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a  b  s  t  r  a  c  t

According  to the  Taylor  tool  life  equation,  tool  life  reduces  with  increasing  cutting  speed  following  a
power  law.  Additional  factors  can  also  be added,  such  as  the  feed  rate,  in Taylor-type  models.  Although
these  models  are  posed  as  deterministic  equations,  there  is  inherent  uncertainty  in  the empirical
constants  and  tool  life  is  generally  considered  a stochastic  process.  In  this  work,  Bayesian  inference
is  applied  to  estimate  model  constants  for  both  milling  and  turning  operations  while  considering
uncertainty.

In  Part  1  of  the  paper,  a Taylor  tool  life  model  for  milling  that  uses  an  exponent,  n,  and  a  constant,
C,  is  developed.  Bayesian  inference  is applied  to  estimate  the  two  model  constants  using  a  discrete  grid
method.  Tool  wear  tests  are  performed  using  an  uncoated  carbide  tool  and  1018  steel  work  material.
Test  results  are  used  to  update  initial  beliefs  about  the  constants  and  the  updated  beliefs  are  then  used
to  predict  tool  life  using  a probability  density  function.  In  Part  2, an extended  form  of  the Taylor  tool
life  equation  is  implemented  that  includes  the  dependence  on  both  cutting  speed  and  feed  for  a  turning

operation.  The  dependence  on  cutting  speed  is  quantified  by  an exponent,  p,  and  the  dependence  on  feed
by an  exponent,  q; the  model  also  includes  a constant,  C.  Bayesian  inference  is applied  to  estimate  these
constants  using  the  Metropolis–Hastings  algorithm  of  the  Markov  Chain  Monte  Carlo  (MCMC)  approach.
Turning  tests  are  performed  using  a carbide  tool  and  MS309  steel  work  material.  The  test  results  are
again  used  to  update  initial  beliefs  about  the  Taylor  tool  life  constants  and  the  updated  beliefs  are  used
to predict  tool  life  via  a  probability  density  function.
. Introduction

Tool wear can impose a significant limitation on machining pro-
esses, particularly for hard-to-machine materials such as titanium
nd nickel-based superalloys. Taylor first defined an empirical rela-
ionship between tool life and cutting speed using a power law [1]:

Tn = C (1)

here V is the cutting speed in m/min, T is the tool life in minutes,
nd n and C are constants which depend on the tool–workpiece
ombination. The constant C is defined as the cutting speed required
o obtain a tool life of 1 min. Tool life is typically defined as the

ime required to reach a predetermined flank wear width (FWW),
lthough other wear features (such as crater depth) may  also be
pplied depending on the nature of the tool wear. The Taylor tool
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life equation can be extended to include other effects, such as feed
rate [2]:

Vpf q
r T = C (2)

where fr is the feed in mm/rev in turning and C, p, and q are
constants which depend on the tool–workpiece combination. Note
that in the extended Taylor tool life equation shown in Eq. (2), the
constant C is dimensionless. The Taylor-type tool life model shown
in Eq. (2) is deterministic in nature, but uncertainty exists due to: (1)
factors that are unknown or not included in the model; and (2) tool-
to-tool performance variation. For these reasons, tool wear is often
considered to be a stochastic and complex process and, therefore,
difficult to predict.

Previous efforts to model tool wear as a stochastic process are
available in the literature [3–5]. Vagnorius et al. calculated the opti-
mal  tool replacement time by determining the probability of the

tool failing before the selected time using a tool reliability function
[3]. Liu and Makis derived a recursive formula to determine the
cutting tool reliability. The maximum likelihood method was  used
to determine the unknown parameters in the reliability function
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4]. Wiklund applied the Bayesian approach to monitor tool wear
sing in-process information [5]. The method presented in this
aper uses Bayesian inference to predict tool life at the process
lanning stage. The distribution of the Taylor tool life constants,
, q, and C, are updated using experimental tool life results. The
pdated distributions of p, q, and C can then be used to predict tool

ife. The objective of the paper is to demonstrate the application of
ayesian updating to tool life prediction. The Taylor tool life model

s used in this study, despite its potential limitations, because it is
ell-known and generally understood in the manufacturing com-
unity. Without loss of generality, the Bayesian updating method

emonstrated in this paper can be applied to other available models
6].

. Bayesian inference

Bayesian inference, which forms a normative and rational
ethod for belief updating is applied in this work [7]. Let the prior

istribution about an uncertain event, A, at a state of information, &,
e {A|&}, the likelihood of obtaining an experimental result B given
hat event A occurred be {B|A,&}, and the probability of receiving
xperimental result B (without knowing A has occurred) be {B|&}.
ayes’ rule is used to determine the posterior belief about event A
fter observing the experiment results, {A|B,&} as shown in Eq. (3).
sing Bayes’ rule, information gained through experimentation can
e combined with the prior prediction about the event to obtain a
osterior distribution.

