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TOOL LIFE PREDICTION USING RANDOM WALK
BAYESIAN UPDATING

Jaydeep M. Karandikar1, Ali E. Abbas2, and Tony L. Schmitz1
1Department of Mechanical Engineering and Engineering Science, University of
North Carolina at Charlotte, Charlotte, North Carolina, USA
2Department of Industrial and Enterprise Systems Engineering, University of Illinois at
Urbana-Champaign, Urbana, Illinois, USA

& According to the Taylor tool life equation, tool life reduces with increasing cutting speed. The
influence of additional factors can also be incorporated. However, tool wear is generally considered
a stochastic process with uncertainty in the model constants. In this work, Bayesian inference is
applied to predict tool life for milling=turning operations using the random walk=surface methods.
For milling, Bayesian inference using a random walk approach is applied to the well-known Taylor
tool life model. Tool wear tests are performed using an uncoated carbide tool and AISI 1018 steel
work material. Test results are used to update the probability distribution of tool life. The updated
beliefs are then applied to predict tool life using a probability distribution. For turning, both cutting
speed and feed are considered. Bayesian updating is performed using the random surface tech-
nique. Turning tests are completed using a coated carbide tool and forged AISI 4137 chrome alloy
steel. The test results are applied to update the probability distribution of tool life and the updated
beliefs are used to predict tool life. While this work uses the Taylor model, by following the procedures
described here, the technique can be applied to other tool life models as well.

Keywords bayesian updating, random walk, taylor tool life, tool wear, uncertainty

INTRODUCTION

Tool wear can impose a significant limitation on machining
productivity, particularly for hard-to-machine materials. Taylor (1906) first
defined an empirical relationship between tool life and cutting speed using
the power law:

VTn ¼ C ð1Þ
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where V is the cutting speed in m=min, T is the tool life in min, and n and C
are constants which depend on the tool-workpiece combination. The con-
stant C is defined as the cutting speed required to obtain a tool life of 1
minute. Tool life is typically defined as the time required to reach a prede-
fined level of wear for a selected feature, such as flank wear width (FWW),
crater depth, or notch depth depending on the nature of the tool wear.
The Taylor tool life equation can be modified to include other effects, such
as feed rate (Tlusty, 2000):

V pf qr T ¼ C ð2Þ

where fr is the feed per revolution in mm=rev for turning and C, p, and q are
constants which depend on the tool-workpiece combination and other cut-
ting conditions. The Taylor tool life model is deterministic in nature, but
uncertainty exists due to: 1) factors that are unknown or not included in
the model; and 2) tool-to-tool performance variation. For these reasons,
tool wear is often considered to be a stochastic and complex process
and, therefore, difficult to predict.

Bayesian inference, which forms a normative and rational method for
belief updating is applied in this work. Let the prior distribution about
an uncertain event, A, at a state of information, &, be fAj&g, the likelihood
of obtaining an experimental result B given that event A occurred be
fBjA,&g, and the probability of receiving experimental result B (without
knowing A has occurred) be fBj&g. Bayes’ rule is used to determine the
posterior belief about event A after observing the experiment results,
fAjB,&g as shown in Equation (3). Using Bayes’ rule, information gained
through experimentation can be combined with the prior prediction about
the event to obtain a posterior distribution.

AjB;&f g ¼ Aj&f g BjA;&f g
Bj&f g ð3Þ

As seen in Equation (1), the Taylor tool life model assigns a deterministic
value to tool life for a selected cutting speed based on the empirical values
n and C. In contrast, Bayesian inference assigns a probability distribution to
the tool life value at a particular cutting speed. From a Bayesian standpoint,
an uncertain variable is treated as random and is characterized by a
probability distribution.

The prior, or initial belief of the user, can be based on theoretical con-
siderations, expert opinions, past experience, or data reported in the litera-
ture; the prior should be as chosen to be as informative as possible. The
prior is represented as a probability distribution and, using Bayes’ theorem,
the probability distribution is updated when new information becomes
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available (from experiments, for example). As a result, Bayesian inference
enables a model to incorporate uncertainty in terms of a probability distri-
bution and beliefs about this distribution to be updated based on experi-
mental results (Gelman et al., 2009; Grimmett and Stirizaker, 2004).

The objective of the article is to demonstrate the random walk=
random surface method for Bayesian updating and its application to tool
life prediction. The Taylor tool life model is used in this study, despite its
potential limitations, because it is well-known and generally understood
in the manufacturing community. Without loss of generality, Bayesian
updating using the random walk=random surface approach can be applied
to other available models. The remainder of the article is organized as fol-
lows. The authors describe Bayesian updating of tool life in milling using
the random walk method for the Taylor tool life model given by Equation
(1). The experimental setup and tool life predictions are also provided.
Next, we describe the random surface method of Bayesian updating for
tool life in turning using the Taylor-type tool life model defined by Equa-
tion (2). Then, we cover the influence of the prior and likelihood on tool
life predictions and draw conclusions from our research.

BAYESIAN INFERENCE OF THE TAYLOR TOOL LIFE MODEL
FOR MILLING USING THE RANDOM WALK METHOD

Bayesian inference provides a rigorous mathematical framework of
belief updating about an unknown variable when new information
becomes available. In the Taylor tool life model [Equation (1)], there is
uncertainty in the values of the exponent, n, and the constant, C. Subse-
quently, there is uncertainty in the tool life, T. The Taylor tool life curve
can be predicted by generating N sample tool life curves, or sample paths,
each representing the true tool life curve with an equal probability of 1=N.
The sample paths generated in this way may be used as the prior for Baye-
sian inference. The prior can then be updated by applying Bayes’ rule to
experimental test results. For each sample path, Bayes’ rule can be written
as the following product.

pðpath ¼ true tool life curvejtest resultsÞ

¼ pðtest resultjpath ¼ true tool life curveÞ
pðtest resultÞ : pðpath ¼ true tool life curveÞ

Here, p(path¼ true tool life curve) is the prior probability that a given
path is the true tool life curve. As noted, the probability is assumed to be
1=N before any testing is completed since each path is considered equally
likely to be the true tool life curve. Also, p(test result j path¼ true tool life
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curve) is referred to as the likelihood, p(test result) is a normalization con-
stant, and p(path¼ true tool life curve j test result) is the posterior probability
of the sample tool life curve given a test result.

