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This paper describes the application of Receptance Coupling Substructure Analysis (RCSA) to the predic-
tion of torsional and axial, as well as bending, receptances. The coupling equations are developed and
used to compare predictions to experimental results for a stepped diameter free–free beam and two
tool-holder-spindle assemblies.
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. Introduction

Many research studies over the past several decades have
dentified the relationship between the dynamics of the cut-
ing tool-support structure-workpiece and the machining process,
ncluding turning, milling, boring, and drilling. Comprehensive
eviews of these studies are provided in [1–8], for example. Due to
he cutting force, time-dependent deflections between the tool and
orkpiece are obtained. The relationship between the steady-state
eflection and applied force is described by the system frequency
esponse function (FRF), or receptance. Depending on the force
irection and structure geometry, the relevant receptances may
escribe (lateral) bending, torsion, and/or axial vibration behavior.

While experimental techniques, such as impact testing, may
ften be applied to determine the required receptances directly,
n some instances this approach may prove too time-consuming
such as a large production facility with many hundreds of tool-
ng combinations) or inconvenient due to physical restrictions
slender, flexible tools and micromills). In these situations, a pre-
erred alternative is to implement a predictive technique based
n tool-structure models. Challenges to this paradigm include
amping estimation, particularly at interfaces, contact stiffness

etermination, in rolling element bearings, for example, and full
eometric knowledge of commercial components, such as spindles.
o address these obstacles, the Receptance Coupling Substructure
nalysis (RCSA) procedure was developed [9–13] by building on
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E-mail address: tschmitz@ufl.edu.

141-6359/$ – see front matter © 2009 Elsevier Inc. All rights reserved.
oi:10.1016/j.precisioneng.2009.08.005
the receptance coupling principles detailed by Bishop and John-
son [14]. Using RCSA, models of the tool and holder (amenable
to modeling) are coupled to a measurement of the spindle-
machine (more difficult to model) to predict the assembly’s bending
receptances. This information may then be used, together with
milling models, to predict the stability [15,16] and forced vibration
behavior [17].

In this paper, the RCSA method is extended to prediction of tor-
sional and axial receptances, in addition to bending responses, for
tool-holder-spindle assemblies. The goal of the paper is to pro-
vide readers with a straightforward approach to coupling models
of tools and holders with spindle-machine dynamics. While the
scope of this study is limited to the coupling procedure, it is also
shown experimentally that tool model development is an impor-
tant related topic. Although analytical models derived from simple
beam theory are elegant and convenient to apply, it is shown that
these models are generally insufficient for twisted beam dynamics
in the torsional and axial cases. The paper is organized as follows. In
Section 2, the RCSA equations for torsional and axial response pre-
dictions are presented. A comparison between experimental and
predicted results for torsional and axial receptances of a simple
structure with free–free boundary conditions is provided in Sec-
tion 3 to demonstrate the concepts. The RCSA equations for tool
point torsional and axial predictions are developed in Section 4. This
includes the “inverse RCSA” approach used to identify the spindle-

machine dynamics using a standard artifact inserted in the spindle.
Experimental results for a rolling element-bearing spindle with two
tool-holder combinations are shown in Section 5. A discussion of
the results is given in Section 6 and conclusions are included in
Section 7.

http://www.sciencedirect.com/science/journal/01416359
http://www.elsevier.com/locate/precision
mailto:tschmitz@ufl.edu
dx.doi.org/10.1016/j.precisioneng.2009.08.005
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a smaller diameter of 31.4 mm. This “assembly” was then treated
ig. 1. Rigid coupling of components I and II to form assembly III. An external torque
1 is applied to determine the assembly receptances S11 and S31.

. Torsional and axial receptance coupling equations

In this section the procedures are described for coupling tor-
ional and axial receptances of components to predict assembly
esponses. As a convenience to the reader, closed-form receptance
xpressions for uniform beams with free–free (unconstrained)
oundary conditions are provided in Appendix A [14]. These
xpressions give the complex, frequency dependent behavior of
niform beams with harmonic external torque (torsional vibration)
nd axial loads (axial vibration) applied. However, they are limited
n application (i.e., uniform cross-section slender beams).

.1. Torsional receptance coupling equations

As depicted in Fig. 1, given the individual receptances of two
omponents, I and II, they may be coupled to produce the assem-
ly, III. If the direct torsional receptance at assembly coordinate
is desired, an external harmonic torque with magnitude T1 is

pplied at assembly coordinate 1, labeled ˚1 (note the use of
ower case variables for components and upper case variables for
ssemblies). In Fig. 1, it is assumed that coordinates �1 (on com-
onent I) and ˚1 (on assembly III) are spatially collocated before
nd after a rigid coupling. The coupling coordinates are �2a and
2b. The free–free component direct and cross receptances are:

11 = (�1/t1), s21 = (�2/t1), s12 = (�1/t2), and s2a2a = (�2a/t2a) for I; and
2b2b = (�2b/t2b), s32b = (�3/t2b), s2b3 = (�2b/t3), and s33 = (�3/t3) for II.
hey may be calculated using Eqs. (A7)–(A10) (Appendix A.1) or by
ther available numerical or analytical techniques. The compatibil-
ty condition for the rigid coupling is �2b − �2a = 0, which enables
he equality �2a = �2b = ˚2 to be written (˚2 is assumed to be col-
ocated with �2a before and after the rigid coupling). Also, �1 = ˚1
nd �3 = ˚3. The equilibrium conditions are t2a + t2b = 0 and t1 = T1.

