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According  to the  Taylor  tool  life  equation,  tool  life  reduces  with  increasing  cutting  speed  following  a power
law.  Additional  factors  can  also  be added,  such  as  the  feed  rate,  in  Taylor-type  models.  Although  these
models  are  posed  as  deterministic  equations,  there  is inherent  uncertainty  in the  empirical  constants
and  tool  life  is generally  considered  a  stochastic  process.  In this  work,  Bayesian  inference  is  applied  to
estimate  model  constants  for both  milling  and  turning  operations  while  considering  uncertainty.

In Part  1 of  the  paper, a Taylor  tool  life model  for  milling  that  uses  an  exponent,  n,  and  a  constant,
C, is  developed.  Bayesian  inference  is  applied  to estimate  the  two  model  constants  using  a  discrete  grid
method.  Tool  wear  tests  are  performed  using  an  uncoated  carbide  tool  and  1018  steel work  material.
Test  results  are  used  to update  initial  beliefs  about  the  constants  and  the  updated  beliefs  are  then  used
to  predict  tool  life  using  a probability  density  function.  In  Part  2, an  extended  form  of  the  Taylor  tool
life  equation  is  implemented  that includes  the dependence  on  both  cutting  speed  and  feed  for  a turning
ncertainty operation.  The  dependence  on  cutting  speed  is  quantified  by  an  exponent,  p,  and  the  dependence  on  feed
by  an exponent,  q; the model  also  includes  a constant,  C. Bayesian  inference  is applied  to estimate  these
constants  using  the Metropolis–Hastings  algorithm  of  the  Markov  Chain  Monte  Carlo  (MCMC)  approach.
Turning  tests  are  performed  using  a carbide  tool  and MS309  steel  work  material.  The  test  results  are
again  used  to update  initial beliefs  about  the  Taylor  tool  life  constants  and  the updated  beliefs  are used
to  predict  tool  life  via  a probability  density  function.
. Introduction

Tool wear can impose a significant limitation on machining pro-
esses, particularly for hard-to-machine materials such as titanium
nd nickel-based superalloys. Taylor first defined an empirical rela-
ionship between tool life and cutting speed using a power law [1]:

Tn = C, (1)

here V is the cutting speed in m/min, T is the tool life in minutes,
nd n and C are constants which depend on the tool-workpiece
ombination. The constant C is defined as the cutting speed required
o obtain a tool life of 1 min. Tool life is typically defined as the
ime required to reach a predetermined flank wear width (FWW),

lthough other wear features (such as crater depth) may  also be
pplied depending on the nature of the tool wear. The Taylor tool
ife model is deterministic in nature, but uncertainty exists due

∗ Corresponding author. Tel.: +1 117046875086.
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to: (1) factors that are unknown or not included in the model and
(2) tool-to-tool performance variation. For these reasons, tool wear
is often considered to be a stochastic and complex process and,
therefore, difficult to predict.

Previous efforts to model tool wear as a stochastic process as
indicated in the reference list in [2]. Vagnorius et al. calculated
the optimal tool replacement time by determining the probability
of the tool failing before the selected time using a tool reliability
function [2]. Liu et al. derived a recursive formula to determine the
cutting tool reliability. The maximum likelihood method was  used
to determine the unknown parameters in the reliability function
[3]. Wiklund et al. applied the Bayesian approach to monitor tool
wear using in-process information [4]. The method presented in
this paper uses Bayesian inference to predict tool life at the process
planning stage. The distribution of the Taylor tool life constants, n,
and C, are updated using experimental tool life results. The updated
distributions of n and C can then be used to predict tool life. The

objective of the paper is to demonstrate the application of Bayesian
updating to tool life prediction. The Taylor tool life model is used
in this study, despite its potential limitations, because it is well-
known and generally understood in the manufacturing community.

dx.doi.org/10.1016/j.precisioneng.2013.06.006
http://www.sciencedirect.com/science/journal/01416359
http://www.elsevier.com/locate/precision
http://crossmark.crossref.org/dialog/?doi=10.1016/j.precisioneng.2013.06.006&domain=pdf
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ithout loss of generality, the Bayesian updating method demon-
trated in this paper can be applied to other available models [5].