In this study, the prior sample paths were generated using random sam-
ples from an fn,Cg joint probability density function (pdf). The initial
(prior) n and C distributions were selected based on a literature review.
In general, the decision maker should try to use all available information
to generate the sample paths. Bayes’ rule was then used together with
experimental results to update the probability that each sample path was
the true tool life curve.

According to Bayes’ rule, the posterior distribution is proportional to
the (normalized) product of the prior and the likelihood. For multiple
experimental results, the posterior after the first update becomes the prior
for the second update and so on, where the posterior probabilities of each
sample path must be normalized so that the sum of the probabilities for all
paths is one. In a milling operation, other factors, such as feed rate and
axial=radial depths of cut, may also affect tool life in addition to the cutting
speed. However, since cutting speed is typically the strongest factor,
Bayesian updating was performed using Equation (1).

Establishing the Prior

Tool wear experiments were performed using an uncoated carbide
(inserted) tool to mill AISI 1018 steel. As noted, a literature review was com-
pleted to determine the prior distributions of the Taylor tool life model
values, n and C. Stephenson and Agapiou (2006) reported the value of n
to be in the range of 0.2 to 0.25 for uncoated carbide tools and C to be
around 100 for rough finishing of low carbon steels. Kronenberg (1966)
reported values of n and C to be in the range of 0.3 to 0.5 and 160 to
200, respectively, for machining steel with a carbide tool. Creese (1999)
reported typical n and C values for machining medium carbon steel with
a carbide tool to be 0.32 and 240, respectively. Cui et al. (2009) performed
wear experiments using a carbide insert and 1018 steel workpiece. Values of
n and C were reported to be 0.3 and 341, respectively. In a separate study
conducted by the authors, the mean n and C values for the given tool-work
piece combination were found to be 0.33 and 600 (Karandikar et al., 2011).

Based on these values, the priors for n and C were selected to be uni-
form distributions with minimum values of 0.3 and 400, respectively, and
maximum values of 0.35 and 700, respectively. A uniform distribution
implies that it is equally likely for the true n and C value to be anywhere
in the selected range. This is expressed using:

n ¼ U ð0:3; 0:35Þ and C ¼ U ð400; 700Þ

Bayesian Tool Life Prediction 413
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where U denotes a uniform distribution and the values in the parentheses
identify the minimum and maximum values, respectively.

The relatively large prior distributions of n and C were chosen to
improve the probability that the true tool life curve existed within the prior
sample paths. The prior n and C distributions were taken as a joint pdf,
where the two constants were independent of each other. Random samples
were drawn from the prior joint pdf of n and C and the Taylor tool life
curve was calculated for each fn,Cg pair; this exercise was repeated
1� 105 times. The cutting speed was calculated using V¼ pdX, where d is
the tool diameter (19.05mm for this study) and X is the spindle speed in
rev=min (a range of 1500 rpm to 7500 rpm was selected). The prior prob-
ability that any sample paths is the true tool life curve for this case is
1� 10�5. The collection of prior sample paths could then be used to deter-
mine the cumulative density function (cdf) of tool life at any spindle speed
in the domain.

To demonstrate the approach, consider a scenario where the fn,Cg
values can take only 10 different combinations (see Table 1). For the prior,
it is assumed that any combination is equally likely to be the true combi-
nation. This gives a probability of 0.1 for each fn,Cg pair since there are
10 possible pairs. The Taylor tool life values are calculated for all spindle
speeds in the domain for the 10 fn,Cg pairs. Figure 1 shows the 10 tool life
curves. These are the sample paths or random walks, each generated using
a different fn,Cg sample. Table 1 includes the tool life values for each fn,Cg
sample at 2500 rpm, 5000 rpm, and 7500 rpm. Figure 2 displays the discrete
tool life cdf at the three spindle speeds. These cdfs give the probability of
tool failure as a function of tool life, p(T). For example, the probability of
tool failure for a required tool life of 10min is effectively zero at 2500 rpm,
it is approximately 0.9 at 5000 rpm, and 1 for 7500 rpm. These results
match the trend of reduced tool life with increased cutting speed

TABLE 1 Prior probabilities and tool life for sample fn,Cg pairs

Sample fn,Cg

Tool life (min)

Prior
2500 rpm

149.6m=min
5000 rpm

299.2m=min
7500 rpm

448.9m=min

1 f0.30, 500g 55.8 5.5 1.4 0.10
2 f0.30, 525g 65.7 6.5 1.7 0.10
3 (0.30, 550g 76.7 7.6 2.0 0.10
4 f0.30, 575g 88.9 8.8 2.3 0.10
5 (0.30, 600g 102.5 10.2 2.6 0.10
6 f0.35, 500g 31.4 4.3 1.4 0.10
7 f0.35, 525g 36.1 5.0 1.6 0.10
8 (0.35, 550g 41.2 5.7 1.8 0.10
9 f0.35, 575g 46.8 6.5 2.0 0.10

10 (0.35, 600g 52.9 7.3 2.3 0.10
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FIGURE 2 Prior cdf of tool life at 2500 rpm=149.6m=min (top left), 5000 rpm=299.2m=min (top
right), and 7500 rpm=448.9m=min (bottom left). (Figure available in color online.)

FIGURE 1 Sample tool life curves for the fn,Cg pairs listed in Table 1. (Figure available in color
online.)
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This procedure was completed for 1� 105 sample paths that were
generated by drawing random samples from the prior joint fn,Cg distri-
bution. Figure 3 shows the prior cumulative distribution of tool life as a func-
tion of spindle speed. The color bar gives the probability of tool failure at a
selected tool life for any spindle speed in the domain. As expected, the prob-
ability of failure increases with spindle speed for a particular tool life value.

Likelihood Function

Tool life is generally considered to be stochastic in nature. If a tool life
experiment is repeated under the same conditions, it is unlikely that exactly
the same tool life would be obtained over multiple trials. The likelihood
function is designed to account for this behavior. To illustrate, consider that
a tool life of 55.8min was obtained at 2500 rpm. The user might believe that
a tool life between 45min and 65min is therefore very likely if the experi-
ment was to be repeated. The user may also believe that it is not very likely
that the tool will last less than 35min or greater than 75min based on the
initial result. This information is taken into account using the likelihood
function provided in Equation (4):

l ¼ e�
ðT�Tm Þ2

k ð4Þ

where l is the likelihood function, Tm is the measured tool life, T is the tool
life value for a sample curve at the experimental spindle speed, and k
depends on the tool life distribution. The likelihood function is expressed

FIGURE 3 Prior cumulative distribution of tool life as a function of spindle speed.
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as a non-normalized normal distribution, where k¼ 2r2 and r is the
standard deviation of tool life.