A|B, &} = {A|&}{B|A, &}
{B|&} (3)

s seen in Eq. (2), the Taylor-type tool life model assigns a deter-
inistic value to tool life for the selected cutting speed and feed

ate values. In contrast, Bayesian inference assigns a probability
istribution to the tool life value at a particular cutting speed/feed
ate combination. From a Bayesian standpoint, a variable which is
ncertain is treated as a variable which is random and characterized
y a probability distribution. The prior, or initial belief of the user,
an be based on theoretical considerations, expert opinions, past
xperience, or data reported in the literature; the prior should be
hosen to be as informative as possible. The prior is represented as a
robability distribution and, using Bayes’ theorem, the probability
istribution is updated when new information becomes available
from experiments, for example). As a result, Bayesian inference
nables a model to incorporate uncertainty in terms of a probabil-
ty distribution and beliefs about this distribution to be updated
ased on experimental results.

In the Taylor-type tool life model provided in Eq. (2), there is
ncertainty in the exponents, p and q, and in the constant, C. As

 result, there is uncertainty in the tool life, T. This uncertainty
an be represented as a joint probability distribution for C, p, and

 and, therefore, for the tool life, T. Bayes’ rule (Eq. (3)) can be
sed to update the prior joint distribution of C, p, and q using new

nformation. The new distribution can then be used to update the
istribution of tool life, T. In this case, the prior distribution {A|&}

s the initial belief about constants C, p, and q. The updating of the
onstants can be completed using experimental data of tool life. For
his case, Bayes’ rule is:

p, q, C|T, &} ∝ {p, q, C|&}{T |p, q, C, &} (4)

here {p, q, C|&} is the prior joint distribution of p, q, and C, {T|p, q,
,&} is the likelihood of observing experimental result of tool life, T,

iven C, p, and q, and {p, q, C|T,&} is the posterior joint distribution
f C, p, and q given an experimental result of tool life, T. Note that
he denominator in Eq. (3), {B|&}, acts as a normalizing constant. It
s not included in Eq. (4).
gineering 38 (2014) 18– 27 19

According to Bayes’ rule, the posterior distribution is propor-
tional to the product of the prior and the likelihood. The prior
is a three-dimensional joint distribution of the constants C, p,
and q. The likelihood and, subsequently, the posterior are also
three-dimensional joint distributions of C, p, and q. The grid-based
method (see Part 1 of this paper) is computationally expensive for
updating a joint distribution with three or more dimensions since it
is dependent on the size of the grid. For example, a joint probability
density function (pdf) of three variables with a grid size equal to 300
would require at least 2.7 × 106 computations for each update in
the grid-based method. As an alternative, the Markov Chain Monte
Carlo (MCMC) technique can be used to sample from multivariate
posterior distributions for Bayesian inference [7]. Using the MCMC
technique, samples can be drawn from the posterior multivariate
distribution which can then be used to characterize the distribu-
tion. The single-component Metropolis–Hastings (MH) algorithm
facilitates sampling from multivariate distributions without sensi-
tivity to the number of variables [9,10]. The algorithm proceeds by
considering a single variable at a time and sampling from a uni-
variate proposal distribution. In this study, the single-component
MH algorithm of the MCMC  technique is used to sample from the
joint posterior distribution of the constants C, p, and q. The remain-
der of the paper is organized as follows. Section 3 describes the
use of the MH  algorithm to sample from a univariate bimodal
pdf and the application to Bayesian inference. Section 4 describes
sampling from the joint posterior distribution using the single com-
ponent MH  algorithm. Tool life prediction using the posterior or
the updated distributions of tool life is shown in Section 5. Section
6 compares the Bayesian approach to classical regression. Finally,
the influence of prior and likelihood uncertainty is discussed in
Section 7.

3. Markov chain Monte Carlo (MCMC) method

The Markov Chain Monte Carlo (MCMC) method is a sampling
technique used to draw samples from a pdf. Samples are gen-
erated from the state space of the variable of interest using a
Markov chain mechanism [8]. The most popular method for MCMC
is the MH  algorithm [9,10]. Let x be the variable of interest. The
pdf of variable x is referred to as the target distribution and is
denoted by p(x). The MH  algorithm uses a proposal distribution
(pdf) denoted as q(x). A candidate sample, x*, drawn from the pro-
posal distribution is either accepted or rejected depending on an
acceptance ratio, A. In each iteration, the Markov chain moves to
x* if the sample is accepted. Otherwise, the chain remains at the
current value of x. The algorithm proceeds for N − 1 iterations to
obtain N samples from the target distribution using the following
steps.