Bayesian inference, which forms a normative and rational
ethod for belief updating is applied in this work [6]. Let the prior

istribution about an uncertain event, A, at a state of information, &,
e {A|&}, the likelihood of obtaining an experimental result B given
hat event A occurred be {B|A,&}, and the probability of receiving
xperimental result B (without knowing A has occurred) be {B|&}.
ayes’ rule is used to determine the posterior belief about event A
fter observing the experiment results, {A|B,&} as shown in Eq. (2).
sing Bayes’ rule, information gained through experimentation can
e combined with the prior prediction about the event to obtain a
osterior distribution:

A
∣
∣B, &

}
=

{
A
∣
∣&

}  {
B
∣
∣A, &

}
{

B
∣
∣&

} (2)

As seen in Eq. (1), the Taylor tool life model assigns a deter-
inistic value to tool life for a selected cutting speed. In contrast,

ayesian inference assigns a probability distribution to the tool life
alue at a particular cutting speed. From a Bayesian standpoint, a
ariable which is uncertain is treated as a variable which is ran-
om and characterized by a probability distribution. The prior, or

nitial belief of the user, can be based on theoretical considerations,
xpert opinions, past experience, or data reported in the literature;
he prior should be as chosen to be as informative as possible. The
rior is represented as a probability distribution and, using Bayes’
heorem, the probability distribution is updated when new infor-

ation becomes available (from experiments, for example). As a
esult, Bayesian inference enables a model to incorporate uncer-
ainty in terms of a probability distribution and beliefs about this
istribution to be updated based on experimental results.

The remainder of the paper is organized as follows. Section 2
escribes the application of Bayesian updating to Taylor tool life
onstants. Section 3 describes tool life prediction using the pos-
erior, or updated, distributions of tool life. Section 4 compares
ayesian inference to the traditional least squares fit and suggests
dvantages of using the Bayesian approach. The influence of prior
election and the likelihood uncertainty on the tool life predictions
s described in Section 5. Conclusions are provided in Section 6.

. Application of Bayesian inference to the Taylor tool life
odel

In the Taylor tool life model provided in Eq. (1), there is uncer-
ainty in the exponent, n, and the constant C. As a result, there is
ncertainty in the tool life, T. This uncertainty can be represented
s a joint probability distribution for n and C and, therefore, for
he tool life, T. Bayes’ rule (Eq. (2)) can be used to update the joint
rior distribution of n and C. The updated distribution can then be
sed to update the distribution of tool life, T. In this case, the prior
istribution from Eq. (2), {A|&}, is the initial belief about n and C.
pdating of these constants can be completed using experimental

ool life data. Bayes’ rule for this application is:

n, C
∣
∣ T, &

}
∝

{
n, C

∣
∣&

}  {
T
∣
∣n, C, &

}
, (3)

here {n, C|&} is the prior joint distribution of n and C, {T|n, C, &}
s the likelihood of observing an experimental result for tool life, T,
iven n and C, and {n, C|T, &} is the posterior joint distribution of

 and C given an experimental result of tool life, T. Note that the
enominator in Eq. (2), {B|&}, acts as a normalizing constant and is
ot included in Eq. (3).
According to Bayes’ rule, the posterior distribution is propor-
ional to the product of the prior and the likelihood. This is the
rocess of learning, or updating beliefs, when experimental results
re available. For multiple experimental results, the posterior after
Fig. 1. Joint prior distribution of n and C. The gray scale color bar identifies the pdf
value.

the first update becomes the prior for the second update and so on.
Note that the posterior distributions must be normalized so that
a unit area/volume under the probability density function (pdf) is
obtained. This is the role of the denominator in Eq. (2).

In a milling operation, other factors such as feed rate and
axial/radial depths of cut may  also affect tool life, in addition
to the cutting speed [7]. However, since cutting speed is often
the strongest factor, Bayesian updating was  performed using Eq.
(1). Without loss of generality, the procedure can be applied to
extended forms of the Taylor tool life equation.