This likelihood function describes how likely it is that that the sample
tool life curve is the correct curve given the measurement result at a parti-
cular spindle speed. If the tool life curve value is near the measurement
result, then the likelihood value is high. Otherwise, it is low. The likelihood
function defined in Equation (4) does not completely reject paths which
differ significantly from the experimental result; it simply yields a small
value for these paths. To illustrate, again consider the 10 possible fn,Cg
pairs listed in Table 1. Assume an experimental tool life of 55.8min was
obtained at 2500 rpm. At 2500 rpm, each sample tool life curve will have
a value of tool life value depending on the fn,Cg combination used to gen-
erate that sample path. The likelihood function can be interpreted as
assigning weights to sample paths from zero to unity, where zero indicates
that the selected combination is not likely at all and unity identifies the
most likely combination. The likelihood for each sample tool life curve
was calculated using Equation (4) with a measured tool life of 55.8min.
The parameter T in the equation is the tool life at the experimental spindle
speed (in this example, 2500 rpm) for a particular sample tool life curve.
The value of k is selected by the user based on his=her beliefs about the
experimental uncertainty. For this study, the standard deviation for an
experimental result was assumed to be 20% of the measured value.
Table 2 lists the likelihood values for each possible fn,Cg pair. The likeli-
hood values listed in Table 2 imply that f0.30, 500g is most likely to be
the correct fn,Cg combination, whereas f0.30, 600g is the least likely.

TABLE 2 Likelihood Probabilities for Sample fn,Cg Pairs Given Experimental Tool Life of 55.8min
at 2500 rpm=149.6m=min

Sample fn,Cg

Tool life (min)

Prior Likelihood
2500 rpm

149.6m=min
5000 rpm

299.2m=min
7500 rpm

448.9m=min

1 f0.30, 500g 55.8 5.5 1.4 0.10 1.000
2 f0.30, 525g 65.7 6.5 1.7 0.10 0.677
3 f0.30, 550g 76.7 7.6 2.0 0.10 0.174
4 f0.30, 575g 88.9 8.8 2.3 0.10 0.012
5 f0.30, 600g 102.5 10.2 2.6 0.10 0.000
6 f0.35, 500g 31.4 4.3 1.4 0.10 0.092
7 f0.35, 525g 36.1 5.0 1.6 0.10 0.211
8 (0.35, 550g 41.2 5.7 1.8 0.10 0.427
9 f0.35, 575g 46.8 6.5 2.0 0.10 0.724

10 (0.35, 600g 52.9 7.3 2.3 0.10 0.966

The likelihood values are rounded to three significant digits.
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Figure 4 shows the likelihood function for Tm¼ 55.8min at 2500 rpm
for different r values (and, therefore, k values). As seen in the figure,
increased uncertainty (higher r) widens the likelihood function so that
comparatively higher weights are assigned to sample curves far from the
experimental result. Subsequently, larger uncertainty yields a more con-
servative estimate of tool life. Although the value of r is considered con-
stant in this study, it could also be expressed as a function of spindle speed.

Bayesian Updating

As noted, the likelihood function [Equation (4)] describes how likely it
is that that the sample tool life curve is the correct curve given the measure-
ment result at a particular spindle speed. The prior probability for each
path is 1=N, where N is the number of sample paths. According to Bayes’
rule, the posterior distribution is obtained from the product of the prior
and the likelihood. The posterior probability for each path is then normal-
ized so that the sum is equal to unity (see Table 3).

At each spindle speed, the updated probabilities of sample tool life
curves provide an updated distribution of tool life. Thus, a tool life experi-
ment at any spindle speed updates the tool life distribution at all spindle
speeds. Figure 5 displays updated posterior distributions at 2500 rpm,
5000 rpm, and 7500 rpm given an experimental result of Tm¼ 55.8min at
2500 rpm. Figure 5 also shows the prior tool life cdfs for comparison. For
the posterior cdf calculation, the updated probabilities, or weights, of the
sample paths must be considered.

FIGURE 4 Likelihood for various uncertainty levels based on a measured tool life of 55.8min at
2500 rpm=149.6m=min. (Figure available in color online.)

418 J. M. Karandikar et al.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
N

or
th

 C
ar

ol
in

a 
C

ha
rl

ot
te

] 
at

 1
0:

22
 1

6 
M

ar
ch

 2
01

6 



For multiple experimental results, the posterior after the first update
becomes the prior for the second update and so on. For example, consider
a second experimental tool life of 5min at 5000 rpm. The posterior prob-
abilities of the sample paths shown in Table 3 are now the prior probabil-
ities for the second update. The updating procedure is repeated to obtain

FIGURE 5 Posterior and prior tool life cdfs at 2500 rpm=149.6m=min (top left), 5000 rpm=299.2m=

min (top right), and 7500 rpm=448.9m=min (bottom left). (Figure available in color online.)

TABLE 3 Posterior Probabilities for Sample fn,Cg Pairs after the First Update

Sample fn,Cg Prior Likelihood Posterior (non-normalized) Posterior (normalized)

1 f0.30, 500g 0.10 1.000 0.100 0.233
2 f0.30, 525g 0.10 0.677 0.068 0.158
3 (0.30, 550g 0.10 0.174 0.017 0.041
4 f0.30, 575g 0.10 0.012 0.001 0.003
5 (0.30, 600g 0.10 0.000 0.000 0.000
6 f0.35, 500g 0.10 0.092 0.009 0.021
7 f0.35, 525g 0.10 0.211 0.021 0.049
8 (0.35, 550g 0.10 0.427 0.043 0.100
9 f0.35, 575g 0.10 0.724 0.072 0.169
10 (0.35, 600g 0.10 0.966 0.097 0.226

