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Abstract

In this paper we present a finite element modeling approach to determine the stiffness and damping behavior between the tool and

holder in thermal shrink fit connections. The continuous contact stiffness/damping profile between the holder and portion of the tool

inside the holder is approximated by defining coordinates along the interface contact length and assigning position-dependent stiffness

and equivalent viscous damping values between the tool and holder. These values are incorporated into the third generation receptance

coupling substructure analysis (RCSA) method, which is used to predict the tool point frequency response for milling applications. Once

the holder and inserted tool section are connected using the finite element analysis-based stiffness and damping values, this subassembly

is then rigidly coupled to the (measured) spindle–holder base and (modeled) tool. Experimental validation is provided.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Discrete part production by milling remains an important
manufacturing capability. However, there are many potential
obstacles to producing quality parts at low cost in a timely
manner. One particular limitation that has received consider-
able attention in the literature is chatter, or unstable
machining; a second is surface location error, or an error in
the part dimension caused by dynamic deflections of the tool
(and potentially the part/fixture) during stable cutting. In
both cases, a primary factor affecting the process perfor-
mance is the system frequency response function, or FRF.

The system FRF, often dominated by the flexibility of
the tool–holder–spindle assembly as reflected at the tool’s
free end, can be obtained using impact testing, where an
instrumented hammer is used to excite the tool at its free
end (i.e., the tool point) and the resulting vibration is
measured using an appropriate transducer, typically a low-
mass accelerometer. However, due to the large number of
e front matter r 2006 Elsevier Ltd. All rights reserved.
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spindle, holder, and tool combinations that may be
available in a particular production facility, the required
testing time can be significant. Further, the measured
response is often strongly dependent on the tool overhang
length. Therefore, a model which is able to predict the tool
point response based on minimum input data is the
preferred alternative [1–13].
The purpose of this paper is to build on the previous

work of Schmitz et al. [1–8], which describes tool point
FRF, or receptance, prediction using the receptance
coupling substructure analysis (RCSA) method. In these
previous studies, two- and three-component models of the
machine–spindle–holder–tool assembly were defined. In
the two-component model, the machine–spindle–holder
displacement-to-force receptance was recorded at the free
end of the holder using impact testing, while the tool
was modeled analytically. The tool and machine–
spindle–holder substructure receptances were then coupled
through translational and rotational springs and dampers,
where their values were determined through a nonlinear
least squares fitting procedure. In this initial work
the displacement-to-moment, rotation-to-force, and
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rotation-to-moment receptances at the free end of the
holder were assumed zero (i.e., perfectly rigid).

In the second-generation three-component model, the
machine–spindle–holder substructure was separated into two
parts: (1) the machine, spindle, holder taper, and holder flange
(or spindle–holder base subassembly); and (2) the remaining
portion of the holder from the flange to the free end (the
extended holder subassembly). The rotation-to-force/moment
and displacement-to-moment receptances for the free end of
the spindle–holder base subassembly were determined using
displacement-to-force measurements and finite-difference
computations. The experimental procedure involved recording
direct and cross displacement-to-force measurements of a
simple geometry ‘standard’ holder clamped in the spindle and
calculating the receptances at the free end of the assembly by
finite differences [5,6]. The portion of the standard holder
beyond the flange was then removed in simulation using an
inverse receptance coupling approach to identify the four
spindle–holder base subassembly receptances (i.e., displace-
ment/rotation-to-force/moment). These receptances were then
coupled to models of the actual holder and tool. Again, to
account for finite stiffness and energy dissipation (i.e.,
damping) in the tool–holder connection, the tool was
coupled to the holder using translational and rotational
springs and dampers, assembled in the matrix K (Eq. (1)),
where kyf is the displacement-to-force stiffness, kym the
rotation-to-moment stiffness, cyf and cym are the corre-
sponding viscous damping terms, and o is the circular
frequency (rad/s). See Fig. 1. The portion of the holder with
the tool inserted was treated using a composite modulus and
mass in the event that the holder and tool materials were
different, such as a steel holder and carbide tool.