To determine s11 = (˚1/T1) , the component torsional rotations
re first written. For I, there are two torques acting on the body, so
he torsional rotations are:

1 = s11t1 + s12at2a and �2a = s2a1t1 + s2a2at2a (1)

or II, the torsional rotations are �2b = s2b2bt2b and �3 = s32bt2b. Next,
ubstitution into the compatibility condition gives:

2b2bt2b − s2a1t1 − s2a2at2a = 0. (2)

hen, application of the equilibrium conditions enable t1 to be
eplaced by T1 and t2a (t2a = t2b) to be eliminated from Eq. (2). See
q. (3).

2b2bt2b − s2a1T1 + s2a2at2b = 0 (3)

rouping terms in Eq. (3) enables t2b to be written
s t2b = (s2a2a + s2b2b)−1s2a1T1. Correspondingly, t2a =

(s2a2a + s2b2b)−1s2a1T1. Finally, substitution of this torque
alue into the S11 expression gives the desired result; see Eq. (4).
ote that the assembly response is written as a function of the
omponent direct (s11, s2a2a, and s2b2b) and cross (s12a and s2a1)
Fig. 2. Rigid coupling of components I and II to form assembly III. An external axial
force P1 is applied at V1 to determine the assembly receptances A11 and A31.

receptances.

S11 = ˚1

T1
= �1

T1
= s11t1 + s12at2a

T1
= s11t1 − s12a(s2a2a + s2b2b)−1s2a1T1

T1

S11 = s11T1 − s12a(s2a2a + s2b2b)−1s2a1T1

T1
= s11 − s12a(s2a2a + s2b2b)−1s2a1

(4)

The expression for t2b is used to determine the cross receptance,
S31. See Eq. (5).

S31 = ˚3

T1
= �3

T1
= s32bt2b

T1
= s32b(s2a2a + s2b2b)−1s2a1T1

T1
S31 = s32b(s2a2a + s2b2b)−1s2a1

(5)

The direct and cross receptances, S33 and S13, respectively, may be
determined by applying a torque at ˚3. The approach is analogous
and the results are included in Eqs. (6) and (7).

S33 = ˚3

T3
= s33 − s32b(s2a2a + s2b2b)−1s2b3 (6)

S13 = ˚1

T3
= s12a(s2a2a + s2b2b)−1s2b3 (7)

2.2. Axial receptance coupling equations

Fig. 2 depicts a rigid coupling example similar to the one shown
in Fig. 1. The two free–free components I and II are coupled to pro-
duce the assembly III. To determine the direct axial receptance at
the right end of the assembly, an external harmonic axial force
with magnitude P1 is applied at assembly coordinate 1, labeled V1.
Using the same assumptions and following the same steps as in
Section 2.1 enables the assembly axial receptances to be written as
a function of the component axial receptances. See Eqs. (8)–(11).

A11 = V1

P1
= a11 − a12a(a2a2a + a2b2b)−1a2a1 (8)

A31 = V3

P1
= a32b(a2a2a + a2b2b)−1a2a1 (9)

A33 = V3

P3
= a33 − a32b(a2a2a + a2b2b)−1a2b3 (10)

A13 = V1

P3
= a12a(a2a2a + a2b2b)−1a2b3 (11)

3. Free–free stepped beam analysis and experiments

In this section, predictions and measurements for a free–free
stepped geometry beam are included. While this is a simple exam-
ple, it provides a demonstration of the coupling equations and
identifies the measurement challenges associated with torsional
dynamics testing. The free–free boundary conditions were approx-
imated by resting the beam on a soft foam support.

The geometry for the 1056 mm long 6061-T651 aluminum beam
is shown in Fig. 3. The diameter of the end sections of the beam was
44.5 mm, while the central third of the beam length was turned to
as three rigidly coupled components. The beam material properties
were assumed to be: E = 70 GPa (elastic modulus), � = 0.33 (Poisson’s
ratio), G = (E/2(1 + �)) = 26.3 GPa (shear modulus), � = 2700 kg/m3

(density), �G = 0.0004, and �E = 0.00015 (solid damping factors). The
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Fig. 3. Stepped diameter beam geometry.
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ig. 4. The axial force P1 was applied using the impact hammer and the V1 axial
esponse was measured using a low-mass accelerometer. Note that only the beam
nd is shown.

ree–free receptances for the three beam sections were modeled
nd these sections were rigidly coupled to predict the assembly
ynamics. Impact testing was applied to enable experimental com-
arison with the predicted beam receptances. In this approach, an

nstrumented hammer (PCB 086C04 with a sensitivity of 926 N/V
or this study) is used to excite the structure and an appropriate
inear transducer is used to measure the resulting response (a low-

ass accelerometer, PCB 352A21 with a sensitivity of 1027 m/s2/V
or this study). A measurement bandwidth of 5000 Hz was applied,
lthough the impact input energy above 3000 Hz was low (nylon
ammer tip).