R¼ 0.428 R¼ 1.00
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the posterior probabilities of the sample pairs (see Tables 4 and 5). Figure 6
displays updated posterior distribution at 2500 rpm, 5000 rpm, and
7500 rpm after the second update. The mean, standard deviation, and cor-
relation coefficient can be determined from the posterior probabilities
using the following relations.

ln ¼
X

nPðnÞ ð5aÞ

lC ¼
X

CP ðCÞ ð5bÞ

rn ¼
X

ðn � lnÞ2P ðnÞ ð5cÞ

rC ¼
X

ðC � lCÞ2PðCÞ ð5dÞ

TABLE 4 Likelihood for Sample fn,Cg Pairs Given an Experimental Tool Life of 5min at 5000 rpm=

299.2m=min

Sample fn,Cg

Tool life (min)

Prior Likelihood
2500 rpm

149.6m=min
5000 rpm

299.2m=min
7500 rpm

448.9m=min

1 f0.30, 500g 55.8 5.5 1.4 0.233 0.866
2 f0.30, 525g 65.7 6.5 1.7 0.158 0.318
3 (0.30, 550g 76.7 7.6 2.0 0.041 0.034
4 f0.30, 575g 88.9 8.8 2.3 0.003 0.001
5 (0.30, 600g 102.5 10.2 2.6 0.000 0.000
6 f0.35, 500g 31.4 4.3 1.4 0.021 0.802
7 f0.35, 525g 36.1 5.0 1.6 0.049 1.000
8 (0.35, 550g 41.2 5.7 1.8 0.100 0.787
9 f0.35, 575g 46.8 6.5 2.0 0.169 0.343

10 (0.35, 600g 52.9 7.3 2.3 0.226 0.071

TABLE 5 Posterior Probabilities for Sample fn,Cg Pairs after the Second Update

Sample fn,Cg Prior Likelihood Posterior (non-normalized) Posterior (normalized)

1 f0.30, 500g 0.233 0.866 0.202 0.428
2 f0.30, 525g 0.158 0.318 0.050 0.106
3 (0.30, 550g 0.041 0.034 0.001 0.003
4 f0.30, 575g 0.003 0.001 0.000 0.000
5 (0.30, 600g 0.000 0.000 0.000 0.000
6 f0.35, 500g 0.021 0.802 0.017 0.036
7 f0.35, 525g 0.049 1.000 0.049 0.104
8 (0.35, 550g 0.100 0.787 0.078 0.166
9 f0.35, 575g 0.169 0.343 0.058 0.123

10 (0.35, 600g 0.226 0.071 0.016 0.034
R¼ 0.471 R¼ 1.00
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qn;C ¼
P

nCPðn;CÞ � lnlC
rnrC

ð5eÞ

In these equations, the summations are carried out over all N samples;
P(n), P(C), and P(n,C) are the posterior probabilities for n, C, and the
fn,Cg pairs, respectively; ln and lC are the mean values of n and C, respect-
ively; rn and rC are the standard deviations of n and C, respectively; and qn,C
is the correlation coefficient between n and C.

Experimental Setup

The experimental steps followed to collect tool life data are described
in this section. Down-milling tool wear tests were completed using a
19.05mm diameter single-insert Kennametal endmill (KICR073SD30333C)
on a Mikron UCP 600 Vario machining center. The workpiece material was

FIGURE 6 Posterior and prior tool life cdfs at 2500 rpm=149.6m=min (top left), 5000 rpm=299.2m=

min (top right), and 7500 rpm=448.9m=min (bottom left). (Figure available in color online.)
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AISI 1018 steel. The insert was a 9.53mm square uncoated carbide
Kennametal insert (107888126 C9 JC) with zero rake and helix angles
and a 15-deg relief angle.

The first test was performed at a spindle speed of 1500 rpm
(V¼ 89.8m=min). The feed per tooth was 0.06mm=tooth and the axial
and radial depths of cut were 3.0mm and 4.7mm (25% radial immersion),
respectively. All tests were performed without cutting fluid. To avoid remov-
ing the insert=tool from the spindle, a portable microscope
(60�magnification) was used to record digital images of the rake and
flank surfaces at regular intervals. Tool life, T, was defined as the time
required for the insert to reach a maximum FWW of 0.3mm (no crater
wear was observed in these tests). Figure 7 shows the microscope setup
for recording the flank surface. The calibrated digital images were then
used to identify the FWW. Figure 8 shows the variation of FWW with cutting
time for tests at 1500 rpm (V¼ 89.8m=min). Microscopic images of the
relief face for selected cutting times are displayed in Figure 9.

As seen in Figure 8, the time to reach a FWW of 0.3mm was 255.3min
for testing at 1500 rpm (V¼ 89.8m=min). Additional tests were also com-
pleted at 3750 rpm (V¼ 224.4m=min) and 6250 rpm (V¼ 374.0m=min).
Other conditions were maintained constant and the same procedure was
followed to measure tool life. The variation in FWW with cutting time for
all three spindle speeds is displayed in Figure 10.

The ‘o’ symbols denote the intervals at which FWW was recorded. To
establish the tool life for each test, linear interpolation was applied between
adjacent measurement points if the FWW exceeded 0.3mm for the final

FIGURE 7 Setup for interrupted FWW measurements. (Figure available in color online.)
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measurement interval. As expected, the tool life reduced with increasing
spindle speed. These experimental results were then used to update the
prior distributions of tool life, T, over a range of spindle speeds. Table 6
summarizes the experimental results used for updating.

Tool Life Predictions

The experimental tool life results were used to update the tool life dis-
tribution. The procedure follows.

1. For each experimental result, a likelihood value was calculated for each
sample path from Equation (4). The prior probability of each sample
path was 1� 10�5.

FIGURE 8 Increase in FWW with cutting time at 1500 rpm=89.8m=min. (Figure available in color
online.)

FIGURE 9 Images of FWW at 60�magnification for 1500 rpm=89.8m=min tests. The cutting times
from left to right are f0, 78.5, 166.4, and 255.3g min. (Figure available in color online.)
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2. The posterior probability of each sample path was calculated as the
product of the prior probability and the likelihood.

3. The posterior probabilities were normalized so that the sum was equal to
unity.

4. For multiple experimental results, the posterior probabilities after the
first update became the prior probabilities for the second and so on.

