the ma-
chinist, but the coefficients must be determined.

These coefficients can be described as a function of three pa-
rameters selected by the machinist: b, s, and the tool’s side rake
angle, o,; and three measured values: F;, F, and the cut chip thick-
ness, h.. By collecting this data, the coefficients can be calculated
[Eq. (2)] and used to predict forces for cuts performed under dif-
ferent conditions

COS(ﬂa — OC,-)
sin(¢,) cos(d, + B, — )

B sin(fB, — o)
K= Gnle) cos(g + fo— )

K, =
(@)

In Eq. (2), 7, is the shear stress along the shear plane (actually a
thin zone where the uncut material is plastically deformed into the
chip), ¢. is the angle of the shear plane, and f, is the average fric-
tion angle. The shear stress is defined by

Ty = = (3)

where F is the shear force and A, is the shear area. See Eqs. (4)
and (5)

Fy =F,cos(¢p.) — Frsin(¢p,) %)

bh
Ay = (6. (5)

The average friction angle and shear plane angle are given by
Eqgs. (6) and (7), where r, = hﬁ is the chip thickness ratio

B, = o, +tan”! (g) (6)

6, = tan”! ( recos(a,) )

1 — r.sin(o,)

@)

Bayes’ rule (or theorem) is used to update the user’s beliefs about
cutting forces given new information (such as a measurement
result). It can be expressed as

P(AIBI) o p(All)p(B|AI) ®)
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where p(A|BI) is the posterior that gives the probability, or the
degree of belief, that A is true given new data B and initial infor-
mation /, p(A|l) is the prior, and p(B|AI) is the likelihood function
(or conditional probability). The product of the prior and likeli-
hood function are used to determine the posterior; this is the pro-
cess of learning, i.e., updating the prior beliefs given the new data
B to obtain the posterior beliefs.

In the turning force model, there is uncertainty in the force
coefficient values, K, and K}, due to uncertainty in 1y, ¢., and f,.
Bayes’ rule can be used to update the probability distributions of
T, ¢, and f, from prior distributions (i.e., initial beliefs), which,
in turn, can be used to update distributions for K, and K. In this
study, p(AJl) is the user’s initial beliefs about 7, ¢, and f, so
that Eq. (2) can be used to calculate the cutting force coefficients.
The updating of the variables is completed using experimental
values of &, F;, and Fy. Force predictions can then be made using
the updated force coefficient distributions. For this case, Bayes’
rule [as defined in Eq. (8)] is

fT\-‘/}“‘l[)(. (Tsvﬁaa¢c|Ff‘maFf,mvhc‘m) O(f‘r\-,lﬁa,d)L I(Ft,vaf‘myhc,m |Tsvﬂa7¢(')
)

where f: g 4. (rs, Ba d.|F ,,,HF,;m,hc,m) is the posterior distribu-
tion of g, ¢., and f, given measured values® of the forces and
chip thickness, F ., Fy,,, and he. , f2, g, ¢. 18 the prior distribution
of 75, ¢, and B, and I(Fy, Ffpm, hem|Ts, Bys ) is the likelihood
of the measured force and chip thickness values given t,, ¢, and
Pa The posterior (i.e., the new belief after updating) is the prior
multiplied by the likelihood. For multiple measurements, the pos-
terior after the first update becomes the prior for the second update
and so on. Note that the posterior distributions must be normalized
so that a unit area or volume under the probability distribution
function (pdf) is obtained.

5.2 Establishing the Prior. It was decided for demonstration
purposes to consider orthogonal cutting of 1045 steel based on the
force and cut chip thickness data available from the Assessment
of Machining Models (AMM) study completed by the National
Institute of Standards and Technology (NIST) [17]. Data were col-
lected for cutting speeds between 200 and 400 m/min, com-
manded chip thicknesses between 0.1 mm and 0.4 mm, and side
rake angles between 5 and —7 deg for coated and uncoated tools.
An important consideration in applying Bayes’ rule is the selec-
tion of prior distributions for the variables t,, ¢., and f3,. In this
case, the prior distributions were based on a literature review.