K ¼
kyf þ iocyf 0

0 kym þ iocym

" #
. (1)

In this work, we extend the three-component model to
include multiple connections between the tool and holder
along the interference contact within the holder (rather than at
the end of the holder as before). This is shown schematically in
Fig. 2, where multiple complex stiffness matrices, Ki, describe
the connection parameters at each location. We believe this to
be a preferred solution because the stiffness/damping is now
located at the appropriate locations, rather than artificially at
the junction between the portions of the tool inside and
Non-rigid: [K]

Rigid

Spindle-holder base Extended holder

Tool

Holder flange

Fig. 1. Second generation RCSA model—the finite tool-holder stiffness/

damping was represented by the empirical stiffness matrix, K, which was

used to couple the overhung portion of the tool to the rest of the assembly.

All other connections were rigid.
outside the holder. We note, however, that the coordinate-
based stiffness/damping analysis is an approximation of the
continuous contact stiffness/damping profile between the
holder and portion of the tool inside the holder.
In this new model the fully populated K matrix is defined

as shown in Eq. (2), which now accounts for the
displacement imposed by moment and the rotation caused
by force through the nonzero off diagonal terms. Finite-
element models are developed to determine the position-
dependent stiffness and equivalent viscous damping values
for a thermal shrink fit connection between the tool and
holder, which represents the preferred interface for many
high-speed milling applications. Using these values, the
tool point FRF is predicted a priori and compared to
measurements for a number of cases. No fitting parameters
are applied in this analysis.

K ¼
kyf þ iocyf kym þ iocym

kyf þ iocyf kym þ iocym

" #
, (2)

The paper is organized as follows. First, the RCSA
approach for joining the portions of the tool and holder,
which comprise the shrink fit connection is described. Second,
the RCSA equation for the entire tool–holder–spindle
assembly is provided. Third, finite-element modeling for the
shrink fit connection is detailed. Fourth, experimental
validation is provided. Finally, conclusions are presented.
2. Multiple point coupling for the tool–holder connection

To demonstrate the coupling between the concentric
inner tool and outer holder components, the case of n ¼ 3
connection coordinates, located at the ends of the contact
length and at the mid-point, is now presented. The portions
of the tool and holder in shrink fit contact are treated as
free–free beams. For n ¼ 3, a total of six component
coordinates is obtained—three each on the internal tool
and external holder (see Fig. 3) [14]. The component (i.e.,
tool and holder) displacement/rotations can be written as

u1 ¼ R11q1 þ R12q2 þ R13q3; u2 ¼ R21q1 þ R22q2 þ R23q3

u3 ¼ R31q1 þ R32q2 þ R33q3; u4 ¼ R44q4 þ R45q5 þ R46q6,

u5 ¼ R54q4 þ R55q5 þ R56q6; u6 ¼ R64q4 þ R65q5 þ R66q6,

ð3Þ
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where a matrix formalism has been adopted [4,10]. Here,
ui ¼ f yi yi gT are the component displacements/rotations;
qi ¼ f f i mi gT are the component forces/moments; and

RijðoÞ ¼
yi=f j yi=mj

yi=f j yi=mj

" #
¼

hij lij

nij pij

" #
,

are the component receptances.
The compatibility conditions for the flexible/damped

shrink fit connection are

K1ðu4 � u1Þ ¼ �q4; K2ðu5 � u2Þ ¼ �q5,

and K3ðu6 � u3Þ ¼ �q6, ð4Þ

where Ki is given by Eq. (2) and the component and
assembly coordinates are defined at the same spatial
locations so that ui ¼ Ui, i ¼ 1–6. If the assembly direct
response at the left end, G11(o), is to be determined, Q1 is
applied to coordinate U1 of the assembly (the upper case
variables denote assembly coordinates, forces, and mo-
ments). The equilibrium conditions are then:

q1 þ q4 ¼ Q1; q2 þ q5 ¼ 0; and q3 þ q6 ¼ 0. (5)

The G11 matrix is determined in steps using the relevant
equations. The first step is to insert the component displace-
ment/rotation expressions into the compatibility conditions:

R11q1 þ R12q2 þ R13q3 ¼ R44q4 þ R45q5 þ R46q6 þ K�11 q4,

R21q1 þ R22q2 þ R23q3 ¼ R54q4 þ R55q5 þ R56q6 þ K�12 q5,

R31q1 þ R32q2 þ R33q3 ¼ R64q4 þ R65q5 þ R66q6 þ K�13 q6.

