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Bayesian Inference for Milling
Stability Using a Random Walk
Approach
Unstable cutting conditions limit the profitability in milling. While analytical and numeri-
cal approaches for estimating the limiting axial depth of cut as a function of spindle
speed are available, they are generally deterministic in nature. Because uncertainty
inherently exists, a Bayesian approach that uses a random walk strategy for establishing
a stability model is implemented in this work. The stability boundary is modeled using
random walks. The probability of the random walk being the true stability limit is then
updated using experimental results. The stability test points are identified using a value
of information method. Bayesian inference offers several advantages including the incor-
poration of uncertainty in the model using a probability distribution (rather than deter-
ministic value), updating the probability distribution using new experimental results, and
selecting the experiments such that the expected value added by performing the experi-
ment is maximized. Validation of the Bayesian approach is presented. The experimental
results show a convergence to the optimum machining parameters for milling a pocket
without prior knowledge of the system dynamics. [DOI: 10.1115/1.4027226]

1 Introduction

Discrete part production by machining is an important manu-
facturing capability in many industries. Limitations to milling pro-
ductivity include tool wear, positioning errors of the tool relative
to the part, spindle error motions, fixturing concerns, program-
ming challenges, and the instability introduced by the process
dynamics. Improved high-speed machining technology has made
increased spindle speeds and axial depths of cut possible. The
foundation for much of this work can be traced to papers by
Tlusty and Polacek [1], Tobias and Fishwick [2], and Merrit [3],
which, in turn, followed earlier work by Arnold [4] and others.
Based on these efforts, an understanding of the regeneration of
surface waviness during material removal as a primary mecha-
nism for chatter in machining was established. When combined
with the effects of forced vibrations during stable cutting, the
basis for exploring the role of machining dynamics in discrete part
production is established. Comprehensive reviews of subsequent
modeling and experimental efforts have been compiled and pre-
sented in the literature (e.g., Refs. [3] and [5–12]).

Although milling models are typically treated as deterministic,
it is often observed in practice that stable points may lie above or
below the predicted stability boundary. This is due to inaccuracy
in the measured/modeled structural dynamics [13,14], cutting
force coefficients, and stability model approximations. Existing
stability formulations typically do not incorporate uncertainty
effects, although some previous work has been done [15]. Further-
more, although methods are available for predicting the spindle
speed-dependent stability limit, the requirement for knowledge of
the tool point frequency response function (for each tool-holder-
spindle-machine combination) can impose a significant obstacle
in some production facilities.

In this study, the authors implement the normative foundations
of decision theory to not only enable a probabilistic characteriza-
tion of the stability boundary but also provide a systematic
method to select pre-machining experiments and quantify their
value. As a first step toward the goal of probabilistic stability

modeling, a simple “model,” or initial belief, is applied that does
not require knowledge of the system dynamics or cutting force
coefficients. The goal of the study is to converge to the optimum
machining parameters for milling a pocket by experimentation at
machining parameters which add the most value to expected profit.

2 Bayesian Inference

Bayesian inference provides a normative and rational method
for belief updating when new information in the form of experi-
mental results is made available. Let the prior distribution about
an uncertain event, A, at a state of information, &, be {A|&}, the
likelihood of obtaining an experimental result B given that event
A occurred be {B|A,&}, and the probability of receiving experi-
mental result B (without knowing A has occurred) be {B|&}.
Bayes’ rule determines the posterior belief about event A after
observing the experiment results, {A|B,&} as shown in Eq. (1).
Using Bayes’ rule, information gained through experiments can
be incorporated with the prior prediction about the stability limit
to obtain a posterior distribution,

AjB;&f g ¼ Aj&f g BjA;&f g
Bj&f g (1)