Figure 11 shows the posterior tool life cdf. The posterior probabilities
of sample paths were used to determine the mean, standard deviation,
and the correlation coefficient of the posterior fn,Cg distribution using
Equations (5a) through (5e). The values were f0.342, 0.0075g for n and
f649.7, 33.74gfor C, where the first term in the parenthesis represents the
mean and the second term represents the standard deviation. The corre-
lation coefficient between n and C was 0.67. Recall that the prior fn,Cg dis-
tribution was taken as uniform.

The posterior (updated) tool life distribution was next used to
predict tool life at spindle speeds other than the ones at which the tool

FIGURE 10 Increase in FWW with cutting time at three spindle speeds. (Figure available in color
online.)

TABLE 6 Experimental Tool Life Results Used for Updating

Test Spindle speed (rpm) Cutting speed (m=min) Tool life (min)

1 1500 89.8 255.3
2 3750 224.4 35.5
3 6250 374.0 8.5
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wear experiments were performed. The posterior distribution was used to
predict tool life at f2500, 5000, and 7500g rpm, which correspond to cut-
ting speeds of f149.6, 299.2, and 448.9g m=min. Three tests were per-
formed at each spindle speed to identify the non-repeatability. The tests
were performed using the same parameters (other than spindle speed) as
stated previously and the same procedure was followed to measure tool life.
As before, tool life was set to be the time to reach a FWWof 0.3mm. Table 7
shows the experimental tool life values observed from the nine tests.

The experimental tool life was compared to the predicted posterior dis-
tributions of tool life, T, at the corresponding spindle speeds. Additionally,
a least squares curve fit of the Taylor tool life equation was completed using
the results provided in Table 6. The values of n and C obtained from the
least square fit were 0.4553 and 1120, respectively. Using this deterministic

FIGURE 11 Posterior cdf of tool life.

TABLE 7 Experimental Values of Tool Life for Comparison to Predictions

Test Spindle speed (rpm) Cutting speed (m=min) Tool life (min)

1 2500 149.6 50.1
2 2500 149.6 68.5
3 2500 149.6 72.0
4 5000 299.2 11.5
5 5000 299.2 9.5
6 5000 299.2 8.5
7 7500 448.8 2.6
8 7500 448.8 3.3
9 7500 448.8 3.2
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model, the tool life values were also predicted and compared with experi-
ment. Figures 12, 13, and 14 display the posterior distributions of tool life
at 2500 rpm (V¼ 149.6m=min), 5000 rpm (V¼ 299.2m=min), and
7500 rpm (V¼ 448.9m=min), respectively.

The experimental results are marked using the ‘x’ symbols and the least
squares prediction by the ‘o’ symbols on the graphs. As seen from the
figures, the predicted posterior distributions provide good agreement with
the experimental results, while the least squares predictions are less

FIGURE 12 Posterior tool life cdf at 2500 rpm=149.6m=min. The experimental data is denoted by ‘x’.
(Figure available in color online.)

FIGURE 13 Posterior tool life cdf at 5000 rpm=299.2m=min. (Figure available in color online.)
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accurate at higher spindle speeds. Although the least squares fit was good
(R2¼ 0.9998), the fit parameters were not reliable at higher spindle speeds.
The 95% confidence bounds for n and C were determined using MATLAB’s
curve fitting toolbox; the values were (0.232, 0.6786) for n and (�258, 2499)
for C.One explanation for the poor performance of the curve fit is that stat-
istical curve fits generally require a large amount of data to achieve confi-
dence in the fit parameters and extrapolation of the prediction outside
the test range is often not recommended.

BAYESIAN INFERENCE OF THE TAYLOR-TYPE TOOL LIFE
MODEL FOR TURNING USING THE RANDOM SURFACE
METHOD

In this section, Bayesian inference of the Taylor-type tool life model
[Equation (2)] using the random surface method is described. In Equation
(2), there is uncertainty in the exponents, p and q, and the constant, C. As a
result, there is uncertainty in the tool life. Note that tool life is dependent
on both cutting speed and feed rate according to Equation (2). For given
values of p, q, and C, tool life may be described using a three-dimensional
surface that is a function of cutting speed and feed rate. Therefore, the tool
life surface was predicted by generating N tool life (sample) surfaces, each
representing the true tool life surface with equal probability. As before, the
prior probability that any sample surface is the true tool life surface is 1=N.
For this case, Bayes’ rule can be written as the following product.

FIGURE 14 Posterior tool life cdf at 7500 rpm=448.9m=min. (Figure available in color online.)
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pðsurface ¼ truetool life surfacejtest resultsÞ

¼ pðtest resultjsurface ¼ true tool life surfaceÞ
pðtest resultÞ

� pðsurface ¼ true tool life surfaceÞ

Here, p(surface¼ true tool life surface) is the prior probability that a given
path is the true tool life surface. Also, p(test resultjsurface¼ true tool life sur-
face) is referred to as the likelihood, p(test result) is a normalization con-
stant, and p(surface¼ true tool life surfacejtest result) is the posterior
probability of the sample tool life surface given a test result. The prior sam-
ple paths were generated using random samples from a fp,q,Cg joint pdf.
The prior (initial) p, q, and C distributions were selected based on a
literature review.

Establishing the Prior

As noted, the first step in applying Bayesian inference is to determine
the prior distribution. The cutting tool used for wear testing was a coated
carbide insert and the workpiece material was a forged chrome alloy steel.
The turning experiments were performed on an Okuma LC-40 CNC lathe.
In this case, the prior was a joint probability distribution for the Taylor-type
tool life constants, p, q, and C. The initial beliefs were:

1. in general, the value of the exponent p is greater than the exponent q
due to a stronger influence of cutting speed on tool wear, but this is
not a strict requirement

2. the value of p is between 2 and 6 and q is between 1.5 and 3 (Tlusty,
2000)

3. the value of C is sensitive to the values of p and q due to the nature of the
tool life equation and is in the range of 1� 106 to 1� 108.