2.1. Establishing the prior

The tool used in this study was an uncoated carbide (inserted)
tool and the workpiece material was  1018 steel. The prior, or ini-
tial beliefs, about the tool life for this combination was  therefore
identified; this is the first step in applying Bayesian inference to
a decision-making situation. In this case, the prior is a joint prob-
ability distribution for Taylor tool life constants, n and C. Recall
that the prior can be based upon theoretical considerations, expert
opinions, past experience, or data reported in the literature. A liter-
ature review was  therefore completed to determine the prior joint
distribution of Taylor tool life constants, n and C. Stephenson and
Agapiou [8] reported the value of n to be in the range of 0.2–0.25
for uncoated carbide tools and C to be around 100 m/min  for rough
finishing of low carbon steels. Kronenberg [9] reported values of
n and C to be in the range of 0.3–0.5 and 160–200 m/min, respec-
tively, for machining steel with a carbide tool. Creese [10] reported
typical n and C values for machining medium carbon steel with
a carbide tool to be 0.32 and 240 m/min, respectively. Cui et al.
[11] performed wear experiments using a carbide insert and 1018
steel workpiece. Values of n and C were reported to be 0.3 and
341 m/min, respectively. Based on these values, the priors for n and
C were selected to be normal distributions with mean values of 0.3
and 250 m/min, respectively, and standard deviations as 0.03 and
50 m/min, respectively. See Eq. (4):

n = Ń(0.3,  0.03) and C = Ń(250, 50) m/min, (4)

where Ń denotes a normal distribution and the values in the paren-
theses identify the mean and standard deviation, respectively. Since
both n and C can be updated using experimental tool life values,
the prior was  selected to be a joint normal distribution as shown in
Fig. 1. Also, n and C were assumed to be independent of each other
and their joint probability density function (pdf) was  determined by

the multiplication of the two individual distributions determined
from the literature review.

A Monte Carlo simulation was performed using the prior joint
distribution of n and C to determine the prior distribution of tool
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immersion), respectively. The insert wear status was measured
at regular intervals. To avoid removing the insert/tool from the
ig. 2. Histogram showing the prior pdf of tool life at 1500 rpm. The best-fit beta
istribution is also shown.

ife, T. For the simulation, 1 × 105 random n and C samples were
rawn from the prior joint distribution shown in Fig. 1 and the
aylor tool life curve was calculated for each pair using Eq. (1).
he cutting speed was calculated using the relation V = �DN, where

 is the tool diameter of 19.05 mm and N is the spindle speed (a
ange of 1500–7500 rpm was selected). As noted, no correlation
as assumed between n and C. For the Monte Carlo simulation,

he number of samples (1 × 105) was found to be large enough to
nsure convergence to the true mean and standard deviation of
he tool life distribution at any spindle speed. Fig. 2 shows the his-
ogram of tool life values at 1500 rpm and a beta distribution fit
o the histogram, where the histogram is normalized to obtain a
nit area under the curve. As shown in Fig. 2, the beta distribution
rovides a good approximation of the actual histogram of tool life.
ote that the single-sided distribution of the pdf is obtained due to

he power law form of the Taylor tool life equation. The beta dis-
ribution in Fig. 2 represents the prior pdf of tool life at 1500 rpm.
imilarly, beta distributions were fit to the histograms of tool life
t other spindle speeds within the selected range; this formed the
ool life prior distribution. Fig. 3 shows the prior cumulative distri-
ution function (cdf) of T at N = 1500 rpm. The cdf was  determined
rom the tool life histograms at this spindle speed. As shown in
ig. 3, the probability of obtaining a tool life greater than 300 min
t 1500 rpm is effectively zero, while the probability of obtaining

 tool life greater than 50 min  (and less than 300 min) is 0.4. The
ncertainty in the tool life, represented by the prior pdf and cdf

f tool life, is due to the uncertainty in the values of n and C. This
imics the experimental reality that wear testing performed on

wo nominally identical tools will almost certainly yield slightly

Fig. 3. Prior cdf of tool life at 1500 rpm.
Fig. 4. Prior cdf of tool life from the Monte Carlo simulation. It is observed that the
probability (see gray scale color bar) of obtaining a tool life of 50 min, for example,
decreases with increasing spindle speed.

different n and C values. Fig. 4 shows the cdf of tool life, T, over the
specified range of spindle speeds.