For milling stability, the uncertainty that exists in the true limiting
axial depth for each spindle speed is modeled using a probability
distribution over a set of all possible stability limits. The probabil-
ity distribution is then updated using experimental results and
Bayes’ rule (Eq. (1)). Using Bayesian inference, the predictive
model incorporates uncertainty and updates beliefs as new infor-
mation is made available (from experiments, for example). An
important step in applying Bayes’ rule is establishing the initial
belief, or prior, for the stability limit. In general, this initial pre-
diction: (1) can be constructed from any combination of theoreti-
cal considerations, previous experimental results, and expert
opinions and (2) should be chosen to be as informative as possible
regarding the experimenter’s belief. In this study, the prior is
determined assuming no knowledge of the system dynamics; it is
based on the assumption that it is more likely to get an unstable
cut as the axial depth is increased for any spindle speed. This sim-
ple prior probability distribution of stability is then updated using
experimental results.
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Bayesian inference offers several advantages. First, it takes into
account the inherent uncertainty in the model by using a probabil-
ity distribution. Second, the uncertainty (i.e., the probability distri-
bution) can be updated using experimental data. Third, the
combination of Bayesian inference and decision theory enables
experiments to be selected such that the expected value added by
performing the experiment is maximized, which enables the best
selection of experiments. The remainder of the paper is organized
as follows. Section 3 describes the Bayesian updating for milling
stability using a random walk approach. Section 4 describes the
selection of experimental tests points using the value of informa-
tion approach. The experimental results and validation are pre-
sented in Sec. 5. Section 6 details additional considerations when
using the proposed method.

3 Bayesian Updating of Milling Stability

Bayesian inference provides a rigorous mathematical frame-
work for updating belief about an uncertain variable when new
information becomes available. The prior belief is captured using
a probability distribution for the variable of interest, where the
prior probability distribution about the location of the stability
boundary in milling, expressed as a function of spindle speed and
axial depth, is assigned by the user. In the case of milling, a joint
probability distribution characterizing the probability of stability
for all axial depths, b, and spindle speeds, X, is required. Since
there is a continuum of axial depths and spindle speeds, it is help-
ful to use some structure in defining the joint distribution. The
structure used here incorporates a random walk methodology with
a Markov structure. A Markov structure means that the condi-
tional probability assignment to any future state depends only on
the present state and not on the past states.

3.1 Random Walk Methodology. A random walk can be
described as the probabilistic path, where the change in position at
each time increment depends on the current position but is inde-
pendent of all the past positions of the path. A random walk with
a normally distributed step size in the particle position, x, is used
in this study. This normally distributed step size in x states that
the change in position at any time is a random value selected from
a normal distribution.

To illustrate, let the initial position of x be zero at time t¼ 0. At
the next time instant, t1, the new position of x is sampled from the
normal distribution, N(l,r), with a mean of l and standard devia-
tion of r. Subsequently, the position of x at any arbitrary time, ti,
is the sum of the previous position and a random value,

x t ¼ tið Þ ¼ x t ¼ ti�1ð Þ þ Nðl;rÞ (2)

Note that the value at any future state depends only on the present
state, but not on any of the previous states. Figure 1 (left) shows
20 sample paths of x starting at t¼ 0 s and continuing to t¼ 10 s.
The time axis was divided into discrete increments of 0.01 s and
the new position was sampled for each of these increments. The
position step size was normally distributed with zero mean and
standard deviation equal to 0.1, i.e., N(0,0.1). At each time incre-
ment of 0.01 s, the position of x was determined by the addition of
its current position and a randomly generated x step size sampled
from N(0,0.1). Thus, x(t¼ ti)¼ x(ti – 0.01)þN(0,0.1). A normally
distributed step size ensures that the distribution of x at any time
instant is also normal. Additionally, since the step size distribution
has zero mean, the mean of the distribution of x is nominally zero
at all time instants. Figure 1 (right) shows 5000 sample paths gen-
erated using N(0,0.1), starting from x¼ 0 at t¼ 0 s. Figure 2 shows
the distribution of x at t¼ 5 s (left) and t¼ 10 s (right). As shown
in the figure, the distribution of x is normal with a zero mean. It is
also observed that the variance increases with time. Since the
increments are generated independently, the variance after n steps
is equal to the variance of each increment multiplied by n. Com-
paring the two distributions in Fig. 2 shows that the uncertainty in
x increases with time.

3.2 Bayesian Inference. The random walk method can be
applied to describe the prior belief about the uncertain stability
boundary (or limit) in a spindle speed-axial depth of cut domain
given knowledge of the limit at a particular point in the domain.
The sample paths can be generated in spindle speed increments
(instead of time) and the position step size is selected for the axial
depth of cut. The stability boundary prediction proceeds by gener-
ating N sample paths, each of which may represent the actual sta-
bility boundary. The probability that each sample path is the true
stability limit based on this model is 1/N. These sample paths are
used as the prior in applying Bayesian inference. This prior shows
that the uncertainty in the location of the stability limit increases
when moving further away from a point (i.e., a combination of
spindle speed and axial depth) where the stability limit is known.
The prior probability is then updated by experimental results using
Bayes’ rule. For each sample path, Bayes’ rule can be written as