5.2.1 Shear Stress, t,. Altintas [16, pp. 16-17] provided an
example of orthogonal cutting of 1045 steel for a cutting speed of
110 m/min, 2 =0.2 mm, o, =5 deg, and r. = 0.45. The shear stress
was 693 MPa. Trent and Wright [18, Table 4.2] reported a shear
stress of 480 MPa for 0.13%C steel with 2#=0.5 mm, o, =0, and
r.=0.27 to 0.7. DeGarmo et al. [19, Fig. 21-21] gave a hardness-
dependent value of 669 MPa for body-centered cubic (BCC) matrix
steels with a Brinell hardness number (BHN) of 200. Tlusty [20,
pp. 424-425] listed a shear stress of 764 MPa for 1035 steel using a
cutting speed of 180 m/min, 7=0.2 mm, o,=10 deg, and
r.=10.49. Based on these results, a normal distribution was selected
with a mean of 700 MPa and a standard deviation of 50 MPa.

5.2.2 Shear Plane Angle, ¢.. Altintas [16, pp. 16-17] gave a
value of 25 deg for 1045 steel with a cutting speed of 110 m/min,
h=0.2 mm, a,=5 deg, and r.=0.45. Tlusty [20, pp. 424-425]
provided a shear plane angle of 28 deg for 1035 steel with a cut-
ting speed of 180 m/min, & =0.2 mm, «, =10 deg, and r.=0.49.
Kalpakjian and Schmid [21, Fig. 8.15] reported data for mild steel
that gives the relationship ¢, = 28 — 0.52(f, — o, — 8) deg. Igbal
et al. [22] provided data that described the variation in shear plane

>The subscript m denotes measured values from cutting experiments. The meas-
ured values were assumed to be statistically independent.
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angle with cutting speed (v =200—400 m/min) for #=0.1 mm and
0,=0 deg: ¢, =21.6+7.96x 1073(v — 198) deg. Based on
these results, a normal distribution was selected with a mean of 25
deg and a standard deviation of 3 deg.

5.2.3 Average Friction Angle, f5,. Altintas [16, pp. 16-17]
gave a value of 31.6 deg for 1045 steel with a cutting speed of
110 m/min, 7 =0.2 mm, o, =5 deg, and r. = 0.45. Tlusty [20, pp.
424-425] reported an angle of 26.7 deg for 1035 steel with a cut-
ting speed of 180 m/min, #=0.2 mm, o, = 10 deg, and r.=0.49.
Igbal et al. [22] provided data that described the variation in shear
plane angle with cutting speed (v =200—400 m/min) for 27 =0.1
mm and o,=0 deg: f, =tan"'(0.73 — 2 x 107*(v — 198)) deg.
Based on these results, a normal distribution was selected with a
mean of 31 deg and a standard deviation of 5 deg.

To summarize, the initial beliefs based on the literature review
were as follows:

1. 7,=700 MPa =50 MPa (one standard deviation, normal

distribution)

2. ¢.=25*3 deg (one standard deviation, normal
distribution)

3. f,=31 deg*=5 deg (one standard deviation, normal
distribution).

As shown in Eq. (7), the ¢, values for the mechanistic model
are dependent on r,. and, therefore, on /.. From Egs. (1) and (2), it
seen that 7, and 3, values depend on force, F, and Fy. Therefore,
the ¢, distribution was updated using %, values, and the prior dis-
tribution of 7, and f, was taken as a joint distribution to be
updated using the measured force values, F,, and Ff,. This
ensures that the final posterior distributions of t,, ¢, and f3, take
into account all three measured quantities. Also, 7, and f, were

0.014
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assumed to be independent of each other and their joint pdf was
therefore a multiplication of the two individual distributions deter-
mined from the literature review. Figure 2 shows the prior distri-
bution for ¢.. and the joint pdf for 7, and f,,.

A Monte Carlo simulation using these prior distributions was
completed to calculate the corresponding distributions in K, and
Ky [using Eq. (2)] for a.=35 deg. For the simulation, 1x10° ran-
dom samples were drawn from the prior distributions, and the
force coefficients were calculated at each sample point. No corre-
lation among Ty, ¢, and f3, was assumed. The mean values for K,
and Ky were 2414.3 and 1206.2 MPa, and the standard deviations
were 272.9 and 377.4 MPa, respectively. The MATLAB command
“normpdf” was used to compute the pdf (normal distribution) for
K, and K; based on the mean and the standard deviation values;
see Fig. 3. The pdf plots in this figure represent the priors for the
two coefficients.

The prior distributions of 7, ¢., and f§, can be updated using
the measured values for F;, Fy, and A, listed in Table 1 from the
NIST AMM database. All values in Table 1 were collected using
o,=5 deg and b=1.588 mm. The cutting speed, v, is also
included.