In this case, information was available to supply only a general range of
p, q, and C. Therefore, the prior was assumed to be joint uniform distri-
bution, i.e., it was equally likely to obtain any value within the specified
range. The constants were assumed to be independent of each other for
the prior. In cases where experimental data using the same tool-material
combination is available, a more informative prior (such as a normal distri-
bution) can be selected. For this study, the marginal prior pdfs of the con-
stants were specified as:

p ¼ U ð2; 6Þ; q ¼ U ð1; 5Þ; and C ¼ U ð1� 106; 1� 108Þ
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Random samples were drawn from the prior joint pdf of p, q, and C and
the Taylor-type tool life surface was calculated for each fp,q,Cg triplet. In
total, 1� 105 tool life surfaces were generated. The range of cutting speed
was taken from 150m=min to 250m=min and feed rate from 0.5mm=rev to
0.6mm=rev. The prior probability that any sample surface is the true tool
life surface for this case is 1� 10�5. The updating procedure is the same
as for the random walk approach. The only difference is that the random
samples form three-dimensional surfaces, rather than two-dimensional
paths. To demonstrate the procedure, again consider 10 possible combina-
tions of fp,q,Cg; see Table 8.

The prior assumes that any combination is equally likely to be the true
combination, so each fp,q,Cg triplet was assigned a probability of 0.1. The
Taylor-type tool life values were calculated for all cutting speeds and feed
rates in the domain for the 10 fp,q,Cg triplets. Figure 15 shows the sample
tool life surfaces. Table 8 also provides the tool life values for all fp,q,Cg
combinations at cutting conditions of f150m=min, 0.5mm=revg, f150m=
min, 0.6mm=revg, and f200m=min, 0.5mm=revg. Figure 16 shows the dis-
crete cdf of tool life at the same cutting conditions. The cdf gives the prob-
ability of tool failure as a function of tool life.

The procedure was completed for 1� 105 sample surfaces generated by
drawing random samples from the prior fp,q,Cg distribution. Since tool life
depends on cutting speed as well as feed rate, the prior cdf as a function of
cutting speed is conditioned on the feed rate value. Figure 17 shows the
prior cdf of tool life as a function of cutting speed for a selected feed rate
value. There is large uncertainty in the tool life due to the wide (uniform)
prior distribution assumed for p, q, and C. The color bar in Figure 17 gives
the probability of tool failure at a selected tool life for any spindle speed in
the domain. From the prior distribution of p, q, and C, approximately 50%
of the tool life values are less than 1min and 15% are more than 400min at

TABLE 8 Prior Probabilities for Sample fp,q,Cg Triplets

Sample fp,q,Cg

Tool life (min)

Prior
f150m=min,
0.5mm=revg

f200m=min,
0.5mm=revg

f150m=min,
0.6mm=revg

1 f2.50,2.50,1� 107g 205.3 100.0 130.1 0.10
2 f2.75,2.50,1� 107g 58.7 26.6 37.2 0.10
3 f2.50,2.25,1� 107g 172.6 84.1 114.5 0.10
4 f2.75,2.25,1� 107g 49.3 22.4 32.7 0.10
5 f2.50,2.50,5� 106g 102.6 50.0 65.1 0.10
6 f2.75,2.50,5� 106g 29.3 13.3 18.6 0.10
7 f2.50,2.25,5� 106g 86.3 42.0 57.3 0.10
8 f2.75,2.25,5� 106g 24.7 11.2 16.4 0.10
9 f2.50,2.25,7.5� 106g 129.5 63.1 85.9 0.10

10 f2.75,2.25,7.5� 106g 37.0 16.8 24.5 0.10
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FIGURE 15 Sample tool life surfaces for fp,q,Cg triplets provided in Table 8.

FIGURE 16 Prior cdf of tool life at f150m=min, 0.5mm=revg (top left), f200m=min, 0.5mm=revg (top
right), and f150m=min, 0.6mm=revg (bottom left). (Figure available in color online.)
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f150m=min, 0.5mm=revg; therefore, the probability of tool failure in
Figure 17 is scaled from 0.5 to 0.85 for plotting purposes.

Likelihood Function and Bayesian Updating

The likelihood function describes how likely it is that that the sample
tool life surface is the correct surface given a measurement result at a parti-
cular cutting speed and feed. As noted, the likelihood function can be
interpreted as assigning weights to sample surfaces from zero to unity,
where zero indicates that the selected combination is not likely at all and
unity identifies the most likely combination. The likelihood function
defined in Equation (4) was applied. To illustrate, again consider the 10
possible fp,q,Cg triples listed in Table 8. Assume that an experimental tool
life of 102.6min was obtained at f150m=min, 0.5mm=revg and a tool life
of 42.0min was obtained at f200m=min, 0.5mm=revg. A likelihood value
for each sample tool life surface was calculated using Equation (4). The
posterior probability calculations are shown in Tables 9 and 10. Note that
these posterior probabilities are normalized and have been rounded to
three significant digits. Figure 18 shows the posterior and prior cdf at
f150m=min, 0.5mm=revg, f200m=min, 0.5mm=revg, and f150m=min,
0.6mm=revg.

Experimental Setup and Results

This section describes the experimental steps following to collect
turning tool life data. The cutting tool used for wear testing was a coated
carbide insert (Kennametal KC9110) and the workpiece material was

FIGURE 17 Prior cdf of tool life at 0.5mm=rev (left) and 0.6mm=rev (right). Note that the reduced
tool life for the 0.6mm=rev feed results in approximately 10% of the values being more than
400min as compared to 15% at 0.5mm=rev. The color bar scaling, therefore, differs.
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forged AISI 4137 chrome alloy steel. The initial outer diameter of the steel
workpiece was 174.6mm. The spindle speed was varied to maintain con-
stant cutting speed with reducing workpiece diameter as additional cuts
were completed. The depth of cut was 4.1mm and the length of cut for
a single pass was 139.7mm with a chamfer of 63.4 deg at the end of each
cut. All tests were performed without cutting fluid.