P path ¼ true stability limit jtestresultð Þ
/ P test result jpath = true stability limitð Þ
� P path ¼ true stability limitð Þ (3)

Here, P(path¼ true stability limit) is the prior probability which,
before any testing, is equal to 1/N for any sample path and P(test
result | path¼ true stability limit) is the likelihood of obtaining the

Fig. 1 Twenty (left) and 5000 (right) random walks with a normally distributed position step size described by
N(0,0.1)
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test result given the true stability limit. Their products yield the pos-
terior stability limit probability given the test result, P(path¼ true
stability limit | test result). In practice, the probability of the test
result, P(test result), may be used to normalize the posterior proba-
bility (by dividing the right hand side of Eq. (3) by this value).

3.3 Constructing the Prior Distribution. In Bayesian infer-
ence, the prior probability represents the initial degree of belief
regarding the stability limit. The sample paths generated using the
random walks are used to define a prior probability of stability. To
construct the prior, a spindle speed-axial depth of cut domain was
first defined. For demonstration purposes, the operating spindle
speed was arbitrarily selected to be between 4000 rpm and
10,000 rpm. It was assumed that for all spindle speeds within the
operating range, the stability limit is between 0 and the maximal
axial depth defined by the flute length (selected to be 10 mm). Fol-
lowing the same procedure described in Sec. 3.1, random walks
were generated. The starting point was the midpoint of the axial
depth range (5 mm). The sample paths were started from
X¼ 0 rpm to allow the paths to cross the maximum axial depth of
10 mm by 4000 rpm and continued to X¼ 15,000 rpm. The step
size in mm was described by N(0,0.5). Figure 3 shows many sam-
ple paths.

Each sample path represents the true stability limit with some
probability. To illustrate how we can incorporate our prior infor-
mation this way, suppose we would like to confine the stability
limit within the spindle speed range 4000 rpm and 10,000 rpm to
be between within the axial depths 0 and 10 mm. This implies that
the paths which cross outside 0 or 10 mm within the spindle speed
range of 4000 rpm to 10,000 rpm have a zero probability of being
the true stability limit since they are outside the pre-defined

stability domain. These sample paths are filtered out or multiplied
by zero. The probability that the remaining paths represent the
true stability limit is now 1/N, where N is the number of remaining
paths. Figure 4 shows 10,000 sample paths which have the axial
depth within 0–10 mm in the spindle speed range of 4000 rpm to
10,000 rpm.

Figure 5 shows the histogram of axial depths at 4000 rpm at
10,000 rpm. Note that the axial depth histograms are confined
within 0 mm and 10 mm due to path filtering. The mean is 5 mm
at all spindle speeds since the starting point of the walks was
selected as 5 mm.

The excess cumulative distribution function (cdf) is then calcu-
lated at each spindle speed within the domain using the histo-
grams. The excess cdf gives the probability that an axial depth
will be stable. Figure 6 (left) shows the excess cdf over the spindle
speed domain. Figure 6 (right) shows the excess cdf for the axial
depth, which is initially the same at each spindle speed. As shown
in Fig. 6, the probability is 0 that an axial depth greater than
10 mm will be stable and the probability that an axial depth
greater than 5 mm will be stable is 0.5. The cdf therefore states
that the probability of obtaining a stable cut increases as the axial
depth of cut is reduced. Since machining is not possible at an axial
depth of 0, the minimum axial depth is taken to be 0.01 mm. It
represents the prior or initial belief, about the stability boundary.
In this case, the prior was only based on the assumption that the
probability of obtaining a stable cut decreases with higher axial
depths.

3.4 Updating Using Experimental Stability Results. In the
case of stability testing, if the true stability limit was known, then

Fig. 3 Many sample paths generated in the spindle speed-
axial depth domain

Fig 4 10,000 sample paths after filtering. The paths that cross
0 or 10 mm in the spindle speed range of 4000 rpm to
10,000 rpm have been removed.