ð6Þ
A½ � ¼

R11 þ Rnþ1;nþ1 þ K�11 R12 þ Rnþ1;nþ2 � �

R21 þ Rnþ2;nþ1 R22 þ Rnþ2;nþ2 þ K�12 � �

..

. ..
. ..

Rn1 þ R2n;nþ1 Rn2 þ R2n;nþ2 � �

2
66666664

�

Rnþ1;nþ1 þ K�11

Rnþ2;nþ1

..

.

R2n;nþ1

2
6666664

3
7777775
.

The next step is to substitute q4 ¼ Q1 � q1, q5 ¼ �q2, and
q6 ¼ �q3 and rearrange to obtain

R11 þ R44 þ K�11 R12 þ R45 R13 þ R46

R21 þ R54 R22 þ R55 þ K�12 R23 þ R54

R31 þ R64 R32 þ R65 R33 þ R66 þ K�13

2
664

3
775

q1

q2

q3

8>><
>>:

9>>=
>>; ¼ Q1

R44 þ K�11

R54

R64

2
664

3
775, ð7Þ

which gives the relationship between the component forces/
moments and externally applied force/moment in matrix
form. For this example, G11 can be expressed as

G11 ¼
U1

Q1

¼
u1

Q1

¼ R11
q1

Q1

þ R12
q2

Q1

þ R13
q3

Q1

, (8)

so the ratios q1=Q1, q2=Q1, and q3=Q1 are required. These can
be determined by rearranging Eq. (7):

1

Q1

q1

q2

q3

8>><
>>:

9>>=
>>; ¼

R11 þ R44 þ K�11 R12 þ R45 R13 þ R46

R21 þ R54 R22 þ R55 þ K�12 R23 þ R54

R31 þ R64 R32 þ R65 R33 þ R66 þ K�13

2
664

3
775
�1

�

R44 þ K�11

R54

R64

2
664

3
775 ¼ A½ �,

where [A] is a 6 by 2, or 2n by 2, by N matrix (N is the number
of points in the frequency vector, o). The reader may note
that the matrix size is 6 by 2 because Rij is a 2 by 2 matrix. The
matrix A is partitioned as follows: the first two rows of A give
q1=Q1; the second two rows provide q2=Q1; and the final two
rows give q3=Q1. The desired direct receptances can then be
computed from Eq. (8).
This 3-point coupling example can be extended to n

coupling points by recognizing the recursive pattern in [A].
If the same coordinate numbering scheme is observed (i.e.,
coordinates 1 to n on the tool and n+1 to 2n on the
holder), [A] is given by
� R1n þ Rnþ1;2n

� R2n þ Rnþ2;2n

. ..
.

� Rnn þ R2n;2n þ K�1n

3
77777775

�1
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This matrix can again be partitioned to find q1=Q1,
q2=Q1,y, qn=Q1. The assembly receptances G11 can then
be found using G11 ¼ R11ðq1=Q1Þ þ R12ðq2=Q1Þ þ � � �

þR1nðqn=Q1Þ. The following sections detail the develop-
ment of the required receptances, Rij, for the inner tool and
outer holder.

2.1. Inner tool receptances

The inner tool receptance matrix is composed of n2 Rij

terms (i ¼ 1–n and j ¼ 1–n). However, by observing

reciprocity (i.e., Rii is symmetric and Rji ¼
hij nij

lij pij

" #
), it

is only necessary to determine the upper triangular portion

of the square Rij matrix, or
Pn

i¼1i terms. The corners of the

upper triangular portion of the matrix, R11, R1n, and Rnn,
may be found using the closed-form receptances for
uniform Euler–Bernoulli beams developed by Bishop and
Johnson [15] directly, where the full beam length, L, is used
in these computations1. The remaining terms in the first
row of the Rij matrix, R12, R13,y,R1,n�1 are determined
next. To find R12, q2 is applied at coordinate u2 as shown in
Fig. 4.