The flank and rake surfaces were recorded using a portable digital
microscope (60�magnification) without removing the insert from the tool
holder during the wear testing. The wear status of the tool was recorded
after each pass and the calibrated digital images were used to identify the

TABLE 10 Likelihood and Posterior Probabilities for Sample fp,q,Cg Pairs (see Table 8) Given an
Experimental Tool Life of 42.0min at f200m=min, 0.5mm=revg

Sample

Tool life (min)

Prior Likelihood Posterior
f150m=min,
0.5mm=revg

f200m=min,
0.5mm=revg

f150m=min,
0.6mm=revg

1 205.3 100.0 130.1 0.000 0.000 0.000
2 58.7 26.6 37.2 0.044 0.186 0.013
3 172.6 84.1 114.5 0.001 0.000 0.000
4 49.3 22.4 32.7 0.015 0.065 0.002
5 102.6 50.0 65.1 0.435 0.635 0.452
6 29.3 13.3 18.6 0.001 0.003 0.000
7 86.3 42.0 57.3 0.317 1.000 0.520
8 24.7 11.2 16.4 0.000 0.001 0.000
9 129.5 63.1 85.9 0.184 0.043 0.013

10 37.0 16.8 24.5 0.003 0.011 0.000
R¼ 1

TABLE 9 Likelihood and Posterior Probabilities for Sample fp,q,Cg Triplets (see Table 8) Given an
Experimental Tool Life of 102.6min at f150m=min, 0.5mm=revg

Sample

Tool life (min)

Prior Likelihood Posterior
f150m=min,
0.5mm=revg

f200m=min,
0.5mm=revg

f150m=min,
0.6mm=revg

1 205.3 100.0 130.1 0.10 0.000 0.000
2 58.7 26.6 37.2 0.10 0.101 0.044
3 172.6 84.1 114.5 0.10 0.003 0.001
4 49.3 22.4 32.7 0.10 0.034 0.015
5 102.6 50.0 65.1 0.10 1.000 0.435
6 29.3 13.3 18.6 0.10 0.002 0.001
7 86.3 42.0 57.3 0.10 0.730 0.317
8 24.7 11.2 16.4 0.10 0.001 0.000
9 129.5 63.1 85.9 0.10 0.424 0.184

10 37.0 16.8 24.5 0.10 0.006 0.003
R¼ 1
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flank wear width (FWW). Tool life was defined as the time required for the
maximum FWW to reach 0.4mm. The first test was completed using a cut-
ting speed of 153.6m=min and a feed per revolution of 0.51mm=rev.
Figure 19 shows the variation of FWW with cutting time. The time to reach
a FWW of 0.4mm was 22.5min. Figure 20 shows images of the relief face at
selected cutting times.

Two additional tests were performed at fV¼ 192.0m=min,
fr¼ 0.61mm=revg and fV¼ 230.4m=min, fr¼ 0.51mm=revg. Figure 21
shows the growth in FWW for all three test conditions. The ‘o’ symbols
denote the intervals at which the FWW was recorded. The tool life was
determined by linear interpolation between adjacent intervals if it
exceeded 0.4mm at the final measurement interval. The results of the
three tests are summarized in Table 11. As expected, tool life reduced with
increased cutting speed and feed rate.

FIGURE 18 Posterior and prior cdf of tool life at f150m=min, 0.5mm=revg (top left), f200m=min,
0.5mm=revg (top right), and f150m=min, 0.6mm=revg (bottom left). (Figure available in color
online.)
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Tool Life Predictions

The experimental tool life results were used to update the prior tool life
distribution using the random surface method. As noted, 1� 105 sample
surfaces were generated by sampling from the prior fp,q,Cg distribution.

FIGURE 20 Images of FWW at 60�magnification. The cutting times from top to bottom are f6.8, 15.5,
and 22.4g min. (Figure available in color online.)

FIGURE 19 Increase in FWW with cutting time at V¼ 153.6m=min and fr¼ 0.51mm=rev. (Figure avail-
able in color online.)
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The likelihood for each test result was calculated using Equation (4). The
prior probabilities of the sample surfaces were updated using the experi-
mental result following the procedure described earlier. The posterior
probability of each sample surface was calculated as the product of the
prior probability and the likelihood. The posterior probabilities were nor-
malized so that the sum was equal to unity.

Figure 22 shows the posterior cumulative distribution of tool life as a
function of cutting speed conditioned on the feed rate value. The mean
and standard deviation, for the posterior fp,q,Cg distributions were
f3.25, 0.19g for p, f2.81, 0.99g for q, and f5.2� 107, 2.85� 107g m=min
for C, where the first term is the mean and the second is the standard devi-
ation. The correlation coefficients were 0.64 between p and q, 0.71 between
p and C, and 0.032 between q and C.

The posterior tool life distributions can be used to predict tool life at
cutting conditions other than the ones at which the tool wear experiments
were performed. The posterior distribution was used to predict tool life for

FIGURE 21 Variation of FWW with cutting time at various test conditions. (Figure available in color
online.)

TABLE 11 Experimental Tool Life Results Used for Updating

Test Cutting speed (m=min) Feed (mm=rev) Tool life (min)

1 153.6 0.51 22.5
2 192.0 0.61 6.5
3 230.4 0.51 5.6
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two new test conditions: fV¼ 192.0=min, fr¼ 0.51mm=revg and fV¼
230.4m=min, fr¼ 0.61mm=revg. Two tests were performed for each para-
meter combination. Other conditions were maintained constant and the
same procedure was followed to measure tool life. As before, tool life was
selected to be the time for the tool to reach a FWW of 0.4mm. Table 12
shows the experimental tool life values observed from the four additional
tests.

The deterministic Taylor-type tool life constants were calculated using a
least squares best fit to the experimental tool life data listed in Table 11.
The p, q, and C values were 3.39, 2.63, and 9.83� 107m=min, respectively.
Figure 23 shows the experimental values at V¼ 192.0m=min and
fr¼ 0.51mm=rev (denoted by ‘x’), the posterior distribution after updating,
and the deterministic tool life predictions (denoted by ‘o’). Figure 24
shows the results for V¼ 230.4m=min and fr¼ 0.61mm=rev. As seen in
Figure 23, the observed tool life values agree with both the predicted pos-
terior distribution and the deterministic predictions at f192.0m=min,
fr¼ 0.51mm=revg. In Figure 24, both predictions slightly overestimate the
tool life. A significant difference between the two techniques, however, is
that Bayesian inference assigns a probability distribution to tool life, while
deterministic methods (such as curve fitting) predict a single value.

FIGURE 22 Posterior cdf of tool life at 0.5mm=rev (left) and 0.6mm=rev (right).