2.2. Experimental setup and results

The prior n and C joint distribution was updated using exper-
imental tool life data to obtain the posterior joint distribution. In
this section, the experimental steps followed to collect tool life data
are described. Tool wear tests were completed using a 19.05 mm
diameter single-insert Kennametal endmill (KICR073SD30333C) in
down-milling. The insert was  a 9.53 mm square uncoated carbide
Kennametal insert (107888126 C9 JC) with zero rake and helix
angles and a 15◦ relief angle. As noted, the workpiece material was
1018 steel. An atomic force microscope (AFM) was  used to measure
the topography of the carbide inserts prior to testing. Fig. 5 shows
an example 50 �m × 50 �m measurement (256 line scans, no digi-
tal filtering) of the rake face. It is seen that there is a small chamfer
with a 167◦ angle at the cutting edge. The roughness average for
the rake face was  310 nm.

Wear tests were performed at a spindle speed of 1500 rpm
(V = 89.8 m/min). The feed per tooth was 0.06 mm/tooth and the
axial and radial depths of cut were 3 mm and 4.7 mm (25% radial
spindle, a handheld microscope (60× magnification) was  used to
record digital images of the rake and flank surfaces. Fig. 6 shows the

Fig. 5. AFM measurement of the carbide insert rake face and cutting edge chamfer.
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Fig. 6. Setup for in-process FWW  measurement.
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of the prior (Fig. 1) and likelihood (Fig. 10) and normalizing the
product to obtain a unit volume under the pdf. Fig. 11 shows the
posterior joint distribution of n and C after the first update.
ig. 7. Images of FWW  at 60× magnification. The cutting times from left to right are
0,  78.5, 166.4, and 255.3}  min.

icroscope setup for recording the flank surface and measuring the
WW without removing the insert. The calibrated digital images
ere then used to identify the FWW  (no crater wear was observed

n these tests). Tool life, T, was defined as the time required for the
nsert to reach a FWW  of 0.3 mm.  Microscopic images of the relief
ace for selected cutting times are displayed in Fig. 7.

The time to reach a FWW  of 0.3 mm was equal to 255.3 min  for
esting at 1500 rpm. Additional tests were performed at 3750 rpm
nd 6250 rpm. Table 1 shows the experimental results used for
pdating. The results of growth in FWW  are displayed in Fig. 8. The

o’ symbols denote the intervals at which FWW  was recorded. The
ool life was linearly interpolated between adjacent measurement
oints if it exceeded 0.3 mm at the final measurement interval. As
xpected, the tool life reduced with increasing spindle speed. These
xperimental results were then used to update the prior joint dis-
ribution of n and C, and hence, the tool life, T, over a range of spindle
peeds.

.3. Bayesian updating using the discrete grid method

This section describes the discrete grid method used to deter-
ine the likelihood function and, subsequently, the posterior joint
istribution [6]. The likelihood function was defined as the likeli-
ood of observing experimental results for tool life, T, given n and
. The value of tool life, T, for the first experiment was  255.3 min
t N = 1500 rpm (V = 89.8 m/min). The range of values of n and C

able 1
xperimental tool life results used for updating.

Test # Spindle speed (rpm) Cutting speed (m/min) Tool life (min)

1 1500 89.8 255.3
2  3750 224.4 35.5
3  6250 374.0 8.5
Fig. 8. Variation of FWW  with cutting time at various spindle speeds.

was divided into a 500 × 500 grid of points. The value of tool life,
T, was calculated at each grid point (i.e., the selected {n, C} pair)
using Eq. (1) at the value of V corresponding to the first experiment
(V = 89.8 m/min). The distribution of tool life, T, at each grid point
was assumed to be normal with an uncertainty (one standard devi-
ation) equal to 10% of the experimental value. The T value calculated
at each grid point was  taken as the mean value. The likelihood at
each grid point was  taken to be the value of the pdf of T at the exper-
imental value. To illustrate, consider n = 0.3 and C = 500 m/min. The
tool life at the selected {n, C} combination at 1500 rpm using Eq. (1)
is 305.9 min. The distribution was  then determined at the selected
{n, C} pair using the calculated tool life value (305.9 min) at that
point as the mean and the assumed experimental uncertainty (one
standard deviation equal to 10% of the experimental value). The
likelihood of the {n, C} pair is the value of the pdf at the experimen-
tal value, which is equal to 0.0025 as shown in Fig. 9. In Fig. 9, ‘o’
represents the calculated tool life value at {n = 0.3, C = 500 m/min}
and ‘x’ represents the experimental tool life obtained. The pro-
cedure was then repeated for all the grid points. The purpose of
this approach was  to evaluate the probability density that the
selected {n, C} pair would yield the experimental value of tool life,
T, using the deterministic model in the presence of uncertainty.
This approach assigns all experimental non-repeatability to varia-
tions in n and C, i.e., it is assumed that there is no measurement
uncertainty. Fig. 10 shows the likelihood for the first experimen-
tal result. Note that the color bands indicate the value of the pdf.
The posterior was  calculated using a point-by-point multiplication
Fig. 9. Likelihood calculation for n = 0.3 and C = 500 m/min for the experimental
result of T = 255.3 min  at 1500 rpm.
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Fig. 10. Likelihood function for the first experimental result. The dark band identi-
fies the {n, C} pairs which are more likely to yield the experimental result.
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Fig. 13. Posterior cdf of tool life.
ig. 11. Posterior joint distribution of n and C after the first update. Relative to Fig. 1
the prior based on the literature review), it is seen that the new beliefs about n and