The cylinder component must now be sectioned at
coordinate u2 into two elements with generalized recep-
tance matrices Eij and coordinates v1 to vn (see Fig. 4). For
equally spaced connection coordinates, the length of the
left element is DL ¼ L=ðn� 1Þ, while the right element
length is L�DL. The element displacements/rotations can
be written as

v1 ¼ E12s2; v2 ¼ E22s2; and v2b ¼ E2b2bs2b, (9)

where s1, s2, and s2b are the nonzero element forces. The
compatibility conditions for the rigid coupling between
elements are given in Eq. (10). The associated equilibrium
condition is provided in Eq. (11).

v2 � v2b ¼ 0 and vi ¼ V i; i ¼ 1� n, (10)

s2 þ s2b ¼ q2. (11)

Similar to the previous results, substitution of the
element displacement/rotations and equilibrium condition
into the compatibility conditions yields the following
expression for R12:

R12 ¼ E12ðE22 þ E2b2bÞ
�1E2b2b. (12)
1Alternately, Timoshenko beam receptances can be applied.
To find R13, q3 is applied at u3. The required left and
right elements now have the lengths 2DL and L�2DL,
respectively. The equation for R13 is

R13 ¼ E13ðE33 þ E3b3bÞ
�1E3b3b. (13)

The recursive pattern is immediately apparent so that R1j

is defined by

R1j ¼ E1jðEjj þ EjbjbÞ
�1Ejbjb, (14)

where j ¼ 2 to n�1 is the column number.
Also, E1j describes the cross-receptances for the left

element (with a length of (j�1)DL), Eij provides the direct
receptances at the right end of the left element, and Ejbjb

gives the direct receptances at the left end of the right
element (with a length of L�(j�1)DL).
The nth column of the Rij matrix is defined next. In this

case, qn is applied to the coordinate un at the right end of
the cylinder component in order to find Rin, where i ¼ 2 to
n�1 is the row number. The recursive form is

Rin ¼ EiiðEii þ EibibÞ
�1Eibn, (15)

where Eii and Eibib are defined in the same way as Ejj and
Ejbjb, respectively. The Eibn cross-receptances for the right
element are calculated using an element length of
L�(i�1)DL.
The next terms to describe are the on-diagonal recep-

tances Rii, i ¼ 2 to n�1. These can be written as

Rii ¼ EiiðEii þ EibibÞ
�1Eibib. (16)

Again, Eii, the direct receptances at the right end of the
left element and Eibib, the direct receptances at the left end
of the right element, have the same definitions as previously
provided.
The remaining receptances are those Rij terms above the

on-diagonal, exclusive of the 1st row and nth column.
These receptances are determined column by column. For a
particular column, j ¼ 2 to n�1, Rij is given by

Rij ¼ EijðEjj þ EjbjbÞ
�1Ejbjb; i ¼ 2 to j � 1. (17)

In this equation, the left element (with direct receptances
Ejj) has a length of (j�1)DL and the right element (with
direct receptances Ejbjb) has a length of L�(j�1)DL.
However, the Eij element receptances cannot be determined
directly from the Bishop and Johnson formulation [15]. In
this case, subelement receptances Sij must be defined. This
is demonstrated by solving for R23.
To find R23, q3 is applied to coordinate u2. The cylinder

component is then split at coordinate u3 to define two
elements (see Fig. 5). The element displacements/rotations
are given by

v2 ¼ E23s3; v3 ¼ E33s3; and v3b ¼ E3b3bs3b. (18)

The rigid connection compatibility conditions are shown
in Eq. (19) and the equilibrium condition in Eq. (20).

v3 � v3b ¼ 0; and vi ¼ ui; i ¼ 1� n, (19)

s3 þ s3b ¼ q3. (20)
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Using these equations, it is found that

R23 ¼ E23 E33 þ E3b3bð Þ
�1E3bi3. (21)

As noted, E23, the cross-receptances at coordinate v2 of
the left element due to the application of s3 at coordinate
v3, is determined by separating the left element (with a
length of (j�1)DL), into two subelements at coordinate v2
(see Fig. 5). The length of the left subelement is
(i�1)DL ¼ (2�1)DL ¼ DL, while the length of the right
subelement is (j�i)DL ¼ (3�2)DL ¼ DL.