While the axial measurement was straightforward to complete
see Fig. 4), determining the torsional receptances required a spe-
ial setup and a pair of complementary measurements. As shown
n Fig. 5, two aluminum measurement tabs were fixed in a sym-

etric pattern to the beam end using cyanoacrylate. In a first
easurement, the hammer impact and acceleration measurement
ere completed on the same tab (Fig. 5a). Because the impact was
pplied at a distance of 28 mm from the beam center, a torque
as introduced. This excited the torsional vibration modes. How-

ver, the lateral force also effectively excited the bending modes
nd “corrupted” the torsional receptance. To cancel the bending

ig. 5. (a) First torsional measurement—the lateral force F1 was applied and the Y1

ateral response was measured. (b) Second measurement—the lateral force F ′
1 was

pplied in the opposite direction and the Y ′
1 lateral response was measured.
Fig. 6. Imaginary parts of first and second torsion measurements. The solid line
corresponds to Fig. 5a and the dotted line to Fig. 5b. The average rejects the bending
modes and isolates the torsional modes.

modes, a second measurement was completed. The accelerome-
ter location was not changed, but the force was applied on the
opposite tab at the same radius, but in the opposite direction
(Fig. 5b). This caused the sign of the bending modes to reverse,
but the torque direction was unchanged so the torsional response
was nominally the same [18]. To reject the bending modes and
isolate the torsional modes, the two measurement results were
averaged on a frequency-by-frequency basis. In order to convert
from the averaged acceleration-to-force (inertance or acceler-
ance) data to rotation-to-torque data, two steps were required.
First, the inertance was converted to receptance (displacement-
to-force) by dividing by −ω2. Second, the torsional response was
obtained from this result using Eq. (12), where r is the radius
for the force application and response measurement (28 mm in
Fig. 5).

˚

T
(ω) = Y/r

F · r
= Y

F
(ω) · 1

r2
(12)

3.1. Torsional receptance coupling results

The two free–free torsional measurements described in Fig. 5
are shown in Fig. 6 for the stepped diameter aluminum beam,
where the linear axis scale and frequency range have been selected
for viewing convenience in the six panels. The first measurement
(Fig. 5a) is identified by the solid line in all panels, while the second
measurement (Fig. 5b) is identified by the dotted line. Due to the
sign reversals, it is clear that the modes at 115, 386, 880, 1375, 1939,
2804, 3648, and 4463 Hz are bending modes, while the torsional
modes (without sign reversals) occur at 901, 3552, and 4462 Hz.

To enable assembly predictions, the three free–free sections
were described using the closed-form receptances provided in
Appendix A (Eqs. (A7)–(A10) in Appendix A.1) and rigidly coupled
using Eqs. (4)–(7). First, the left and middle components from Fig. 3
were coupled as shown in Fig. 7a. Second, this subassembly was
coupled to the right component from Fig. 3 to give the full assem-
bly receptances as shown in Fig. 7b. Note that a simple renumbering

of the coordinates enabled the same equations to be applied two
times sequentially.

A comparison between measurement and prediction is given
in Fig. 8 (linear scale). The averaging approach to isolate the tor-
sional receptances was applied for the experimental results. The
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Fig. 7. (a) Rigid coupling of components I and II to form subassembly III; (b)
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ig. 8. Comparison between predicted (dotted) and measured (solid) torsional
eceptances for stepped diameter aluminum beam. The linear scale emphasizes the
uccessful rejection of the bending modes using the averaging technique.

easured and predicted natural frequencies from Fig. 8 are 901,
552, and 4462 Hz and 908, 3531, and 4440 Hz, respectively. This

orresponding percent error between measurement and predic-
ion is 0.8, −0.6, and −0.5%. Because the damping is very low for
he free–free beam, a semi-logarithmic plot of the data in Fig. 8 is
ncluded in Fig. 9. Good agreement is again observed, although there
s small residual content at the bending frequencies and the anti-

ig. 9. Semi-logarithmic scale comparison between predicted (dotted) and mea-
ured (solid) torsional receptances for stepped diameter aluminum beam.
rigid coupling of subassembly III to component IV to give assembly V.

resonant frequencies (near zero response) are offset. It is proposed
that this offset is the result of the averaging step.

3.2. Axial receptance coupling results

Similar to the torsional receptance prediction, the three
free–free stepped diameter beam sections were described using the
closed-form receptances provided in Appendix A (Eqs. (A12)–(A15)
in Appendix A.2) and rigidly coupled in two sequential steps
using Eqs. (8)–(11) to determine the assembly’s axial receptance.
A comparison between measurement and prediction is provided
in Fig. 10. The percent error between the measured and predicted
natural frequencies, 1912 and 1937 Hz, respectively, is 1.3%. Small
contributions from the bending modes are also seen in Fig. 10; it is
believed that this content is observed because the force application
was not exactly at the beam center, nor exactly along the beam axis.

4. Tool point receptance prediction equations

For tool-holder-spindle-machine assemblies, the RCSA
approach is to couple the measured spindle-machine recep-
tances with the modeled tool-holder receptances [10,19]. A
significant step in this method is experimental identification of the
spindle-machine receptances. As shown in Fig. 11, the required

receptances are obtained by “inverse RCSA” where a standard arti-
fact with the required spindle interface (e.g., CAT-40 or HSK-63A)
and simple geometry is inserted in the spindle and measure-
ments performed at the free end of this assembly. The standard

Fig. 10. Semi-logarithmic scale comparison between predicted (dotted) and mea-
sured (solid) axial receptances for stepped diameter aluminum beam.
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ig. 11. A standard artifact is inserted in the spindle to identify the spindle-machine
eceptances using the “inverse RCSA” procedure.

rtifact-spindle-machine assembly response is then decoupled
o isolate the spindle-machine receptances by “removing” the
ortion of the standard artifact beyond the flange. Because the
ange and taper are nominally identical for every holder that is

nserted in a particular spindle, the holder and tool geometries (and
aterial properties) beyond the flange for arbitrary tool-holder

ombinations can then be used to model the required free–free
eceptances. These free–free receptances are finally coupled to
he experimentally identified spindle-machine response (which
ncludes the taper connection dynamics) to identify the desired
ool point assembly receptances.