Fig. 2 Histograms of x at 5 s (left) and 10 s (right)
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it would be known with certainty whether the result of a test
would be stable or unstable. The test would be stable with a prob-
ability of 1 if the test point was below the stability limit and stable
with a probability of 0 (unstable with a probability of 1) if the test
point was above the stability limit. For the random walk approach,
recall that each sample path represents the true stability limit with
a probability of 1/N. Suppose a test is performed at some spindle
speed-axial depth combination and the result is stable. This
implies that all paths that with axial depths below the test point at
the selected spindle speed cannot be the true stability limit
(according to linear stability theory and the traditional Hopf bifur-
cation behavior [1–3,16]). Similarly, for an unstable test result, all
paths with a higher axial depth at the test spindle speed cannot be
the true stability limit. Therefore, for a stable test, the likelihood
for each path which with a higher axial depth than the test point is
1 and the likelihood for each path with a lower axial depth is 0.
Similarly, for an unstable test, the likelihood for each path with a
higher axial depth is 0 and the likelihood for each path with a
lower axial depth than the test point is 1.

Because the likelihood for every path is always either 0 or 1,
the updating procedure proceeds by filtering out paths after each
test result. After any number of tests, all paths which have not
been filtered out (i.e., multiplied by a likelihood of 0) will have a
probability equal to the reciprocal of the remaining number of
paths. When updating the prior using a test result, the paths which
do not agree with the test result are filtered out and the remaining
paths represent the updated stability prediction.

To illustrate, consider a stability test completed at X¼ 7000 rpm
and b¼ 5 mm. A stable test implies that all axial depths below

5 mm would be stable at X¼ 7000 rpm. As a result, the likelihood
that any path that with an axial depth less than 5 mm at
X¼ 7000 rpm is the true stability limit is zero. All such paths are fil-
tered out, or multiplied by zero, to obtain the updated prediction.
Similarly, if the test at X¼ 7000 rpm and b¼ 5 mm was unstable,
the likelihood that any path with an axial depth greater than 5 mm at
X¼ 7000 rpm is the true stability limit is zero and all such paths are
filtered out. Figure 7 shows the remaining paths after filtering given
a stable test result (left) and an unstable test result (right). As seen
in Fig. 7, all paths that are below 5 mm at 7000 rpm are filtered out
for a stable test result while the paths above 5 mm at 7000 rpm are
filtered out for an unstable test result. Note that Fig. 7 only shows
the path in the spindle speed range from 4000 rpm to 10,000 rpm.

The updated probability distributions can then be calculated
using the data from the histograms of axial depths at each spindle
speed within the domain. As noted, all paths which have not been
filtered out (those with a likelihood of 1) will have a probability
equal to the reciprocal of the remaining number of paths. For a
stable result at X¼ 7000 rpm and b¼ 5 mm, the remaining num-
ber of paths is 4970 while an unstable result gives 5030 remaining
paths for this example. Figure 8 shows the updated excess cdf at
the test speed given a stable result (left) and an unstable result
(right). Figure 9 shows the updated posterior cdf of stability given
a stable (left) and unstable (right) result at X¼ 7000 rpm and
b¼ 5 mm. As seen from the posterior cdf, the single test updates
the distribution at all spindle speeds. The extent to which a test at
one spindle speed updates the distribution at all speeds depends
on the standard deviation of the step size for the random walk.
This dependence is evaluated in Sec. 6.

Fig. 5 Histograms of axial depths at 4000 rpm (left) and 10,000 rpm (right)

Fig. 6 Prior probability of stability in the spindle speed-axial depth domain (left). The probability of stability is
0 at an axial depth of 10 mm.
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4 Value of Information for Experiment Selection

Bayesian inference combined with decision analysis models
enables a dollar value to be placed on the information gained from
an experiment prior to performing it. This value is referred to as
the value of information [17,18]. It may be defined as the expected
profit before testing minus the profit after testing or, in terms of
cost, the expected cost prior to testing minus the cost after testing

[17]. Note that while the value of information uses expected value
after testing, it is calculated before actually performing the test.

The primary motivation for defining the value of information is
to optimize the selection of experiments. The experimental test
point is selected which adds the most (expected) value to the
profit. In addition, if the expected cost of performing an experi-
ment is more than the expected value gained from the experiment,
it is not recommended that the experiment be completed. This is a

Fig. 8 Updated cdf at 7000 rpm given a stable test result (left) and an unstable test result (right) at a test axial
depth of 5 mm

Fig. 9 Posterior cdf for milling stability given a stable test result (left) and an unstable test result (right) at an
axial depth of 5 mm and spindle speed of 7000 rpm

Fig. 7 Sample paths remaining after filtering given a stable test result (left) and an unstable test result (right) at
and axial depth of 5 mm and spindle speed of 7000 rpm
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major advantage over statistical design of experiments, which typ-
ically does not consider profit in test point selection. In the value
of information approach to milling stability modeling, a test is
performed at a point where the maximum information/value about
the stability limit is obtained.