Using the displacement/rotation, compatibility, and
equilibrium equations, it is found that

E23 ¼ S22 S22 þ S2b2bð Þ
�1S2b3, (22)

where S22 gives the direct receptances at the right end of the
left subelement, S2b2b contains the direct receptances at the
left end of the right subelement, and S2b3 represents the
cross-receptances for the right subelement. The recursive
formulation for this equation is

Eij ¼ Sii Sii þ Sibibð Þ
�1Sibj ; i ¼ 2 to j � 1,

and j ¼ 2 to n� 1. ð23Þ

All terms in the upper triangular portion of the Rij

matrix for the inner cylinder have now been determined.
The lower triangular portion, excluding the on-diagonal
terms, is found by observing the symmetry rules given
previously as demonstrated by the following pseudo-code.

for i ¼ 1 to n� 1,

for j ¼ i þ 1 to n,

Rji ¼
hij nij

lij pij

" #
,

next j,

next i.

2.2. Outer holder receptances

To find the Rij matrix for the outer holder, n is added to
each coordinate number (i.e., the coordinate number for
the tube left end is n+1 and the right end coordinate
number is 2n) and the beam geometry and material
properties are updated for the receptance computations.
All other definitions remain the same.

3. Tool–holder–spindle assembly RCSA equation

Once the shrink fit connection stiffness is incorporated
into the tool–holder assembly (for the portion of the tool
inside the holder) as defined in Section 2, the remaining
components can be rigidly coupled. Assembly coordinate
definitions for the overhung portion of the tool (1–2),
extended holder (3–4), and spindle–holder base (5) are
shown in Fig. 6. The corresponding RCSA equation for the
assembly receptances at the tool point is obtained by: (1)
rigidly coupling the overhung free–free tool to the free–free
tool-extended holder to determine the new subassembly
direct receptances at each end, GS11 and GS44, and the
cross-receptances, GS14 and GS41; and (2) using the
standard holder and finite-difference calculations to
determine the four receptances at the free end of the
standard holder (mounted in the spindle in question),
removing the portion of the standard holder beyond the
flange using inverse RCSA, and defining the direct
receptance at the free end of the spindle–holder base
subassembly, GS55. See Eq. (24), where H11ðoÞ ¼ Y 1=F1 is
the frequency response generally required for milling
stability and surface location error analyses. Additional
details are available in [5,6].

G11 ¼
H11 L11

N11 P11

" #
¼ GS11 � GS14 GS44 þ GS55ð Þ

�1GS41.

(24)

4. Shrink fit connection finite-element modeling

Finite-element models for selected tool–holder assem-
blies were constructed using ANSYS. The boundary
conditions were set as fixed-free and only the extended
holder and tool were modeled (the flange and holder taper
were considered part of the spindle–holder base, which was
not included in this portion of the analysis). An example
model for a 19.1mm diameter carbide tool blank inserted
in a steel tapered shrink fit holder is shown in Fig. 7 (FRF
predictions for this model are provided in Section 5.1). In
this example, 6324 20-node cubic elements (SOLID184),
768 8-node contact elements (CONTA174), and 768 8-node
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Fig. 7. Finite-element model for 19.1mm diameter carbide tool blank

inserted in steel tapered shrink fit holder. The base of the holder was held

fixed, while the end of the tool was unsupported.