 are quite different.

The same procedure was used to update the joint distribution
f n and C for the remaining two experimental results. For each
ubsequent update, the posterior distribution from the previous
pdate was the prior for the next update.

This process was repeated for each test. Fig. 12 shows the poste-
ior joint distribution of n and C after three updates. The posterior
ean and standard deviation for n are 0.33 and 0.011, respectively,

nd for C are 600.1 m/min  and 35 m/min, respectively. Note that
tandard deviation has decreased with testing and updating, which

ndicates an improvement in belief (i.e., a reduction in uncertainty).

To determine the posterior joint distribution of tool life a Monte
arlo simulation was again performed. The posterior distribution

Fig. 12. Posterior joint distribution of n and C after three updates.
Fig. 14. Posterior and prior pdfs of tool life at 1500 rpm.

was approximated as a bivariate normal distribution. Random sam-
ples (1 × 105) were drawn from the bivariate normal posterior
distribution of n and C; and tool life was  then calculated at each
sample point. Fig. 13 shows the tool life cdf over the specified range
of spindle speeds. Figs. 14 and 15 compare the prior and posterior
tool life pdf and cdf, respectively, at 1500 rpm. As shown in Fig. 15,
the probability of observing a tool life of more than 300 min  is now
0.4 as compared to zero according to the prior distribution (Fig. 3).
Also, in comparison to the prior distribution of tool life (Fig. 4), there
is a significant reduction in the posterior distribution spread.
Fig. 15. Posterior and prior cdfs of tool life at 1500 rpm.
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life predictions depend on the selected prior distribution and
Fig. 16. Least squares curve fit to the experimental data.

. Tool life predictions

The posterior or the updated distribution of tool life can be used
o predict tool life at spindle speeds other than the ones at which
he tool wear experiments were performed. The posterior distribu-
ion was used to predict tool life at {2500, 5000, and 7500} rpm.
hree tests were performed at each spindle speed to identify the
on-repeatability. The tests were performed at the same parame-
ers (other than spindle speed) as stated previously and the same
rocedure was followed to measure tool life. As before, tool life was
et to be the time to reach a FWW  of 0.3 mm.  The tool life observed
n these tests can be compared to the predicted posterior distribu-
ions of T at the corresponding spindle speeds (see Figs. 17–19). As
een from the figures, the predicted posterior distributions provide
easonable agreement with the experimental results.

. Comparison with least squares curve fit

This section compares the tool life predictions using Bayesian
nference to the least squares method. Fig. 16 shows the least
quares curve fit and the experimental data (R2 = 0.9998). A Monte
arlo simulation was performed to identify the fit uncertainty. The
ncertainty (standard deviation) in the experimental result was
gain taken to be 10% of the measured value. 1 × 104 random sam-
les were drawn from the normal joint distribution with the mean
qual to the experimental value (from Table 1) and standard devia-

ion equal to 10% of the experimental value. A least squares Taylor
ype curve was fit to each sample combination of tool life values.
he mean and standard deviation from the Monte Carlo simulation

ig. 17. Comparison of the posterior tool life pdf, the least squares curve fit predic-
ion, and test results (‘x’) at 2500 rpm.
Fig. 18. Comparison of the posterior tool life pdf, the least squares curve fit predic-
tion, and test results (‘x’) at 5000 rpm.