1. Initialize the starting point x0.
2. For N − 1 iterations, complete the following four steps:

a. draw a sample, x*, from the proposal distribution; the pdf
value is q(x*|xi), where i denotes the current iteration and the
distribution mean is xi with a selected standard deviation

b. sample u from a uniform distribution with a lower limit of
zero and an upper limit of 1, U(0, 1)

c. compute the acceptance ratio, A = min(1,
(p(x*)q(xi|x*)/p(xi)q(x*|xi))), where q(xi|x*) is the pdf value
of the proposal distribution at xi given a mean of x* with
the selected standard deviation, p(x*) is the pdf value of the

target distribution at x*, and p(xi) is the pdf value of the target
distribution at xi

d. if u < A, then set the new value of x equal to the new sample,
xi+1 = x*; otherwise, the value of x remains unchanged, xi+1 = xi.
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.1. Algorithm demonstration

To illustrate the algorithm, consider a bimodal pdf as the tar-
et distribution; see Eq. (5) [8]. The target distribution needs to be
nown only up to the normalization constant.

(x) ∝ 0.3e(−0.2x2) + 0.7e(−0.2(x−10)2) (5)

or this example, a normal proposal distribution, q(x), was  chosen
ecause a normal distribution facilitates convenient sampling of
andidate values for x. For a normal distribution, the proposal dis-
ribution is conditioned on the current value of the chain, q(x*|xi).
he mean of the proposal distribution is xi and a standard devi-
tion of 10 was selected, i.e. q(x) = N(xi, 10). The starting point of
he chain, x0, was selected to be zero. At each iteration, i, the fol-
owing steps were completed. First, a candidate sample, x*, was
andomly drawn from the proposal distribution, N(xi, 10). The can-
idate sample was drawn given the current value of the chain,
(x*|xi). To illustrate, consider the first iteration. The chain starting
oint is x0 = 0. Therefore, x* is a random sample drawn from N(0,
0). Assume the randomly selected value is x* = 2 and it is accepted
s x(1). In the second iteration, the random sample is drawn from
(2, 10). If the sample is 12 and it is rejected, then the current value
f x(2) remains at 2. In the third iteration the random sample will
gain be drawn from N(2, 10).

Second, p(x*) and p(xi) were calculated using Eq. 5 for the tar-
et distribution. Third, q(x*|xi) and q(xi|x*) were calculated. Since a
ormal distribution is symmetric, the q(x*|xi) and q(xi|x*) are equal.
ourth, the acceptance ratio, A, was calculated. For the normal pro-
osal distribution, the acceptance ratio simplifies to:

 = min

(
1,

p(x∗)
p(xi)

)
(6)

ifth, A was compared to a random sample, u, drawn from a uniform
istribution with a range from 0 to 1. Finally, if u was  less than A,
hen the candidate sample was accepted and xi+1 was updated using
i+1 = x*. Otherwise, the sample was rejected and xi+1 = xi. These
teps were repeated for N − 1 iterations to obtain N samples of x
rom the target pdf described by Eq. (5).

The MH  algorithm was carried out for 10,000 iterations. Fig. 1
hows the histogram of the 10,000 samples and target distribution
rom Eq. (5) (left) and x values for each iteration (right). It is seen
hat the samples approximate the target pdf quite well. Note that
he histogram and target distribution were normalized to obtain a
nit area.

Although the MH  algorithm is effective for sampling from any
arget distribution, there are a number of considerations in its
pplication. The success of the algorithm depends on the choice of
roposal distribution. In theory, the chain should converge to the
tationary target distribution for any proposal distribution [11,12].
owever, the proposal distribution may  affect the convergence and
ixing of the chain. In general, the proposal distribution may  be

elected so that the sampling is convenient. If the proposal distri-
ution was chosen to be uniform, then it is not dependent on the
urrent value of x since x* is drawn from a preselected range of x
alues. A uniform proposal distribution may  therefore be less effi-
ient because the random samples are independent of the current
tate of the chain. Using a normal proposal distribution where x* is
ependent on xi is referred to as random walk Metropolis sampling,
hile the uniform proposal approach where x* is independent of xi

s called independent Metropolis–Hastings sampling.
For a normal proposal distribution, the choice of the standard
eviation can also affect the results. A larger standard deviation
auses greater jumps in the domain or the state space of the vari-
ble. Thus, the candidate sample has a higher probability of being
ejected, which yields xi+1 = xi. On the other hand, while a smaller
gineering 38 (2014) 18– 27

variance will tend to accept a higher number of random samples,
this can result in slower convergence of the chain.