Table 1

Tool and holder material properties for finite-element simulations

E (GPa) r (kg/m3) u m

Tool 560 14 400 0.22 0.15

Holder 200 7850 0.29

Fig. 8. Simulated contact pressure profile for the shrink fit tool–holder

interface (10mm radial interference) modeled in Fig. 7. The z-axis origin is

located at the fixed end of the holder.

Force (N)

Time

Interval 1 Interval 2

250 
500
750
1000
1250

Fig. 9. Time intervals for finite-element simulation: (1) interference

pressure; (2) y force application.
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target elements (TARGE170) were applied, where the
flexible-to-flexible contact/target elements were located at
the interface between the tool and holder; this gave a total
of 29 467 nodes. The coordinate directions for the model
were: x—horizontal, y—vertical, z—along the tool axis.
The material properties are defined in Table 1, where E is
the elastic modulus, r the mass density, u the Poisson’s
ratio, and m the friction coefficient. The reader may note
that these are mean values from the literature. Carbide
properties, in particular, may vary somewhat from these
assumed values.

The finite-element simulations were carried out in two
primary time intervals of 1 s each. In the first interval, the
contact pressure between the tool and holder was allowed
to grow due to the imposed radial interference. Fig. 8
shows the contact pressure, P, profile for the model in
Fig. 7 with a 10 mm radial interference. In the second
interval, the y direction force or couple was applied to the
tool just beyond the end of contact. The forces were
applied using an equivalent nodal force arrangement (to
minimize localized deformation effects), where 25% of the
total force is applied at each of three central nodes and
12.5% is applied at each of two outer nodes. For both
intervals, time was divided into five steps as shown in Fig. 9
(force application is demonstrated).

4.1. Stiffness

Using the model described in the previous paragraphs,
the position-dependent stiffness values were determined
using the following steps. At the end of the two time
intervals (pressure growth followed by force or moment
application), the y direction displacements of the tool at
nodes along the tool top centerline were recorded. The y

displacements, as a function of z location, imposed by the
force/couple were then computed by differencing the two
results. By applying a range of forces (250–1250N in steps
of 250N) and couples (2.5–12.5Nm in steps of 2.5Nm),
the kyf(z) and kym(z) stiffness values from Eq. (2) were
calculated directly from the slope of the load–displacement
curves for each node under consideration. For the kyf(z)
and kym(z) stiffness values, the rotation was first calculated
by central finite difference from the displacement data,
then the stiffness values were obtained from the load–rota-
tion curve slope values. Example results for the tool–holder
combination in Fig. 7 (10 mm radial interference) are
provided in Fig. 10. It is seen that the finite differences
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Fig. 10. Stiffness values for the finite-element model shown in Fig. 7 (10mm radial interference).

Fig. 11. Displacement-to-force stiffness variation with radial interference.

Low sensitivity is observed.

Fig. 12. Displacement-to-force stiffness variation with insertion length.

As expected, the stiffness increases with insertion length, but the

sensitivity is not high.
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used to compute the rotations introduced some numerical
noise.

Aside from the material properties, the primary variables
in the shrink fit connection are the radial interference and
tool insertion length. The sensitivity of the stiffness values
shown in Fig. 10 to these variables was evaluated. Fig. 11
shows the kyf(z) results for radial interference values of 5
and 10 mm. Very little sensitivity is seen. Fig. 12 shows the



Fig. 13. (Left) End view of tool mesh—the shaded regions within 151 of the neutral axis were excluded from the damping calculations due to the geometric

constraint on z-axis slip. (Right) Slip values for various angular values around the tool circumference (the 01 and 151 results were not used).
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kyf(z) values for two different insertion lengths (22.9 and
24.9mm). As expected, higher insertion length gives higher
stiffness, but the sensitivity is not high.