.1. Spindle-machine torsional receptances

Based on Fig. 1, the portion of the standard artifact beyond
he flange (Fig. 11) may be considered to be component I and
he spindle-machine (including the holder-spindle connection) to
e component II. When rigidly coupled, these components form
II, the artifact-spindle-machine assembly. The assembly torsional
esponse at the free end, S11, is then given by Eq. (4), where s11,
2a1, s2a2a, and s12a are the free–free receptances of the portion of
he standard artifact beyond the flange and s2b2b is the torsional
eceptance of the spindle-machine at the flange. The latter recep-
ance is the desired spindle-machine response and may be obtained
y rearranging Eq. (4) as shown in Eq. (13).

2b2b = s2a1(s11 − S11)−1s12a − s2a2a (13)

s with the stepped diameter beam measurements, S11 was deter-
ined for the standard artifact-spindle-machine assembly using

he averaging approach depicted in Fig. 5. The same aluminum
easurement tabs were fixed to the free end of the standard arti-

act. The force excitation/measurement radius was again 28 mm.
he spindle-holder interface was CAT-40 for the high-speed, rolling
lement-bearing spindle used in this study.

In order to determine s2b2b, the torsional receptances for
he spindle-machine, using Eq. (15), the free–free receptances,

11, s2a1, s2a2a, and s12a, for the portion of the steel standard
rtifact beyond the flange were modeled using Eqs. (A7)–(A10)
Appendix A.1), with d = 44.5 mm, l = 57 mm, E = 200 GPa, � = 0.29,
= (E/2(1 + �)) = 77.5 GPa, � = 7800 kg/m3, and �G = �E = 0.001. The

11 (measured) and s11, s2a1, s2a2a, and s12a (modeled) receptances
Fig. 12. Tool-holder model.

were then used to calculate the spindle-machine torsional recep-
tance.

4.2. Spindle-machine axial receptances

The “inverse RCSA” approach was again applied to identify the
spindle-machine axial receptance, a2b2b; see Eq. (14). The stan-
dard artifact-spindle-machine assembly axial response, A11, was
measured using the approach shown in Fig. 4a and the free–free
receptances for the portion of the standard artifact beyond the
flange were calculated using Eqs. (A12)–(A15) (Appendix A.2).

a2b2b = a2a1(a11 − A11)−1a12a − a2a2a (14)

4.3. Spindle-machine bending receptances

As with the torsional and axial cases, the spindle-machine bend-
ing receptances may be determined using a model of the portion
of the standard artifact beyond the flange to identify the required
free–free bending receptances and measurements of the standard
artifact-spindle-machine assembly measurements. The approach is
detailed in [10] and is not included here for brevity.

5. Tool-holder-spindle-machine experimental results

In this section the spindle-machine receptances described in
Section 4 are coupled to models of two tool-holder examples, a key-
seat cutter and a standard twist drill (with three different insertion
lengths). The assembly receptance predictions are then compared
to measurements.

5.1. Keyseat cutter

A 38.7 mm outer diameter, 16-tooth high-speed steel keyseat
cutter clamped in a steel collet holder was selected as a first test-
ing example. This tool was chosen for convenience since it was
straightforward to add an adapter which enabled the torsional
excitation/measurement for experimental validation of receptance
predictions. The root diameter for the keyset cutter straight teeth
was 32.5 mm. For modeling purposes, the effective diameter of the
cutter was assumed to be the average of the outer and root teeth
diameters, 35.6 mm. The cross-sectional geometry for the tool-
holder is shown in Fig. 12. It is composed of six solid cross-section
steel components (II–V and VII–VIII), one hollow steel component
(VI), and one solid aluminum component (I). The latter represents
the measurement adapter that was fixed to the tool free end using

cyanoacrylate. This adapter enabled the two torsional measure-
ments required for rejection of the bending modes in the torsional
receptances to be completed. The adapter is shown in Fig. 13 and
was modeled as a circular cross-section with the same circular area
as the face of the rectangular measurement adapter. Table 1 gives
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Fig. 13. Measurement adapter for keyseat tool-holder-spindle-machine torsional
receptances. Two measurements were performed to cancel the bending modes.

Table 1
Keyseat cutter tool-holder components (materials are aluminum (A) and steel (S);
a hollow section is indicated by (H)).

Component Material Inner diameter
(mm)

Outer diameter
(mm)

Length
(mm)

I A – 42.1 3
II S – 35.6 10
III S – 12.7 26
IV S – 42.1 20

t
n
s

5

T
w
s
(
p
E
u
(
r
v
a

F
t

V S – 31.9 7
VI S/H 12.7 40 22
VII S – 40 17
VIII S – 44.4 13

he diameters and lengths for each of the eight tool-holder compo-
ents. The material properties were the same as those previously
pecified with �G = �E = 0.001 for both aluminum and steel.