5.3 Discrete Grid Method. This section describes the dis-
crete grid method used to determine the likelihood function
required for Bayesian inference. The procedure was to: (1) update
the ¢, distribution (see Fig. 2) using measured A, values; and (2)
sample a random value of ¢, from the updated distribution and
use it, together with the measured force values, to update the joint
distribution of 7, and f,,.

To determine the likelihood function for a measured value of
h,, the range of ¢, values (1040 deg was selected) was first di-
vided into a number of points (300). Second, the /. value was

-3
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Fig. 2 Prior distribution of ¢. (top) and bivariate normal distri-

bution of zs and f, (bottom) Fig. 3 Prior distributions of K;(top) and K; (bottom)
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Table 1

updating (¢, =5 deg and b = 1.588 mm)

Measured F;, F; and h. values used for Bayesian

Test # v (m/min) h (mm) F,(N) Fr(N) h,. (mm)
1 200 0.15 565.2 372 0.501
2 200 0.3 907.9 397.4 0.671
3 200 0.3 915.2 407.6 0.682
4 200 0.15 520.8 267.6 0.392
5 200 0.15 540 370 0.441
0.12 070
0.1
f - *
1(16.75)
0.08f
;o
= 0.06
£(17.5)
0.04 g » !
o2t / y N\
0 1 A 1 W
16 16.5 17 175 18
o, (deg)

Fig. 4 Figure to illustrate calculation of the likelihood function.
The distributions (from left to right) have mean values of
¢.={16.75, 17.0, and 17.5} deg. The value of the distributions
for the ¢. value (17.03 deg), which corresponds to the h. mea-
surement (0.501 mm) from Test #1, is the likelihood value.

0.14,
0.12+ A
0.1

0.08 -

=° 14
=

0.06¢
0.04

0.02¢

10 15 20 25 30 35 40
4. (deg)

f(o,)

10 15 20 25 30 35 40
4, (deg)

Fig. 5 Likelihood distribution of ¢ for h, = 0.501 mm measure-
ment from Test #1 (top) and posterior distribution of ¢ after the
first update (bottom)
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Fig. 6 Likelihood joint distribution of 5 and g, for force meas-
urements from Test #1; F;=372 N (top) and F;=565.2 N
(bottom)

calculated at each point using Eq. (7). The calculated /. value was
taken as the mean value for each point. Third, the measurement
uncertainty in /. was defined. In this study, a normal distribution
was assumed, and the standard deviation was selected to be 2% of
the measured value. The calculated mean values and the assumed
standard deviation defined a probability distribution for /. at each
point. Fourth, the likelihood at each point was taken to be the
value of the selected /. pdf at the measured value. The MATLAB
command "normpdf" was again applied. The likelihood function
gives the probability density that a selected ¢, value would give
the measured /. value using the deterministic model in the pres-
ence of uncertainty.

To illustrate, the ¢, value corresponding to 4.=0.501 mm
(Test #1 from Table 1) is 17.03 deg from Eq. (7). The maximum
value of the likelihood function would therefore be expected at
¢.=17.03 deg. Figure 4 shows the method of calculating the like-
lihood for this measured value. The distributions at ¢.= {16.75,
17.0, and 17.5} deg (left to right in the figure) are provided. The
distributions were determined using the calculated mean /. value
at that point and the assumed measurement uncertainty (repre-
sented by one standard deviation). The “x” symbols in the plot
represent the value of the likelihood at ¢.={17.5, 16.75, and
17.0} deg from bottom to top, which correspond to the measured
h. value (0.501 mm). The likelihood at these ¢, sample points is
the value of the pdf. Figure 5 shows the ¢, likelihood and poste-
rior for 7.=0.501 mm. As stated previously, the likelihood is
maximum at ¢.= 17.03 deg. The posterior distribution of ¢,. after
the first update was obtained using a point-by-point multiplication
of the prior (see Fig. 2) and the likelihood. The prior and the like-
lihood distributions form a normal conjugate pair, and therefore,
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Fig. 7 Posterior joint distribution of s and f, after the first
update using force measurement data from Test #1; F;=372 N
and F;=565.2 N. The posterior was obtained by a point-by-point
multiplication of the prior (see Fig. 2) and the likelihood func-
tions for F; and F; (see Fig. 6) and a normalization to obtain a
unit volume under the surface.

the posterior distribution is also normal. The posterior distribution
was normalized to obtain a unit area under the pdf.