The number of iterations should be large enough to ensure con-
vergence to the statistical moments of the target distribution. The
convergence to the true statistical moments can be observed by
repeating the algorithm using different starting values and vary-
ing the number of iterations. The starting value of the chain has
no effect for a large number of iterations [13]. The initial itera-
tions are typically discarded (called the burn-in time) and the chain
subsequently settles to a stationary distribution. A practical way
to evaluate convergence to the chain’s stationary distribution is
by observing the traces and histograms of the variables (e.g. see
Fig. 1). Despite these potential limitations, the MH  algorithm for
MCMC  works well and can effectively be used to draw samples
from multivariate distributions.

3.2. Application to Bayesian inference

This section describes the application of MCMC to Bayesian
inference. As stated in Section 2, Bayesian inference provides a
formal way  to update beliefs about the posterior distribution (the
normalized product of the prior and the likelihood functions) using
experimental results. The prior for this analysis is a joint pdf of the
Taylor tool life constants, C, p, and q. As a result, the posterior is
also a joint pdf of the constants. The MCMC  technique is applied
here because it can be used to sample from multivariate posterior
distributions. The joint posterior pdf is the target pdf for the MCMC
approach. Note that the normalizing constant for the posterior pdf
is not required for sampling.

The MH algorithm was  detailed for a single variable in Section 3.
To sample from a joint pdf, the algorithm samples one variable at a
time and then proceeds sequentially to sample the remaining vari-
ables. To illustrate, consider a joint target pdf of n variables: x1, x2,
x3,. . .,xn. First, the starting value for all the variables is initialized,
[x0

1, x0
2, x0

3, . . .x0
n]. The sequence of variable sampling does not influ-

ence the convergence of the algorithm, so let the algorithm proceed
in the order, x1 → x2 → x3 → . . .xn. The sampling for each variable is
carried out using a univariate proposal distribution for that variable.
The target and the proposal pdf for each variable are conditioned
on the current values of the other variables. For example, consider
a candidate sample, x1

*, drawn from the univariate proposal dis-
tribution for x1. The candidate sample from the joint pdf is then
[x∗

1, x0
2, x0

3, . . .x0
n]. The candidate sample, x∗

1, is either accepted or
rejected given the current values of x2, x3,. . .,xn. Thus, the target
pdf values of x∗

1 and x0
1 are conditional on the current values of the

other variables, x0
2, x0

3, . . .x0
n and are denoted as p(x∗

1|x0
1, x0

2, . . .x0
n)

and p(x0
1|x0

1, x0
2, . . .x0

n). The proposal univariate pdfs are also con-
ditional on the current values of the chain and are denoted as
q(x∗

1|x1, x1, x3. . .xn) and q(x1|x∗
1, x1, x3. . .xn) for x∗

1 and x1, respec-
tively. The chain either stays at the current point, [x0

1, x0
2, x0

3, . . .x0
n]

or moves to a neighboring point, [x∗
1, x0

2, x0
3, . . .x0

n], which differs
only in one component of the current state (x1 in this case). The pro-
cedure is repeated for all variables in each iteration. The acceptance
ratio is:

A = min

(
1,

p(x∗
1|x2, x3, ..., xn)q(xi

1|[x∗
1, x2, x3, ..., xn])

p(xi
1|x2, x3, ..., xn)q(x∗

1|[xi
1, x2, x3, ..., xn])

)
(7)

where the value of each of the four joint pdfs must each be cal-
culated. The value of A is compared to a random sample, u, from
a uniform distribution with a range from 0 to 1 and x∗

1 is either
accepted or rejected to obtain xi+1

1 . The algorithm is repeated

using the updated values of each variable continually for the
next variable. Thus, xi+1

2 is determined using xi+1
1 , xi

3, . . .,  xi
n, xi+1

3
is determined using xi+1

1 , xi+1
2 , . . .,  xi

n, and so on for n variables.
A single iteration updates all the variables. The algorithm is then
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First, the starting point for the Markov chain, x0 = [C0p0q0], was
selected to be the midpoints of the uniform C, p, and q distributions,
x0 = [5 × 107 4.0 3.0]. The sampling was completed one coefficient
Fig. 1. Histogram of MCMC samples and target d

arried out for N − 1 iterations to obtain samples from the joint tar-
et pdf. An alternative method is to sample from a joint proposal
df and accept or reject it using the MH  algorithm. However, it is
uch simpler to sample from univariate proposal distributions for

ach variable and is computationally less expensive.