.1.1. Keyseat cutter assembly torsional receptances
The free–free torsional receptances for the eight components in

able 1 were calculated using Eqs. (A7)–(A10) (Appendix A.1). These
ere rigidly coupled as shown in Eqs. (4)–(7). The left-to-right

equential coupling approach used for the stepped diameter beam
Fig. 7) was applied to determine the free–free response of the cou-
led tool-holder. This subassembly was then rigidly coupled (via
q. (4)) to the spindle-machine response, which was determined

sing Eq. (15) and the standard artifact torsional measurement, S11
Section 4.1). A comparison between the measured and predicted
esponses for the tool-holder-spindle-machine assembly is pro-
ided in Fig. 14. The percent error between the measured (3120 Hz)
nd predicted (3130 Hz) natural frequency is 0.3%.

ig. 14. Linear scale comparison between predicted (dotted) and measured (solid)
orsional receptances for keyset cutter tool-holder-spindle-machine assembly.
Fig. 15. Linear scale comparison between predicted (dotted) and measured (solid)
axial receptances for keyseat cutter tool-holder-spindle-machine assembly.

5.1.2. Keyseat cutter assembly axial receptances
The procedure was similar to that described in Section 5.1.1.

The free–free axial receptances for components II–VIII in Table 1
were calculated using Eqs. (A12)–(A15) (Appendix A.2); the
measurement adapter (component I) was not required for the
axial measurements. The seven components were rigidly cou-
pled as shown in Eqs. (8)–(11) using the left-to-right sequential
coupling approach to determine the free–free response of the cou-
pled tool-holder. This subassembly was then rigidly coupled to
the spindle-machine axial response (Section 4.2). A comparison
between the measured and predicted responses is provided in
Fig. 15. The percent error between the two dominant measured,
312 and 763 Hz, and predicted, 315 and 770 Hz, natural frequen-
cies is, 1.0 and 0.9%. This result does not necessarily validate the
tool-holder axial receptance model, which offers limited accuracy
for shorter beams [14], as much as it demonstrates the importance
of considering the spindle dynamics. Specifically, if the tool-holder
model is coupled rigidly to ground (i.e., the spindle-machine is con-
sidered to be infinitely stiff in the axial direction), the first axial
mode is seen at 12,542 Hz. The two modes observed in Fig. 15 are
due to the spindle dynamics.

5.2. Twist drill

The keyseat cutter results provided in Section 5.1 demonstrate
the effectiveness of the extended RCSA approach to the accurate
prediction of torsional and axial receptances (bending receptance
predictions have been reported previously, see, e.g. [10]). This
includes the “inverse RCSA” step required for experimental iden-
tification of the spindle-machine receptances. In this section, it is
shown that tool modeling is an equally important aspect of the
RCSA procedure. In particular, it is seen that the simple analyt-
ical models for uniform beams included in Appendix A are not
able to accurately predict the torsional-axial behavior of twisted
beams.

The same spindle-machine and collet holder from the keyseat
cutter experiments were used for this testing. Additionally, the
spindle-machine receptances (obtained via the standard artifact)
employed for the predictions in Section 5.1 were again applied.

However, the keyseat cutter was replaced by a twist drill with a
diameter of 12.7 mm, length of 98 mm, and shank length of 39 mm.
Three different insertion lengths were applied: 39, 30, and 20 mm.
In order to enable torsional and axial testing for the tool-holder-
spindle-machine assembly, an aluminum measurement adapter
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ig. 16. Twist drill and aluminum measurement adapter geometries. The inset
hows a photograph of the adapter-drill-holder clamped in the test spindle.

as again attached to the tool and included in the RCSA tool-
older model. Fig. 16 shows the adapter; the center hole was made
sing the test drill and then the adapter was cemented to the drill
sing cyanoacrylate. For modeling convenience, the rectangular
dapter was represented by a cylinder with an equivalent cross-
ectional area. For the 26 mm × 44 mm dimensions shown in Fig. 16,
he equivalent diameter was 37.2 mm. Further, because the simple

odels in Appendix A require a uniform cross-section, the diame-
er for the fluted portion of the twist drill was approximated using
mass-based approach. Specifically, the drill mass was measured

o be 72.5 g. Then, an equivalent diameter was calculated for the
uted portion which would give a two section beam (shank and
uted portion) with the measured mass. This equivalent diameter

or the fluted portion was 9.6 mm.
The cross-sectional geometries for the tool-holder models are

hown in Fig. 17; one each for the three insertion lengths. Table 2
ives the diameters and lengths for each of the tool-holder com-
onents in all three cases. The material properties for predictions
ere the same as those previously specified.
.2.1. Twist drill assembly bending receptances
Before proceeding to the torsional and axial cases, the measured

nd predicted bending receptances are provided for completeness.

able 2
wist drill tool-holder components (materials are aluminum (A) and steel (S); a hollow se
0 mm (2), and 20 mm (3).

Component Material Inner diameter (mm)

1 2 3 1 2 3

I A/S A/S A/S 9.6 9.6 9.6
II S S S – – –
III S S S – – –
IV S S S – – –
V S S S/H – – 12.7
VI S/H S S/H 12.7 – 12.7
VII S S/H S – 12.7 –
VIII S S S – – –
IX S –

hading indicates that models 1 and 3 only have 9 components, while model 2 has 10 com
Fig. 17. Twist drill tool-holder models for three different insertion lengths. The
uniform cross-sections are identified.