The same procedure was followed to update 7, and f3,, joint dis-
tribution prior using the measured force values. The selected
range of possible 7, and f,, values was divided into a grid of points
(300x300). The F, and F; values were calculated at each grid
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Fig. 8 Posterior distributions of ¢. for all updates and their
comparison with the prior

point (i.e., the selected {z,, ff,} pair) using first Eq. (2) and then
Eq. (1). To compute the forces, a random value of ¢, was sampled
from the posterior distribution after the first update (see Fig. 5).
The distribution of the forces at each grid point was assumed to be
normal with an uncertainty (one standard deviation) equal to 2%
of the measured force value. The mean values were set equal to
the calculated forces. The likelihood at each grid point was taken
to be the value of the pdf of force, F, or F}, at the measured value.
The purpose of this approach was to evaluate the probability den-
sity that the selected {z,, f§,} pair would yield the measured force
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Fig. 9 Posterior joint distributions of 5 and f, after the second update (top left), third update (top right), fourth update

(bottom left), and fifth update (bottom right)
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0.018 T T : Table 2 Measured F, F, and h. values used for prediction
Prior (x,=5 deg and b = 1.588 mm)
0.016 Posterior
0.014 Test # v (m/min) H (mm) F, (N) Fr(N) h. (mm)
0.012 - . 1 200 0.15 540 370 0.416
2 200 0.3 950 480 0.683
~ 0.01F 1 3 200 0.15 510 320 0.375
< 4 200 0.3 870 400 0.620
0.008
0.006
0.004 - ‘ -
0.002 - ‘ 1
1 2 1500 .
(] I NSNS £ T = V. T %X Measured
0 1000 2000 3000 4000 5000 * Posterior prediction I 1
K, (Mpa) 1000| < Prior prediction z =
2 x
Fig. 10 Prior and posterior distributions for K; v 5001 3 i ]
0.03r ; : S
-~ ~Prior 0 L : ! p
— Posterior 0 1 2 3 4
0.025 ¢ 800 - T T
%X Measured
‘ Posterior prediction
e 600| < Prior prediction :
z
o =
< 0015 ‘ 4001 x
0.01} ‘ ¥ . ? .
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0.005 ¢
Fig. 12 Comparison of the measured and predicted forces, F;
phames=g == L L and F;, using the prior and posterior coefficient distributions
0 1000 2000 3000 4000 5000  («r=5deg)
I»<f (Mpa)
Fig. 11 Prior and posterior distributions for K;
Table 3 Summary of force data provided in Fig. 12 («,=5 deg and b = 1.588 mm)
Measured Prior Posterior
Test # F,(N) Fr(N) F,(N) Fr(N) F,(N) Fr(N)
1 540 370 574.9 = 65.0 287.3 = 88.9 491.3*+5.5 263.8 = 3.1
2 950 480 1149.8 = 130.0 574.5 £177.8 982.5*+11.0 527.7*6.2
3 510 320 574.9 = 65.0 287.3 = 88.9 491355 263.8 = 3.1
4 870 400 1149.8 = 130.0 574.5 +177.8 982.5*+11.0 527.7*6.2
2000 ; . :
. L . . *x  Measured
using the deterministic model in the presence of uncertainty. * Posterior prediction
Figure 6 shows the likelihoods for the Test #1 data, where L] Prior prediction { } |
Ff,=372 N and F,,,=565.2 N; note that the color bar indicates Z 40000 % £
the value of the pdf in these plots. The posterior distribution of t; = £ 7
and f3, is obtained via a point-by-point multiplication of the prior 500 | ¥ 1
with both likelihood functions (see Fig. 6) and normalization to
obtain a unit volume under the surface. As with ¢, the prior and % 1 2 3 4
the likelihood form a conjugate normal pair, and therefore, the 1500
x  Measured ' ' '
Posterior prediction I }
1000 = Prior prediction 1
Table 4 Measured F;, F;, and h, values used for prediction Z, <
(#,= —7 deg and b =1.588 mm) = gl i - i x|
x
Test # v (m/min) H (mm) F, (N) Fr(N) h. (mm)
% 1 2 3 4
1 200 0.15 560 440 0.454 Test #
2 200 0.3 1070 660 0.803
3 200 0.15 550 370 0.387 Fig. 13 Comparison of the measured and predicted forces, F;
4 200 0.3 950 520 0.66 and F;, using the prior and posterior coefficient distributions
(xr=—7 deg)
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Table 5 Summary of the force data provided in Fig. 13 (2, =—7 deg and b = 1.588 mm)

Measured Prior Posterior
Test # F,(N) Fr(N) F,(N) Fr(N) F,(N) Fr(N)
1 560 440 709 = 149.6 571 = 189.7 490 £5.6 271.5+34
2 1070 660 1419 = 199.1 1143 £199.1 981.7+11.2 543+ 6.8
3 550 370 709 = 149.6 571 = 189.7 490 £5.6 271.5*+34
4 950 520 1419 = 199.1 1143 = 199.1 981.7+11.2 543+ 6.8

posterior is a bivariate normal distribution. Figure 7 shows the
posterior joint distribution of 7, and f, after the first update.