are 0.425 and 0.181 for n and 965.8 m/min  and 65.8 m/min  for C,
respectively. The joint distribution of n and C was used to predict
the distribution of tool life at 2500 rpm, 5000 rpm, and 7500 rpm.
Table 2 shows a comparison of the values predicted by the least
squares best fit and the Bayesian model and the experimental val-
ues. Because a statistical curve fit requires a large amount of data
to achieve confidence in the fit parameters, it can be an expensive
option for tool life testing. Fig. 17 shows the experimental val-
ues at 2500 rpm (denoted by ‘x’), the posterior joint distribution
after Bayesian updating, and the distribution of tool life predicted
from the least squares fit. Figs. 18 and 19 show the same results
for 5000 rpm and 7500 rpm, respectively. These figures show that
the least squares prediction overestimates tool life. As noted, the
least squares method requires a large amount of data to achieve
confidence in the fit parameters. On the other hand, Bayesian infer-
ence takes into account prior beliefs and experimental evidence
and, therefore, gives good results even for a small number of data
points.

5. Effect of prior selection and likelihood uncertainty on
tool life predictions

In Bayesian inference, the posterior distribution is a product
of the prior and likelihood functions. Clearly, the posterior tool
likelihood uncertainty. In this section, the influence of prior
distribution and the likelihood uncertainty on the posterior is
evaluated. First, the influence of the prior distribution on the

Fig. 19. Comparison of the posterior tool life pdf, the least squares curve fit predic-
tion, and test results (‘x’) at 7500 rpm.
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Table  2
Comparison between the experimental results and the values predicted from the least squares curve fit and Bayesian updating.

Test # Spindle speed (rpm) Cutting speed (m/min) Tool life (min) Curve fit prediction (min) Bayesian prediction (min)

1 2500 149.6 50.1
(82.2, 5.2) (62, 5.5)2  2500 149.6 68.5

3  2500 149.6 72.0

4  5000 299.2 11.5
(15.7, 1.1) (8, 0.7)5  5000 299.2 9.5

6  5000 299.2 8.5

7  7500 448.8 2.6
(6.3, 0.6) (2.4, 0.4)8  7500 448.8 3.3

9  7500 448.8 3.2
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values (‘x’) and least squares prediction (‘o’). The tool life poste-
rior distribution has a lower mean for the correlated case, but the
ig. 20. Prior joint distribution with 50% correlation between n and C. An elliptical
hape is observed due to the correlation.

osterior distribution was examined. In the prior (shown in
ig. 1), no correlation between n and C was assumed. However,
orrelation between the variables of interest may  exist. Fig. 20
hows a prior with 50% correlation between n and C, i.e., selecting a
articular n value partially identifies a corresponding C value. The
rior updating was performed following the same procedure as
escribed previously. The posterior mean and standard deviation
or n were 0.33 and 0.012, respectively, and for C were 593.2 m/min
nd 34.8, respectively (see Fig. 21).

If no reported values or information about n and C are available
e.g., soon after a new alloy has been introduced), a non-informative
rior can also be assumed. In this case, a uniform joint distribu-
ion over the range of values of n and C could be selected as the
rior. A uniform joint distribution implies that the {n, C} pair is

qually likely to be anywhere within the domain. To illustrate this
pproach for the tool-material pair in this study, the minimum and

ig. 21. Posterior joint distribution of n and C after three updates using a normal
rior with 50% correlation between n and C.
Fig. 22. Posterior joint distribution of n and C after three updates using the uniform
prior.

maximum values were taken as and 0.1 and 0.5 for n and 50 m/min
and 1000 m/min  for C. See Eq. (5):

n = U(0.1, 0.5) and C = U(50, 1000),  (5)

where U represents a uniform distribution and the numbers in the
parenthesis represent the minimum and maximum values, respec-
tively. The updating procedure was  repeated using these uniform
prior distributions. The posterior mean and standard deviation for
n were 0.408 and 0.017, respectively, and for C were 865 m/min  and
56.2, respectively (see Fig. 22). Fig. 23 shows the tool life posterior
pdfs using all three prior pdfs: normal with no correlation, normal
with a 50% correlation, and uniform along with the experimental
results do not differ substantially.

Fig. 23. Comparison of tool life predictions at 2500 rpm using different priors.
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Table  3
Influence of prior pdf on posterior n and C mean and standard deviations.