The free–free bending receptances for the components listed in
Table 2 and depicted in Fig. 17 were calculated using a finite ele-
ment solution of the Timoshenko beam equation (25 elements for
each component) [10]. These components were rigidly coupled
as described in [10], using the left-to-right sequential coupling
approach to determine the free–free responses of the coupled tool-
holder. The subassembly receptances were then rigidly coupled
to the spindle-machine bending response matrix [10,20–22]. A

comparison between the measured and predicted responses for
the tool point displacement-to-force receptance, H11, is provided
in Figs. 18–20 for the three insertion lengths. Good agreement is
observed in all three cases. Additionally, the interaction between

ction is indicated by (H)). The three insertions lengths for the drill are: 39 mm (1),

Outer diameter (mm) Length (mm)

1 2 3 1 2 3

37.2 37.2 37.2 10 10 10
9.6 9.6 9.6 49 49 49

42.1 12.7 12.7 20 9 19
31.9 42.1 42.1 7 20 20
40 31.9 31.9 12 7 7
40 40 40 10 3 22
40 40 40 17 22 17
44.4 40 44.4 13 17 13

44.4 13

ponents.
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Fig. 18. Linear scale comparison between predicted (dotted) and measured (solid)
bending receptances for twist drill tool-holder-spindle-machine assembly (39 mm
insertion).

Fig. 19. Linear scale comparison between predicted (dotted) and measured (solid)
bending receptances for twist drill tool-holder-spindle-machine assembly (30 mm
insertion).

Fig. 20. Linear scale comparison between predicted (dotted) and measured (solid)
bending receptances for twist drill tool-holder-spindle-machine assembly (20 mm
insertion).
Fig. 21. Linear scale comparison between predicted (dotted) and measured (solid)
torsional receptances for twist drill tool-holder-spindle-machine assembly (39 mm
insertion).

the twist drill fundamental bending mode and holder-spindle-
machine modes near 1000 Hz is seen [11]. This emphasizes
the importance of considering the spindle-machine dynamics in
assembly predictions.

5.2.2. Twist drill assembly torsional receptances
The free–free torsional receptances for the components in

Table 2 were calculated using Eqs. (A7)–(A10) (Appendix A.1).
These were rigidly coupled as shown in Eqs. (4)–(7) using the left-
to-right sequential coupling approach to determine the free–free
response of the coupled tool-holder. This subassembly was then
rigidly coupled (Eq. (4)) to the spindle-machine response. Com-
parisons between the measured and predicted responses for the
three twist drill tool-holder-spindle-machine assemblies are pro-
vided in Figs. 21–23. It is seen that the predicted torsional natural
frequencies (dotted line) are unacceptably high relative to the mea-
surement results (solid line) in each case. Because the twist drill
fundamental torsional natural frequency is incorrect, interaction

with a holder-spindle-machine mode near 2400 Hz also causes
magnitude errors. This indicates that the analytical, uniform beam
model included in Appendix A.1 is not adequate for twist drill tor-
sional dynamics predictions. Residual content is also observed near
900 Hz in the measurements; this is due to imperfect canceling of

Fig. 22. Linear scale comparison between predicted (dotted) and measured (solid)
torsional receptances for twist drill tool-holder-spindle-machine assembly (30 mm
insertion).
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ig. 23. Linear scale comparison between predicted (dotted) and measured (solid)
orsional receptances for twist drill tool-holder-spindle-machine assembly (20 mm
nsertion).

he bending modes by averaging the two torsional measurements.
he measurement sequence shown in Fig. 13 was applied.

.2.3. Twist drill assembly axial receptances
For axial predictions, the free–free axial receptances for the

omponents in Table 2 were calculated using Eqs. (A12)–(A15)
Appendix A.1). These were rigidly coupled as shown in Eqs.
8)–(11) using the left-to-right sequential coupling approach to
etermine the free–free response of the coupled tool-holder. This
ubassembly was then rigidly coupled (Eq. (8)) to the spindle-
achine response. Validation measurements were next completed

o compare with the assembly receptance predictions. Because it
as not possible to excite and measure exactly along the tool axis

nd the twist drill was compliant in bending (relative to the holder
nd spindle), the bending modes were excited by the small cou-

le introduced by the lateral offset between the accelerometer and
ammer impact locations. To cancel the bending modes, two mea-
urements were again performed and averaged. Fig. 24 depicts the
wo measurements; the accelerometer was attached to the drill
oint (using wax) and the force was applied above and below the

ig. 24. Axial receptance measurements for adapter (shaded) and twist drill tool-
older-spindle-machine assembly. Two measurements were performed to cancel
he bending modes.
Fig. 25. Example axial measurement result for adapter and twist drill tool-holder-
spindle-machine assembly. Two measurements (dotted) were averaged (solid) to
isolate the axial modes. Residual bending content is observed between 700 and
1100 Hz.

accelerometer on the measurement adapter to switch the couple
direction.