To illustrate this point, consider a simple situation where only
three spindle speed-axial depth combinations are available (A, B,
and C). Suppose it is initially predicted that A is definitely stable,
while B and C each have a 50% chance of being stable. In addi-
tion, suppose that the cost of machining (assuming the cut is sta-
ble) is $100 using A, $50 using B, and $30 using C and that only
stable operating points will be used (based on the assumption that
the cost of performing an unstable cut is very large due to the sub-
sequent rework or scrap). Prior to performing the stability test,
only A can be chosen as the operating point and, therefore, if no
testing is performed the cost of machining will be $100. However,
suppose the option of performing a single stability test at either A,
B, or C was given. How can the proper test be selected? Because
it is already known that a test at A will have a stable result, no test
should be completed at A because no new information will be
obtained. However, if it was possible to test at B, there is a 50%
chance that the result is unstable, in which case the choice will
still be A and the cost will be $100. On the other hand, there is
also a 50% chance that the test will be stable, in which case B will
be selected and the cost will only be $50. The expected cost of
machining given the result of a test at B is therefore $75. The
value gained by testing at B (defined as the cost prior to testing
minus the expected cost after testing) is $25. Similarly, the value
gained by testing at C can also be calculated. There is a 50%
chance that the result will be unstable, in which case machining
will be completed at A and the cost will be $100. There is also a
50% chance that the test will be stable and then machining will be
completed at C and the cost is only $30. Thus, the expected cost
given the result of a test at C is $65 and the value gained by test-
ing at C is $35. Now (assuming the goal is to maximize profit),
the question of which test to perform has a straightforward
answer: choose the test which adds the most value. For this exam-
ple, testing would be completed at C.

4.1 Cost Formulation. Before calculating the value of infor-
mation, it is necessary to determine the cost of performing the
operation given the selected operating conditions. To calculate the
cost, a the feature to be machined was specified as a pocket with
dimensions of 150 mm in the x direction, 100 mm in the y direc-
tion, and 25 mm deep. The tool path is shown in Fig. 10.

The cost function does not include the effects of tool wear; it
was neglected for the 6061-T6 workpiece/TiCN-coated carbide
tool combination considered in this study. The simplified cost, C,
shown in Eq. (3) is based on the machining cost per minute,
rm¼ $2, and machining time, tm, which depends on the part path
geometry and machining parameters. The parameters used to

calculate the cost for machining the pocket are listed in Table 1.
Due to the nature of the part path, for any selected spindle speed
the cost function is stepped (see Fig. 11). These steps occur at an
integer fraction of the pocket depth

C ¼ rmtm (4)

4.2 Selecting the Test Points. The revenue generated by
machining the selected pocket is assumed to be $2000 for this
example. Profit is defined as the revenue generated minus the
machining cost. For constant revenue (generated in machining the
feature), maximizing profit is equivalent to minimizing the
expected cost. Since each point has a probability of stability, the
expected profit a given pair of operating parameters, {Xop, bop}, is
given by

Vprior Xop; bop

�
¼ Pstable Xop

�
; bop

�
Vstable Xop

�
; bop

��

þð1� Pstable Xop

�
; bop

�
ÞVunstable Xop

�
; bop

�

(5)

where the subscript “op” denotes operating point, Pstable is the ran-
dom walk prior probability of stability at the operating point (see
Fig. 6), Vstable is the profit given that the cut is stable, Vunstable is
the profit given that the cut is unstable, and Vprior is the expected
profit for machining the pocket at {Xop, bop} prior to performing
any further test. Unstable operating points are considered infeasi-
ble, since it is assumed that the cost added by reworking the part
and the cost associated with potential damage to tooling are sub-
stantially higher than the revenue generated in machining the
pocket. Thus, the operating point would be the one which is stable
with certainty (Pstable¼ 1) and provides the highest profit within
the domain (according to Eq. (5)). This implies that the cost of
instability is negative infinity. Recall that it was assumed that a
0.01 mm axial depth is stable at all spindle speeds within the do-
main. Therefore, before performing any test, the profit would be

Fig. 10 Tool path for pocket milling

Table 1 Parameters used to determine the reference stability
limit for the simulated testing scenario

Parameter Value Units

Radial depth 19.0 mm
Feed per tooth 0.06 mm/tooth
Tool radius 9.5 mm
Number of teeth 1 teeth
Helix angle 0 deg

Fig. 11 Cost of machining at axial depth–spindle speed combi-
nations given that the resultant cut is stable. Notice the steps in
the cost function at integer fractions of the pocket depth.
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highest at an axial depth of 0.01 mm and spindle speed of
10,000 rpm since the machining time would be minimized at the
maximum spindle speed. The maximum profit before performing
any test, V*prior, is therefore the profit at {10,000, 0.01}.