. Bayesian updating using the Markov Chain Monte Carlo
ethod

In this section, the Markov Chain Monte Carlo (MCMC) method
or Bayesian updating of Taylor tool life constants using experimen-
al tool life data is described. According to Bayes’ rule, the posterior
istribution is proportional to the product of the prior and the like-

ihood. This is the process of learning, or updating beliefs, when
xperimental results are available.

.1. Establishing the prior

The cutting tool used for wear testing was a coated carbide insert
Kennametal KC9110) and the workpiece material was forged AISI
137 chrome alloy steel. The turning experiments were performed
n an Okuma LC-40 CNC lathe. The first step in applying Bayesian
nference was to determine the prior distribution. In this case, the
rior was a joint probability distribution for the Taylor tool life
onstants, C, p, and q. The prior, or initial belief of the user, can
e based upon theoretical considerations, expert opinions, past
xperiences, or data reported in the literature. For this case, the
ollowing information was applied. It was believed that:

. in general, the value exponent p is greater than exponent q, due
to a stronger influence of cutting speed on tool wear

. the value of p is between 2 and 6 and q is between 1.5 and 3 [2]

. the value of C is sensitive to the values of p and q due to the
nature of the tool life equation and is in the range of 1 × 106 to
1 × 108 m/min.

In this case, information was available to supply only a gen-
ral range of the constants C, p, and q. Therefore, the prior was
ssumed to be joint uniform distribution, i.e., it was  equally likely
o obtain any value within the specified range. The constants were

ssumed to be independent for the prior. In cases where experi-
ental data using the same tool–material combination is available,

 more informative prior (such as a normal distribution) can be
elected. For this study, the marginal prior pdfs of the constants
ere specified as: p = U(2, 6), q = U(1, 5), and C = U(106, 108), where

 represents a uniform distribution and the parenthetical terms
ndicated the lower and upper values of the range.
tion (left) and x values for each iteration (right).

4.2. Experimental setup and results

The prior C, p, and q joint distribution was  updated using exper-
imental results to obtain the posterior joint distribution. The initial
outer diameter of the steel workpiece was 174.62 mm.  The depth
of cut was 4.06 mm and the length of cut for a single pass was
139.7 mm with a chamfer of 63.4 degrees at the end of each cut. The
spindle speed was  varied to maintain constant cutting speed with
reducing workpiece diameter as additional cuts were completed.
A digital microscope (60× magnification) was used to image the
flank and rake surfaces within the lathe enclosure to avoid remov-
ing the insert from the tool holder during the wear testing. The wear
status of the tool was  recorded after each pass and the calibrated
digital images were used to identify the flank wear width (FWW).
The first test was  completed using a cutting speed of 153.6 m/min
and a feed per revolution of 0.51 mm/rev. Tool life was defined as
the time required for the FWW  to reach 0.4 mm.  The time to reach
a FWW  of 0.4 mm was 22.47 min. Fig. 2 shows the images of the
relief face at selected cutting times.

Two additional tests were performed at {V = 192.01 m/min,
fr = 0.61 mm/rev} and {V = 230.42 m/min, fr = 0.51 mm/rev}. Fig. 3
shows the growth in FWW  for all three test conditions. The ‘o’
symbols denote the intervals at which the FWW  was  recorded. The
tool life was  linearly interpolated between adjacent intervals if it
exceeded 0.4 mm  at the final measurement interval to determine
the tool life. The results of the three tests are summarized in Table 1.
As expected, tool life reduces with increased cutting speed and feed.

4.3. Bayesian updating

As described in Section 3.2, a single-component MH  algorithm
was  used to sample from the joint posterior pdf of the Taylor tool
life constants: p, q, and C. The posterior joint pdf was the target pdf
for the MH  algorithm. The prior distribution of the constants was
assumed to be a joint uniform distribution. As noted in Section 4.1,
this distribution represents a less informative prior than a normal
distribution with a mean and standard deviation.

The single-component MH  algorithm proceeded as follows.
Table 1
Experimental tool life results used for updating.