An example result for the 20 mm twist drill insertion length is
provided in Fig. 25. In this figure, the dotted lines represent the
two measurement results and the heavy solid line is the average.
As expected, the bending modes between 700 and 1100 Hz switch
directions. From the average, it is seen that the spindle-machine
axial mode near 312 Hz seen in the keyseat cutter axial recep-
tance results (Fig. 15) was again excited. Note that the amplitudes
also match. The spindle-machine axial mode at 763 Hz is obscured
by the residual bending mode content. The mode at 1547 Hz is
due to the torsional-axial vibration coupling for twisted beams
described in the literature [23–25]. Because the nominal mea-
surement direction of the accelerometer is along the tool axis, it
was not expected that the torsional mode would appear in the

axial measurement. However, small misalignments in the axial
accelerometer placement yielded some sensitivity to the subse-
quent torsional response. Fig. 26 shows a comparison between
the averaged experimental result and prediction. As expected, the

Fig. 26. Linear scale comparison between predicted (dotted) and measured (solid)
axial receptances for twist drill tool-holder-spindle-machine assembly (20 mm
insertion). The residual bending content between 700 and 1100 Hz is again present
in the measurement data.
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Fig. 27. Torsional excitation of axial mode. An applied torque caused axial vibration
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or the twist drill tool-holder-spindle-machine assembly (20 mm insertion). Two
easurements (dotted) were completed in an attempt to reject the bending modes

y averaging (solid).

pindle-machine axial machines appear, but no other content is
resent in the prediction.

To verify the torsional-axial behavior, the axial accelerometer
lacement was maintained, but the twist drill was excited in tor-
ion. Again, two measurements were averaged to eliminate the
ending modes (the approach shown in Fig. 13 was applied). These
esults are shown in Fig. 27, where the dotted lines represent the
wo measurements and the solid line is the average. It is seen that
n axial response at 1547 Hz is obtained due to the torsional excita-
ion, but now the spindle-machine axial modes do not appear (the
orsional-axial coupling is for modes associated with the twisted
eam). The conversion from axial displacement-to-force experi-
ental data to axial displacement-to-torque data for Fig. 27 was

ealized using Eq. (15), where r is the radius of 21 mm for the force
pplication on the measurement adapter.

V

T
(ω) = V

F · r
= V

F
(ω) · 1

r
(15)

. Discussion

A number of conclusions can be drawn based on the compar-
sons of measurements and predictions in Sections 3 and 5.

. In general, it was shown that the comprehensive RCSA approach
described here could be used to select tooling (for a particular
spindle-machine) that yields a desired combination of torsional,
axial, and bending receptances or simply to predict the responses
for existing tooling.

. The receptance equations described here assumed a rigid con-
nection between the tool and holder. While flexibility and
damping at this interface may be included in the model, the
results (excluding the torsional predictions for the twist drill,
see point 3) suggest that the rigid assumption is sufficient for the
macro-scale tools treated in this study. This may not be true in all
situations, such as dynamic predictions for micro-scale tools or
very long tool-holder combinations where the applied moment

is large.

. As with any modeling approach, there are limitations. These are
highlighted for the analytical, uniform cross-section tool mod-
els applied to the twist drill predictions. It was shown that the
natural frequencies for torsional modes are overpredicted and
ring 34 (2010) 345–356

the inherent coupling between torsional and axial vibration for
twisted beams is naturally not included.

The goal of this paper was to provide readers with a straight-
forward approach to coupling models of tools and holders with
spindle-machine dynamics in order to predict torsional, axial, and
bending receptances. Given this capability, the twist drill results
suggest that future efforts should be focused on efficient identi-
fication of twisted beam tool free–free receptance models using
numerical methods, such as finite element analysis or analyti-
cal techniques [26–28]. The motivation for torsional, axial, and
bending receptance prediction is successful modeling of machining
operations. Both the bending and axial receptances of tool-holder-
spindle-machine assemblies can be important in ball and bull-nose
end milling applications [29]; the combined torsional-axial dynam-
ics, as well as bending responses, are required for drilling analysis
[e.g., 18,30–35].

7. Conclusions

In this paper, the Receptance Coupling Substructure Analysis
method is extended to prediction of torsional and axial, in addi-
tion to bending, receptances. The receptance equations for torsional
and axial vibration are presented. Experimental results are com-
pared to predictions for torsional and axial receptances of a stepped
diameter free–free beam. An averaging approach, where the lateral
force direction is switched but the torque direction is maintained,
is used to isolate torsional modes from bending modes. Tool point
torsional and axial predictions and measurements are also pro-
vided for two tool-holder-spindle-machine assemblies (bending
predictions were completed for one assembly). Good agreement
is generally observed, although limitations in the analytical tool
models applied to a twisted beam are identified.
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Appendix A. Torsional and axial free–free receptances for
uniform beams

A.1. Torsional receptances

The equation of motion for a uniform beam with a circular cross-
section under torsional vibration is provided in Eq. (A1), where G
is the beam material shear modulus (N/m2), � is the beam material
density (kg/m3), � is the rotation about the beam axis (rad), x is the
position along the beam axis (m), and t is time (s) [14]. Assumptions
include the following: (1) radial lines extending from the beam cen-
ter to its outer diameter remain straight after an external torque is
applied; and (2) shear is the only significant stress. The accuracy of
this simple model is naturally limited by these assumptions.

∂2� ∂2�

G

∂x2
= �

∂t2
(A1)

A general solution to Eq. (A1) is given by �(x,t) = O(x) eiωt for har-
monic vibrations, where ω is frequency (rad/s). Calculating the
second-order partial derivatives of this solution with respect to
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[3] Smith S, Tlusty J. Efficient simulation programs for chatter in milling. Annals of
the CIRP 1993;42(1):463–6.