Prior Mean n Std. dev. n Mean C (m/min) Std. dev. C (m/min)

1 Uniform 0.408 0.0165 864.85 56.19
2  Normal (no corr.) 0.330 0.010 593.2 34.8
3  Normal (50% corr.) 0.335 0.0095 607.2 28.74

Table 4
Taylor tool life equation values for various uncertainty levels.

% Std. dev. Mean n Std. dev. n Mean C (m/min) Std. dev. C (m/min)

1 1 0.416 0.002 935.64 8.46
.008 785.3 29.9
.010 593.2 34.8
.018 414.3 41.8
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(

2  5 0.384 0
3  10 0.330 0
4  20 0.278 0

The posterior n and C mean and standard deviation values are
ummarized in Table 3. The uniform prior pdf performs poorly in
redicting tool life distribution as compared to the normal prior
dfs because it is less informative. In general, the prior should be
elected to be as informative as possible, while accurately repre-
enting the user’s beliefs.

The influence of the likelihood uncertainty on the posterior
ool life distribution was also evaluated. In the discrete grid

ethod used to determine the likelihood function, an uncertainty
f 10% (one standard deviation) on the experimental tool life was
ssumed. To establish the sensitivity to this value, the uncertainty
as varied (1%, 5%, 10% and 20%) and updating was performed

or each case. Table 4 provides the mean and standard deviation
f the posterior joint distribution of n and C for all four cases.
ig. 24 shows the 1500 rpm test likelihood functions for 5% and

0% standard deviations. Fig. 25 shows the posterior tool life pdf
t 2500 rpm for different likelihood uncertainty percentages. The
xperimental values are denoted as ‘x’ and the least squares mean
rediction as ‘o’. Clearly, the assumed standard deviation affects

ig. 24. Likelihood functions for the 1500 rpm test with a 5% standard deviation
top) and a 20% standard deviation (bottom).
Fig. 25. Tool life predictions at 2500 rpm for different levels of likelihood uncer-
tainty.

the spread of the likelihood function. As shown in Fig. 25, the pos-
terior pdf obtained using a 20% likelihood uncertainty has a higher
standard deviation than the posterior pdf obtained using 10% like-
lihood uncertainty. For any given experimental result, decreasing
the experimental uncertainty reduces the spread of the likelihood
function and, therefore, the posterior distribution. The spread of the
posterior distribution determines the percentile value for the tool
life prediction. For example, there is a 0.95 probability that the tool
life would be more than the 95 percentile value. This value increases
for smaller experimental uncertainty which makes the result less
conservative (see Fig. 25). Thus, the prediction using a 20% uncer-
tainty would be conservative, i.e., the tool life predicted would tend
to be less than the experimental tool life. On the other hand, for low
standard deviation values, the likelihood function approaches the
deterministic result. This yields a less conservative tool life pre-
diction in this case. As the likelihood uncertainty approaches zero,
the posterior pdf standard deviation also approaches zero and the
mean approaches the least squares prediction. In general, the value
should be based on the uncertainty expected in the experimental
value. Multiple experiments could be performed at a single spindle
speed to determine this distribution, for example. From the values
of tool life obtained in the prediction set, a 10% standard deviation
is reasonable.

6. Conclusions

A Bayesian inference approach to tool life prediction was

demonstrated. The Taylor tool life constants, n and C, were updated
using milling tool life experimental results for a carbide insert-1018
steel combination. The prior joint distribution of n and C was deter-
mined by a literature review. The likelihood function was identified
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[10] Creese R. Introduction to manufacturing processes and equipment. New York,
J.M. Karandikar et al. / Preci

sing the discrete grid method, where the likelihood gives the
robability that a selected n and C combination would yield the
xperimental tool life value (using the deterministic model) in the
resence of uncertainty. The posterior distribution was  calculated
s the normalized product of the prior and likelihood functions. The
pdated distribution was used to predict the values of tool life at
ifferent spindle speeds. The predicted distributions agreed with
he experimental values of tool life.

Bayesian inference assigns a probability distribution over a
ange of the variable(s) of interest. The probability distributions
f the predictions can be updated when new information is avail-
ble (in the form of experimental results, for example). When this
ew information is obtained, uncertainty in the prior distributions
an be reduced. Bayesian inference provides a way  to combine prior
ata with experimental values to update beliefs about an uncertain
ariable. When combined with rational decision making theories,
n optimal sequence of experiments and value gained from exper-
mental results can also be determined.
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