The expected value of performing a test at any point {Xtest,
btest} is calculated as follows (the subscript test indicates a test
point). Each test is assumed to be either stable or unstable. The
resultant posterior cdf is different for a stable result at the test
point than it is for an unstable result (see Fig. 9). Subsequently,
the profit after the test, calculated using the posterior cdf, is also
different for a stable test than for an unstable test. Assume that a
test at {Xtest, btest} is stable. The maximum profit would be at
{Xtest, btest}, since that operating point is known to be stable with
certainty. The maximum profit would be equal to Vstable {Xtest,
btest}. However, if the cut is unstable, the maximum expected
profit would be equal to the maximum profit before performing
the test, V*prior. This is the case because with an unstable test cut,
no additional point is known to be stable with certainty and the
cost of an unstable cut is negative infinity. Thus, the expected
profit, Vtest, after performing a test at any {Xtest, btest} is given by

Vtest Xtest; btestg ¼ Pstable Xtestf ; btestgVstable Xtestf ; btestgf
þð1� Pstable Xtestf ; btestgÞV�prior (6)

The value of information, VI, or the value obtained by performing
an experiment, is defined, for an expected value maximize, as the
expected profit given the test results minus the profit before test-
ing as shown below

VI ¼ expected profit after testing� expected profit before testing

¼ Vtest Xtest; btestg � V�prior

n

¼ Pstable Xtestf ;btestgVstable Xtestf ; btestg
þ ð1� Pstable Xtestf ; btestgÞV�prior � V�prior

¼ Pstable Xtestf ;btestgVstable Xtestf ; btestg � V�prior (7)

A test is only performed where the value of information is the
highest. Therefore, the test parameters are selected using Eq. (8)

Xtest; btestf g ¼ max VIð Þ

¼ max Pstable Xtestf ; btestgVstable Xtestf ; btestg � V�prior

� �

(8)

The expected value of the test is based on the prior probability of
stability. After a test is performed, the prior cdf is updated using
the test result. This updated posterior distribution is the prior dis-
tribution used to determine the next test point. This process is
repeated for a selected number of tests. Once a stable result from
a test is obtained (and for all further stable test results), V*prior is
the maximum profit from all points known to be stable with
certainty.

5 Experimental Results

Using the value of information approach, a sequence of 20 tests
was completed. The operating conditions for each test point were
selected to maximize the value of information at that time. Note
that when using this value of information approach, each test is
treated separately. For multiple tests, each test point is selected
assuming that no additional tests will be completed. The random
walk prior for this example was composed of 1� 105 sample
paths. Figure 12 shows the test points selected using the value of
information approach, where stable test results are marked as “o”
and unstable as “x”. The results are also summarized in Table 2.

The stability was evaluated by observing the frequency content
of the acceleration signal obtained by attaching a low-mass

accelerometer to the flexure test platform, see Fig. 13. The side-
wall surface was also used to identify unstable cuts. Figure 14
shows the frequency content of the acceleration signal and the
machined surface for a test cut at {10,000 rpm, 6.25 mm}. For this
stable result, content is observed only at the tooth passing fre-
quency (166.66 Hz) and its harmonics and the surface is smooth.
Figure 15 provides the same information for a cut at {8294 rpm,
8.34 mm}. Frequency content exists at frequencies other than the
tooth passing frequency and its harmonics. Also, the surface has
distinctive chatter marks indicating an unstable cut. Figure 16
shows the posterior stability cdf of stability after the 20 tests.
Based on these results, the optimum operating point is
{10,000 rpm, 6.25 mm} with a profit of $1206.50 per part.

To validate the performance of the algorithm, the analytical sta-
bility boundary was evaluated using a frequency-domain analyti-
cal approach [19]. The force model coefficients and the frequency
response function (FRF) of the flexure on which the tests were
performed were measured. The force model coefficients for the
6061-T6 workpiece material-tool combination were calculated
using a linear regression to the mean values of x (feed) and y
direction cutting forces measured over a range of feed per tooth
values [19]. The FRFs of the flexure in the x (feed) and the y

Fig. 12 Stability results for the value of information testing.
The “o” symbols represent a stable result and the “x” symbols
indicate an unstable result.