[4] Komanduri R. Machining and grinding: a historical review of the classical
papers. Applied Mechanics Review 1993;46(3):80–132.
Fig. A1. Circular cross-section beam with torque applied at coordinate �1.

and t, respectively, and substituting in Eq. (A1) yields Eq. (A2),
here the exponential appears on both sides of the equality sign

nd is not shown.

∂2O

∂x2
= (−ω2�)O (A2)

general solution to Eq. (A2) is given in Eq. (A3), where � =√
�/G. In order to determine the free–free receptances at the

eam ends, two boundary conditions are required. First, at a
ree end, (∂O/∂x) = 0. Second, for an external torque application
t the beam’s end, (∂O/∂x) = (t0/GJ), where t0 is the harmonic
orque magnitude and J is the second polar moment of area for
he beam cross-section (J = (	d4/32) and d is the beam diameter).
his boundary conditions follows from the relationship between
he shear stress, 
, at radius r and the shear strain, � , 
 = G� , or
t0r/J)=rG(d�/dx).

(x) = Acos(�x) + Bsin(�x) (A3)

o develop the torsional receptances for a free–free beam, an exter-
al torque with magnitude t1 is applied at the right end of the
eam, labeled as coordinate �1 in Fig. A1, where x = l and l is the
eam length (x = 0 at the left end of the beam). The corresponding
oundary conditions are provided in Eq. (A4).

∂O

∂x

∣∣∣∣
x=0

= 0
∂O

∂x

∣∣∣∣
x=l

= t1

GJ
(A4)

he coefficients A and B in Eq. (A3) are determined by calculating
∂O/∂x) from Eq. (A3) and substituting the two boundary conditions
rom Eq. (A4). This gives A = (−t1/GJ�sin(�l)) and B = 0. Substitution
f these coefficient values in Eq. (A3) gives Eq. (A5). Substitution of
q. (A5) in the general solution to Eq. (A1) yields Eq. (A6).

(x) = −t1

GJ� sin(�l)
cos(�x) (A5)

1(x, t) = O(x) eiωt = −t1

GJ� sin(�l)
cos(�x) eiωt (A6)

inally, the direct torsional receptance at coordinate 1, s11(ω), is
ritten as shown in Eq. (A7) by substituting x = l and converting

o the frequency domain. Similarly, the cross receptance, s21(ω), is
etermined by substituting x = 0 in Eq. (A6); see Eq. (A8).

11(ω) = �1

t1
= − cos(�l)

GJ� sin(�l)
= − cot(�l)

GJ�
(A7)

21(ω) = �2

t1
= − cos(� · 0)

GJ� sin(�l)
= −1

GJ� sin(�l)
= −csc(�l)

GJ�
(A8)

o determine the remaining two receptances, s22(ω) and s12(ω), for
he beam, an external torque of magnitude t2 is applied to coordi-
ate �2 and the process is repeated. These results are given in Eqs.
A9) and (A10). In order to introduce damping in the component
esponses, solid (or structural) damping may be applied by replac-
ng the shear modulus with the complex modulus G′ = G(1 + i�G) in

qs. (A7)–(A10), where �G is the unitless shear damping factor. Note
hat � is a function of G as well.

22(ω) = �2

t2
= − cot(�l)

GJ�
(A9)
Fig. A2. Beam with axial force p1 applied at coordinate v1.

s12(ω) = �1

t2
= −csc(�l)

GJ�
(A10)

A.2. Axial receptances

The equation of motion for a uniform beam1 under longitudi-
nal vibration is provided in Eq. (A11), where E is the beam material
elastic modulus (N/m2), v is the deflection along the beam axis (m),
and Poisson effects are neglected. It has been shown that applica-
tion of this equation yields accurate results only when the length of
the bar is much larger than its cross-sectional dimensions. A ratio
of at least 10:1 is suggested in [14].

E
∂2v
∂x2

= �
∂2v
∂t2

(A11)

Because the equation of motion has the same form as Eq. (A1) for
torsion, the free–free receptance development is similar to that pro-
vided in Appendix A.1. For brevity, only the results are provided
here. For the free–free beam of length l shown in Fig. A2, appli-
cation of axial force p1 enables the receptances a11 and a21 at the
beam ends to be determined. See Eqs. (A12) and (A13), where � =
ω
√

�/E. As before, determining the receptances requires that two
boundary conditions be applied. In this case, these are (∂O/∂x) = 0
at a free end and (∂O/∂x) = (p0/EA) for an external axial force appli-
cation at the beam’s end, where A is the beam cross-sectional
area A = (	d2/4) for a circular beam. The latter boundary condi-
tions follows from the relationship between the axial stress, �, and
axial strain, ε, � = Eε, or (p0/A)=E(d�/dx). The other two receptances
for the beam in Fig. A2 are determined by applying p2 to v2. See
Eqs. (A14) and (A15). Again, in order to introduce damping in the
component responses, solid damping is applied by replacing the
elastic modulus with the complex modulus E′ = E(1 + i�E) in Eqs.
(A12)–(A15), where �E is the unitless axial damping factor. Note
that � is a function of E as well.

a11(ω) = v1

p1
= − cot(�l)

EA�
(A12)

a21(ω) = v2

p1
= −csc(�l)

EA�
(A13)

a22(ω) = v2

p2
= − cot(�l)

EA�
(A14)

a12(ω) = v1

p2
= −csc(�l)

EA�
(A15)
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