Test # Cutting speed (m/min) Feed (mm/rev) Tool life (min)

1 153.6 0.51 22.47
2  192.01 0.61 6.52
3  230.42 0.51 5.58
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Fig. 2. Images of FWW  at 60× magnification. The cutting times from top to bottom
a
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f
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re {6.8, 15.5, and 22.4} min.

t a time in the order C → p → q. The proposal distribution for each
onstant was selected to be normal. The standard deviations of the
roposal distribution of constants, C, p, and q were 1 × 107, 0.2,
nd 0.2, respectively. To begin, a candidate sample, C*, was drawn
rom the proposal distribution of C. The posterior, or target, pdf val-
es, of each constant were conditional on the values of the other
oefficients. The posterior pdf for C, p(C0|p0 q0), was the product

f the prior and likelihood functions. The tool life value was  calcu-
ated using the current state of the chain, [C0 p0 q0], as input to Eq.
2). Because tool wear is stochastic, there is uncertainty in tool life

Fig. 3. Variation of FWW  with cutting time at various test conditions.
gineering 38 (2014) 18– 27

predictions. Therefore, the tool life calculated using the current
state of chain as input to Eq. (2) was assumed to be normally dis-
tributed with a standard deviation equal to 10% of the experimental
tool life; the 10% level was based on the user’s belief regarding
experimental uncertainty in measured tool life. This gave a pdf for
tool life calculated using the current state of the chain. The like-
lihood is the value of the pdf for the experimental tool life (listed
in Table 1). Therefore, the likelihood described how likely it was
to obtain the experimental tool life given the current state of the
chain. For multiple measurement results, the total likelihood pdf
was  the product of the likelihood pdfs for all measurements. The
same procedure was followed to determine the posterior pdf value
for C*, p(C*|pi qi). Since the proposal distribution was normal, the
acceptance ratio was  calculated using Eq. (8).

A = min

(
1,

p(C∗|p, q)
p(Ci|p, q)

)
(8)

The acceptance ratio was  compared to a random sample, u, from
a uniform distribution (with a range from 0 to 1) to assign the
value of C(1) to be either C* or C0. To update the constants, C, p,
and q, the algorithm considered one coefficient at a time and then
proceeded to sequentially update the remaining coefficients. For
the order C → p → q, C(1) was used to update p0. Next, C(1) and p(1)

were used for q0. A single iteration provided samples for all the
three constants. This sequence was repeated for N − 1 iterations
giving N samples from the joint posterior pdf of the Taylor tool life
constants. Note that the standard deviations of the proposal dis-
tributions affect the convergence of the chain. As a rule of thumb,
the standard deviation should be large enough to draw adequate
samples to explore the domain. However, a very large standard
deviation leads to a higher probability of candidate samples being
rejected.

The MH  algorithm was  exercised for 100,000 iterations. Fig. 4
shows the sample traces of the constants C (top left), p (top right),
and q (bottom left) for all iterations. The initial burn-in time was
selected to be 1000 iterations. Fig. 5 shows a comparison between
the prior marginal pdfs and posterior sample histograms of the
constants. The histograms represent the marginal posterior pdfs
of the constants and were normalized to obtain a unit area. Note
that the value of constant C is extremely sensitive to the expo-
nents p and q due to the power law nature of the Taylor-type
tool life equation. The distribution of the constants is due to the
uncertainty in the tool life values. MCMC  provides samples from
the joint posterior pdf of the Taylor tool life constants, C, p, and
q. The samples can then be used in a Monte Carlo simulation
to determine the posterior tool life predictions at any speed and
feed.

5. Tool life predictions

The samples from the joint posterior pdf of the Taylor tool life
constants, C, p, and q, were used in a Monte Carlo simulation to
determine the posterior tool life predictions. The posterior or the
updated distribution of tool life can be used to predict tool life
at cutting conditions other than the ones at which the tool wear
experiments were performed. The posterior distribution was  used
to predict tool life for two new test conditions: {V = 192.01 m/min,
fr = 0.51 mm/rev} and {V = 230.42 m/min, fr = 0.61 mm/rev}. Two
tests were performed for each parameter combination. Other con-
ditions were maintained constant and the same procedure was
followed to measure tool life. As before, tool life was selected to be

the time for the tool to reach a FWW  of 0.4 mm.  The tool life values
obtained from these tests were compared to the predicted poste-
rior distributions of tool life at the corresponding test parameters,
V and fr (see Figs. 6 and 7).
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Fig. 4. Traces for C (top left), p (top right), and q (bottom left).

Fig. 5. Posterior and prior distributions of constants C (top left), p (top right), and q (bottom left).
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ig. 6. Comparison of the posterior tool life and the deterministic prediction of tool
ife  at V = 192.01 m/min  and fr = 0.51 mm/rev. The ‘x’ symbols denote experimental
alues and the ‘o’ symbol represents the curve fit prediction.