Table 2 Experimental test points and results

Test
number

Spindle speed
(rpm)

Axial depth
(mm)

Stability
result

1 10,000 0.54 Stable
2 10,000 2.51 Stable
3 10,000 4.18 Stable
4 10,000 6.25 Stable
5 10,000 8.36 Unstable
6 9819 8.36 Unstable
7 9639 8.36 Unstable
8 9920 8.36 Unstable
9 9398 8.36 Unstable
10 9117 8.36 Unstable
11 9719 8.36 Unstable
12 8916 8.36 Unstable
13 9960 8.36 Unstable
14 8595 8.36 Unstable
15 9498 8.36 Unstable
16 9880 8.36 Unstable
17 9278 8.36 Unstable
18 8294 8.36 Unstable
19 9779 8.36 Unstable
20 8776 8.36 Unstable

Journal of Manufacturing Science and Engineering JUNE 2014, Vol. 136 / 031015-7

Downloaded From: http://manufacturingscience.asmedigitalcollection.asme.org/ on 03/16/2016 Terms of Use: http://www.asme.org/about-asme/terms-of-use



directions were also measured using impact testing; see Fig. 17.
The force coefficients are listed in Table 3. Figure 18 shows the
stability lobes calculated along with the test points.

Note that from the analytical stability boundary, the optimum
operating point is {7870 rpm, 8.34 mm} with a profit of $1220.00
per part. The operating point {10,000 rpm, 6.25}, which gives a
profit of $1206.5, would not have been chosen based on the ana-
lytical boundary. However, the stability boundary obtained using

the analytical is deterministic and uncertainty exists in the meas-
ured cutting force coefficients and FRFs, so some disagreement
with experiment is anticipated. Even without knowledge of the
system dynamics, the value of information approach was success-
ful in locating the optimal operating point. The analytical stability
lobes shown in Fig. 18 were also validated experimentally. Fig-
ure 19 shows the analytical prediction and the test results, where

Fig. 14 Frequency content of the acceleration signal (left) and the machined surface (right) at {10,000 rpm,
6.25 mm}. Content is seen only at the tooth passing frequency (167 Hz) and its harmonics.

Fig. 15 Frequency content of the acceleration signal (left) and the machined surface (right) at {8294 rpm,
8.34 mm}. This unstable cut exhibits content other than tooth passing frequency and its harmonics (left) and
chatter marks are observed (right).

Fig. 13 Experimental setup for stability testing
Fig. 16 Posterior stability cdf after 20 tests
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“o” denotes a stable cut and “x” denotes an unstable cut. The test-
ing locations were selected only to verify the lobe shape; the value
of information approach was not applied.

6 Discussion

In this section, the effect of the standard deviation for the ran-
dom walk step size on the posterior cdf and the test points is eval-
uated. The effect of the spindle speed-axial depth of cut domain
on the posterior stability and test points is also explored.

Using the random walk approach, a test at any spindle speed
updates the distribution at all spindle speeds. The extent to which
a test at a spindle speed updates the distribution at spindle speeds
other than the test speed depends on the standard deviation of the
step size. To evaluate this dependence, random walks were gener-
ated using a normally distributed step size with zero mean and a

standard deviation equal to 0.25 mm, N(0,0.25). The random
walks in Sec. 3 were generated using a standard deviation equal to
0.5 mm, N(0,0.5). Consider that the updating was performed based
on a stable test result at 7000 rpm and 5 mm. Figure 20 shows the
updated cdf at 6500 rpm for both the standard deviations. As

Fig. 17 FRFs for the flexure in the x (left) and the y (right) directions used in the experiments. Note that the dynamic
stiffness is an order of magnitude higher in the y direction.