TABLE 12 Experimental Values of Tool Life for Additional Turning Tests

Test # Cutting speed (m=min) Feed (mm=rev) Tool life (min)

1 192.0 0.51 11.5
2 192.0 0.51 10.3
3 230.4 0.61 2.2
4 230.4 0.61 2.6
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DISCUSSION

In Bayesian inference, the posterior probability is the product of the
prior and the likelihood distributions. Clearly, the posterior probabilities
of the random sample paths=surfaces depend on the selection of the prior
and the likelihood distributions. In this section, the influence of the prior
distribution and likelihood uncertainty on the posterior is evaluated. First,

FIGURE 23 Posterior tool life cdf at f192.0m=min, fr¼ 0.51mm=revg. (Figure available in color
online.)

FIGURE 24 Posterior tool life cdf at f230.4m=min, fr¼ 0.61mm=revg. (Figure available in color
online.)
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the influence of the likelihood uncertainty on the posterior tool life cdf is
examined. In the initial analysis, a likelihood uncertainty of 20% of the
experimental tool life was assumed. Here, Bayesian updating was repeated
for both the milling and turning tool life models using likelihood uncer-
tainties of 5% and 10%. Figure 25 displays the milling posterior tool life
predictions at 2500 rpm for different likelihood uncertainties. The experi-
mental values are denoted as ‘x’ and the deterministic prediction as ‘o’.

Table 13 lists the mean, standard deviation, and the correlation coef-
ficient for the corresponding posterior n and C distributions. As seen from
Figure 25 and the standard deviation values listed in Table 13, the likeli-
hood uncertainty affects the spread of the posterior tool life distribution.
A smaller likelihood uncertainty narrows the distribution. Also, as the like-
lihood uncertainty tends to zero, the posterior tool life cdf approaches the
least squares prediction. Similar results are obtained for the turning tool
life model as shown in Figure 26.

FIGURE 25 Posterior cdf at 2500 rpm for different likelihood uncertainties assumed. (Figure available
in color online.)

TABLE 13 Posterior fn,Cg Distribution for Different Likelihood Uncertainties
in Milling

Parameters

Likelihood uncertainty

20% 10% 5%

fmn,rng f0.34,0.0075g f0.35, 0.0023g f0.35, 0.0006g
fmC, rCg f649.7, 33.7g f676.3, 14.1g f685.2, 7.1g
qn, C 0.67 0.45 0.28

438 J. M. Karandikar et al.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
N

or
th

 C
ar

ol
in

a 
C

ha
rl

ot
te

] 
at

 1
0:

22
 1

6 
M

ar
ch

 2
01

6 



The influence of the prior distribution on the posterior distribution was
also examined. As stated earlier a uniform prior was selected for fn,Cg in
the milling model to generate the random sample paths. To evaluate the
influence of the prior distribution, a normal distribution was selected for
the prior fn,Cg distribution. The distribution was selected to be:

n ¼ N ð0:3; 0:03Þ and C ¼ N ð250; 50Þ

where N denotes a normal distribution and the values in the parentheses
identify the mean and standard deviation, respectively. The n and C ran-
dom samples were assumed to be independent. The mean values of the
normal fn,Cg prior distribution were deliberately selected to be lower than
the posterior mean values determined earlier. Random samples were drawn
from the distribution and the sample tool life curves were calculated for
each. Figure 27 shows the new (normal) prior distribution. Bayesian updat-
ing was completed using the experimental results listed in Table 6.

Figure 28 shows the posterior tool life cdf for the normal prior. The pos-
terior cdf for the uniform prior is also included for comparison. Table 14
compares the posterior means, standard deviations, and correlation coeffi-
cients for the two priors. As seen in Figure 28, the posterior tool life predic-
tion is more conservative for the normal fn,Cg prior, which may be a
preferred result in machining operations where a tool failure can lead to
significant expense and lost time. A normal prior represents a more

FIGURE 26 Posterior tool life cdf at f192.02m=min, fr¼ 0.51mm=revg for different likelihood
uncertainties. (Figure available in color online.)
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informative case where knowledge of the distribution in fn,Cg values is
available. A more informative prior reflects the most likely values. Because
the prior represents the initial degree of belief about the constants, if the
initial belief is far from the true value, then the final results are affected. In
general, the prior should be chosen to be as informative as possible con-
sidering all the available information. If enough data or prior knowledge
is not available, a uniform prior may be selected.

FIGURE 27 Prior cumulative distribution of tool life for the normal fn,Cg prior.

FIGURE 28 Posterior tool life cdf at 2500 rpm for different priors. (Figure available in color online.)
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CONCLUSION

A Bayesian inference approach to tool life prediction was demonstrated
using a random walk=random surface method. The Taylor tool life model
was applied to milling and a Taylor-type model to turning; however, these
models were only selected because they are well-known. The approach
can be implemented for extended versions of the Taylor-type tool life
model that include axial and radial depth of cut effects, for example, or
other, more comprehensive models as well. For example, Makarow’s law
(Astakhov, 2006), which identifies an optimum cutting temperature for a
selected combination of work material and tool material, could be imple-
mented as an alternative tool life model.

In Bayesian inference, tool life is characterized by a probability distri-
bution and the distribution is updated when new information is available.
When new information in the form of experimental results is obtained,
uncertainty in the prior distribution can be reduced. Bayesian inference
therefore provides a way to combine prior data with experimental values
to update beliefs about uncertain variables. Using the random walk
approach for milling, the prior probability of tool life was generated using
sample tool life curves, where each path potentially represented the true
tool life curve. The probability that each sample path represented the true
Taylor tool life curve was updated using Bayesian inference.

A likelihood function was defined to describe how likely it was that that
the sample tool life curve was the correct choice given the measurement
result at a particular spindle speed. An uncertainty of 20% was assumed
for the measured tool life. The posterior tool life distribution was then used
to predict the values of tool life at different spindle speeds and the results
were compared to experiment. The same procedure was repeated using an
extended form of the Taylor tool life equation to incorporate the effects of
both cutting speed and feed in turning. In this case, sample tool life sur-
faces were generated. The probability that a sample surface was the true
tool life surface was updated using Bayesian inference. The posterior tool
life distribution agreed with the experimental results in both cases. Com-
parisons were also made to deterministic predictions using a least squares
best fit to identify the Taylor tool life model empirical constants.

TABLE 14 Posterior fn,Cg Distribution for Normal and Uniform Prior

Parameters

Prior

Uniform Normal

fmn, rng f649.7,33.7g f378.1,20.6g
fmC, rCg f0.342, 0.01g f0.2661, 0.02g
qn, C 0.67 0.65
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