. Comparison with the deterministic method

Bayesian inference assigns a probability distribution over a
ange of the variable(s) of interest, while deterministic methods
such as curve fitting) predict a single value with an associated
ncertainty. For example, the Taylor tool life constants were calcu-

ated using the experimental tool life data listed in Table 1. The C, p,
nd q values were 9.83 × 107, 3.39, and 2.63, respectively. Note that
he Bayesian estimate does not center on the least squares solution
ue to the non-linearity of the model. Fig. 5 shows that the prior
estricts the possible values of C, causing a shift in the prediction.
hus, the Taylor-type tool life form for the experimental data was:

3.39f 2.63
r T = 9.83 × 107 (9)

To obtain a probabilistic prediction, a Monte Carlo simulation
as performed to simulate the experimental values using the val-
es obtained and the experimental uncertainty. The uncertainty
standard deviation) in the experimental result was  again taken
o be 10% of the measured value. 1 × 104 random samples were

rawn from the normal distribution with the mean equal to the
xperimental value and standard deviation equal to 10% of the
xperimental value and the Taylor tool life constants were calcu-
ated for each sample combination of tool life values. The mean and

ig. 7. Comparison of the posterior tool life and the deterministic prediction at
 = 230.42 m/min  and fr = 0.61 mm/rev. The ‘x’ symbols denote experimental values
nd the ‘o’ symbol represents the curve fit prediction.
gineering 38 (2014) 18– 27

standard deviation were 3.39 and 0.35 for p, 2.63 and 0.68 for q, and
7.26 × 107 and 6.37 × 107 m/min  for C, respectively. Note that the
mean and standard deviation of C are higher than the determinis-
tic values shown in Eq. (9). This is due to the large variations in
the value of C from the Monte Carlo simulation. The values of p,
q, and C from the simulation were used to predict the distribution
of tool life. Table 2 presents a comparison between the tool life
distribution from the Monte Carlo simulation, the posterior tool
life distribution after Bayesian updating, and the experimentally
obtained values. Note that the mean values from the Monte Carlo
simulation are similar to the mean Bayesian posterior predictions.
However, the uncertainty is greater due to the small size of the
experimental dataset. Bayesian inference takes into account prior
beliefs and experimental evidence and, therefore, gives good results
even for a small number of data points. Fig. 6 shows the experi-
mental values at V = 192.02 m/min and fr = 0.51 mm/rev (denoted
by ‘x’), the posterior distribution after updating, and the deter-
ministic tool life mean predictions (denoted by ‘o’). Fig. 7 shows
the results for V = 230.42 m/min  and fr = 0.61 mm/rev. Using the
Bayesian approach, a probability of tool failure can be determined
and machining parameters can be selected accordingly depending
on the nature of the operation and the risk preferences of the user.
Additionally, while a statistical curve fit requires a large amount of
data to achieve confidence in the fit parameters, Bayesian updating
of an informed prior using only a few tests can lead to an accu-
rate prediction with the inherent characterization of prediction
uncertainty.

7. Effects of prior selection and likelihood uncertainty on
tool life predictions

In Bayesian inference, the posterior distribution is the product
of the prior and the likelihood distributions. Clearly, the posterior
tool life predictions depend on the selection of the prior and the
likelihood distributions. In this section, the influence of the prior
distribution and likelihood uncertainty on the posterior is evalu-
ated. First, the influence of the prior distribution on the posterior
distribution is examined. As stated in Section 4.1, a uniform prior
was  selected for the tool wear study. A uniform prior represents a
non-informative case, where the parameter value is equally likely
to take any value within with the specified range. To evaluate the
influence of the prior distribution on the posterior pdf, the algo-
rithm was repeated using normal marginal pdfs as the prior for the
constants. The marginal prior pdfs were selected as:

• C = N(5 × 107, 1.5 × 107)
• p  = N(4, 0.5)
• q = N(3, 0.5)

where N denotes a normal distribution and the values in the
parentheses identify the mean and standard deviation, respec-
tively. Fig. 8 displays a comparison of the prior marginal pdfs and
posterior marginal pdfs of the constants using the selected normal
prior distributions. The posterior distributions were obtained after
updating using the experimental results in Table 1. Fig. 9 compares
the posterior tool life pdfs obtained using uniform and normal prior
distributions at V = 230.42 m/min  and fr = 0.61 mm/rev. The exper-
imental value is denoted as ‘x’ and the deterministic prediction is
denoted by ‘o’.

For a uniform prior, the posterior is the same as the likelihood.
Therefore, in the case of non-informative priors, the posterior is

only dependent on the experimental tool life data. However, a nor-
mal  prior represents a more informative case where knowledge of
the possible values of the variable of interest is available. An infor-
mative prior, such as the normal distribution, thus reflects the most
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Table  2
Comparison between the predicted values obtained from curve fit, Bayesian updating and experimental values.