Table 3 Parameters used to determine the reference stability
limit for the simulated testing scenario

Parameter Value Units

Tangential coefficient 853 N/mm2

Normal coefficient 310 N/mm2

Tangential edge coefficient 10.0 N/mm
Normal edge coefficient 8.0 N/mm

Fig. 18 Test point selections compared with the analytical
stability lobes

Fig. 19 Experimental validation of the stability lobes

Fig. 20 The updated cdf at 6500 rpm given a stable test at
{7000 rpm, 5 mm} with standard deviations of 0.5 mm and
0.25 mm for the random walk generation
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shown in the figure, the selected test does not affect the cdf at
6500 rpm for a standard deviation equal to 0.5 mm. The cdf is the
same as the prior cdf as shown in Fig. 6. However, for the stand-
ard deviation of 0.25 mm, the cdf at 6500 rpm shows a probability
of stability equal to unity at 2 mm. Figure 21 shows the updated
posterior cdf given a stable test result at {7000 rpm, 5 mm} using
random walks generated using a standard deviation of 0.5 mm
(left) and 0.25 mm (right). The algorithm for selection of test
points was repeated using the random walks generated with a
standard deviation of 0.25 mm. Figure 22 shows a comparison of
the updated posterior cdf after 20 tests for both cases. The algo-
rithm converges to the same optimum operating point in both
instances.

A specific criterion for selecting the standard deviation of the
step size is not presented here. However, trends have been
observed. A higher standard deviation yields walks that are more
volatile in the domain. This increases the number of remaining
walks after each update (i.e., path filtering) using a test result and
reduces the extent to which a test affects the cdf at all speeds in

Fig. 21 Updated posterior cdf given a stable test result at {7000 rpm, 5 mm} for random walks generated using
standard deviations of 0.5 mm (left) and 0.25 mm (right)

Fig. 22 Updated posterior cdf after 20 tests using random walks generated with standard deviations of 0.5 mm
(left) and 0.25 mm (right)

Table 4 Experimental test points and results for spindle speed
range of 4000 rpm to 8000 rpm

Test
number

Spindle speed
(rpm)

Axial depth
(mm)

Stability
result

1 8000 0.54 Stable
2 8000 5.01 Unstable
3 7197 5.01 Stable
4 7197 6.25 Stable
5 7250 8.36 Stable
6 7334 8.36 Stable
7 7571 8.36 Stable
8 7665 8.36 Stable

Fig. 23 Test point selection compared with the analytical
stability lobes
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the domain. As shown in Fig. 20, a standard deviation of 0.5 mm
does increase the spread of the cdf at 6500 rpm given a stable test
at {7000 rpm, 5 mm}. Therefore, a higher standard deviation pro-
vides a more conservative representation of the stability
boundary.

The effect of the spindle speed-axial depth domain on the test
point selection was also evaluated. The Bayesian updating proce-
dure using random walks was repeated with a spindle speed do-
main from 4000 rpm to 8000 rpm. The test point selection was
based on the value of information approach. Eight experiments
were performed and the test result, stable or unstable, was deter-
mined based on the analytical stability lobe shown in Fig. 18.
Table 4 shows the test points determined using the value of infor-
mation approach. Figure 23 shows the test point selection and the
analytical stability lobes; “o” represents a stable cut and “x” repre-
sents an unstable cut. Figure 24 shows the updated posterior cdf
after eight tests. Using the value of information approach, the ran-
dom walk method is robust and insensitive to the selected spindle
speed-axial depth of cut domain. Although the nature of cdf is dis-
crete, it does not affect the optimal operating point selection. Note
that the optimal operating point was decided as the one which is
known to be stable with certainty and the profit is the highest.

7 Conclusions

Bayesian inference using a random walk approach for stability
prediction in milling was presented. The optimal test point selec-
tion was based on the value of information method. The motiva-
tion for implementing a Bayesian inference model was: (1) a
Bayesian inference model enables a prediction which considers
both theory and experimental results and (2) when using a Bayes-
ian inference model, experiments can be chosen such that the
expected value added by performing the experiment is
maximized.

For the study presented here, no prior knowledge of the
machining dynamics was assumed. Only stability test results were
considered and the optimal experimental test point was selected

using the value of information approach. Bayesian inference com-
bined with decision analysis enables a dollar value to be placed on
the information gained from an experiment prior to performing it.
The stability updating was completed using random walks gener-
ated in the spindle speed-axial depth of cut domain, where the fea-
ture to be machined was selected to be a pocket. The value of
information approach selects a test point which adds maximum
value to profit taking into account the cost of machining the
selected feature. The test points converged to the optimal operat-
ing point even without knowledge of the system dynamics. The
proposed methodology enables a user to identify optimum stable
machining parameters using stability experiments only without
the knowledge of system dynamics. The approach is robust and
insensitive to the spindle speed-axial depth of cut domain.
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