The same procedure was repeated to update the distributions
for ¢, 14, and f, for all five measurements in Table 1. As with the
first update, all the remaining updates included two steps. Again,
¢. was updated first. This time, however, the prior was set equal
to the posterior from the previous update. The likelihood was
again defined, but using the new value of 4. (from Test #2 for the
second update). A random value from the resulting posterior ¢,
distribution was then used together with the Test #2 force data to
calculate the new 7, and f3, likelihoods for F, and Fy. The product
of these likelihood distributions and the 7, and f3, posterior from
the first update (now the prior) was the new posterior. This pro-
cess was repeated for each test. Figure 8 shows the prior and the
posterior distributions for all the ¢, updates. Figure 9 shows the
posterior distributions of taand f, from the second to the fifth
update. Note that the uncertainty (standard deviation) decreases
with additional data. This indicates the improvement in knowl-
edge with available information.

To determine the posterior distributions of the force coeffi-
cients, a Monte Carlo simulation was performed. Since the poste-
rior distribution of 7, and f§, is a bivariate normal distribution,
random samples were drawn from the distribution using the MAT-
LaB command “mvnrnd.” One input to this function is the covari-
ance matrix. This matrix was identified using the MATLAB
command “cov” based on the 7, and f3, values. Again, 1x10’ ran-
dom samples were obtained from the posterior distributions, and
the force coefficients were calculated at each sample point. Fig-
ures 10 and 11 show the prior and posterior distributions of K,and
K. The posterior mean values for K; and Ky were 2064 and 1088.8
MPa, and the standard deviations were 23.2 and 13.6 MPa, respec-
tively. Note that this approach provides not only expected (or
mean) values but also the associated distribution (uncertainty).

5.4 Prediction of Forces. The posterior distributions for the
force coefficients, K; and Kz were then used to predict forces
using Eq. (1). Table 2 shows the measured F;, F, and h. values
obtained from the NIST AMM database (x, =5 deg and b =1.588
mm). Figure 12 shows the comparison of the measured and the
predicted forces using the posterior distributions of K, and Ky one
standard deviation error bars are also included. Additionally, Fig.
12 includes the forces predicted using the prior distributions for
the force coefficients; the results are also summarized in Table 3.
Another set of prediction was performed with forces measured at
o, = —7 deg; see Table 4. Figure 13 shows the comparison of the
measured and predicted forces using the posterior and prior distri-
butions of K, and Kj; the results are also summarized in Table 5.
The lack of overlap between the error bars for the inference results
and the measured data is due either to underestimated uncertainty
for the likelihood calculations, force measurement uncertainty, or
an uncorrected bias in the model.

6 Conclusions

This paper reported on the National Science Foundation-
sponsored workshop entitled “Uncertainty in machining.” The
purpose of the workshop was to address uncertainty and risk in
machining and related manufacturing operations through the

051009-8 / Vol. 133, OCTOBER 2011

application of decision theory to manufacturing models. To sup-
port this agenda, an example of Bayesian inference for the
well-known mechanistic turning force model was presented. The
beliefs about shear stress, 7y, shear plane angle, ¢., and average
friction angle, f,,, and, therefore, the force coefficients K, and Ky,
were updated using measured values of the cut chip thickness, 4,
and the forces, F, and F, from the Assessment of Machining Mod-
els database compiled by the National Institute of Standards and
Technology. The prior (initial beliefs) was based on a literature
review. The likelihood was determined using the discrete grid
method, where the range of values for the variables of interest (z,
¢., and f3,) is divided into a grid of points. The chip thickness, /..,
and the forces, F; and Fy, were calculated at each point using the
deterministic equations. A normal distribution of the calculated
values was assumed, and the uncertainty was specified. The value
of the distribution at the measured value was taken to be the likeli-
hood, which gives the probability that a selected variable value
would give the measured value (using the deterministic model) in
the presence of uncertainty. The posterior distribution was calcu-
lated by multiplying the prior and likelihood functions. This pro-
cess was repeated for multiple tests to obtain a final posterior
distribution of the force coefficients, K; and K. The posterior dis-
tribution was then used to predict forces.
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