Test # Cutting speed (m/min) Feed rate (mm/rev) Tool life (min) Least square prediction (min) Bayes prediction (min)

1 192.01 0.51 11.46 (10.5, 1.2) (10.5, 0.73)
2  192.01 0.51 10.33
4  230.42 0.61 2.23 (3.5, 0.52) (3.3, 0.37)
5  230.42 0.61 2.55

stants
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Fig. 8. Posterior and prior distributions of con

ikely values of the variable. The prior represents the initial degree
f belief about the constants; if the initial belief is far from the true
alue, this affects the final results. In general, the prior should be

hosen to be as informative as possible considering all the available
nformation. If enough data or prior knowledge is not available, a
niform prior may  be selected.

ig. 9. Comparison of tool life predictions at V = 230.42/min and fr = 0.61 mm/rev
sing uniform and normal priors.
 C (top left), p (top right), and q (bottom left).

Next, the influence of the likelihood uncertainty on the poste-
rior tool life pdf was evaluated. For previous posterior, or target,
pdf calculations in this study, an uncertainty of 10% (one standard
deviation) of the experimental tool life was assumed. The assumed
likelihood uncertainty was varied (1%, 5%, 10%, and 20%), and
the algorithm was repeated for each case. Figs. 10 and 11 dis-
play the posterior pdfs for C, p, and q at 20% and 5% uncertainty,
respectively. It is seen that the likelihood uncertainty affects
the posterior distribution. Fig. 12 shows the posterior tool life
pdf at V = 230.42/min and fr = 0.61 mm/rev for different likelihood
uncertainties. The experimental values are denoted as ‘x’ and the
deterministic prediction as ‘o’. Note that the posterior pdf at 1%
likelihood uncertainty is not normalized for demonstration pur-
poses. As shown in Figs. 10 and 11, the assumed standard deviation
affects the spread of the posterior pdfs of the constants. The pos-
terior tool life pdf obtained using a 20% likelihood uncertainty has
a higher standard deviation than the posterior pdf obtained using
a 10% likelihood uncertainty. Therefore, the prediction using a 20%
uncertainty is more conservative. On the other hand, for low val-
ues of the standard deviation (less than 5%), the likelihood function
approaches the deterministic prediction. This will result, in gen-
eral, in a less conservative tool life prediction. As the likelihood

uncertainty approaches zero, the posterior pdf standard deviation
also approaches zero and the mean approaches the determinis-
tic prediction in this case. In general, the value should be based
on the uncertainty expected in the experimental result. Multiple
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Fig. 10. Posterior and prior distributions of constants C (top left), p (top right), and q (bottom left) for a 20% likelihood uncertainty.

Fig. 11. Posterior and prior distributions of constants C (top left), p (top right), and q (bottom left) for a 5% likelihood uncertainty.
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ig. 12. Tool life predictions at V = 230.42/min and fr = 0.61 mm/rev for different
ikelihood uncertainty levels. Note that the posterior pdf at 1% likelihood uncertainty
s  not normalized for demonstration purposes.

xperiments could be performed at a single spindle speed to deter-
ine the distribution, for example. From the values of tool life

btained in the prediction set, a 10% standard deviation is reason-
ble.

. Conclusions

A Bayesian inference approach to tool life prediction was
emonstrated. The Taylor-type tool life equation constants, C, p,
nd q, were updated using experimental results for turning tests
sing a coated carbide insert and alloy steel workpiece. The single-
omponent Metropolis–Hastings (MH) algorithm for the Markov
hain Monte Carlo (MCMC) approach was used to sample from the

oint posterior pdf of the three constants. The samples were then
sed to determine the posterior distribution of tool life, which was
ubsequently used to predict tool life at different cutting conditions.

Bayesian inference assigns a probability distribution over a
ange of the variable(s) of interest. The probability distributions

f the predictions can be updated when new information is avail-
ble (in the form of experimental results, for example). When this
ew information is obtained, uncertainty in the prior distributions
an be reduced. Bayesian inference provides a way  to combine prior

[

[

gineering 38 (2014) 18– 27 27

data with experimental values to update beliefs about an uncertain
variable. By combining prior knowledge and experimental results,
Bayesian inference reduces the number of experiments required for
uncertainty quantification. When combined with rational decision
making theories, an optimal sequence of experiments and value
gained from experimental results can also be determined. Finally,
the Metropolis–Hastings algorithm is a powerful tool for sampling
from multivariate distributions. The single-component MH  algo-
rithm for MCMC  facilitates updating of joint distributions without
significant computational expense.
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