4.2. Damping

We assumed that energy dissipation in the shrink fit
connection occurred due to relative micro-slip between the
tool and holder along the tool axis during the force/couple
application. This Coulomb damping was converted to
position-dependent equivalent viscous damping values by:
(1) computing the friction (damping) force, Fd, for each
element, n; (2) calculating the viscous damping value for
each element according to Eq. (25) [16], where znj j is the
absolute value of the contact element displacement along
the tool axis2; and (3) summing the damping values for the
elements located around the tool circumference for the
selected z location. It should be noted that the slip for
elements close to the bending neutral axis was nearly zero.
This would imply very high damping using the equivalent
viscous damping approach; however, since it was due to a
geometric constraint, the very small slip does not necessa-
rily indicate increased damping and elements located 7151
from the neutral axis were excluded from the analysis.
Fig. 13 displays the end view of the tool mesh and the
portions of the circumference used for the damping
calculations. It also shows the corresponding slip values,
znj j, due to a 250N y direction force for angles, y, from the
neutral axis (01) to the tool top centerline (901) as a
function of the z location.

ceq;n ¼
4� F d;n

po znj j
. (25)

The friction force was calculated from the product of the
element area, element contact pressure (see Fig. 8, for
2The absolute value was required because the slip changed sign between

the upper and lower surfaces of the tool.
example), and the assumed coefficient of friction (see
Table 1). Because the work done by the friction force is
path dependent, the ceq,,n calculations were completed at
each of the five steps in the second time interval and the
results summed. This process was repeated two times. First,
a range of forces (250–1250N in steps of 250N) was
applied to determine the cyf(z) values. Second, couples
(2.5–12.5Nm in steps of 2.5Nm) were applied to find the
cym(z) values. The analysis was the same in both cases. The
respective damping values for the rotation terms in the K

matrices (i.e., the bottom row in Eq. (2)) were taken to be
equal to the previous results. The top panel in Fig. 14
shows the results for y direction forces of 250 and 1250N,
while the bottom panel displays the results for 2.5 and
12.5Nm applied moments. It is seen that the lower force/
moment values cause less slip and, therefore, lead to higher
equivalent viscous damping values.

5. Experimental results

5.1. Shrink fit holder with varying tool length

In this study 30 carbide tool blanks were sequentially
inserted in the tapered thermal shrink fit holder modeled in
Fig. 7 and the tool point response was recorded. The
insertion length was maintained at 22.9mm while the
overhang length varied from 66.0 to 142.2mm in incre-
ments of 2.5mm (the 139.7 overhang length test was not
completed) for the 19.1mm diameter tool blanks. These
measurements were completed on a 16 000 rpm direct drive
spindle with an HSK 63A spindle–holder interface.
The substructure model is depicted in Fig. 15; the

relevant dimensions are given in Table 2, where do is the
outer diameter, di the inner diameter, and L the length. The
material properties for the tool blanks and holder were
provided in Table 1. In this case, the inner tool and outer
holder within the shrink fit contact region (substructure II)
were coupled using an appropriate K matrix at each end of
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Fig. 15. Substructures for tool length overhang study. The inner tool and outer holder in substructure II were coupled using two K matrices (one at each

end).

Table 2

Substructure dimensions for study of tool overhang length variation

Value (mm) Substructure

V VI III II I

do 38.5 38.2 37.3 36.1 19.1

di 6.0 21.0 19.1 19.1 —

L 17.0 25.0 9.1 22.9 Varied

Fig. 14. (Top) Equivalent viscous damping values for y direction forces applied to the tool at the end of the contact length. (Bottom) Damping values for

applied moments.

Table 3

K matrix values (N ¼ 2) for study of tool overhang length variation

Left Right

kyf (N/m) 1.89� 108 1.15� 108

kym (Nm/m) 1.43� 107 0.65� 107

kyf (N/rad) 7.28� 106 5.48� 106

kym (Nm/rad) 3.63� 105 1.84� 105

cyfo (N/m) 5.23� 1012

cymo (Nm/m) 1.10� 1013
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the contact (N ¼ 2)3. The four stiffness values required to
populate the two K matrices were determined from linear
regressions to the finite-element results shown in Fig. 10.
The two damping values were taken to be the average of all
z locations for the minimum and maximum applied force/
moment values from Fig. 14 since a clear linear trend was
not evident. The entries for the left (i.e., at the fully inserted
end of the contact in Fig. 15) and right (i.e., at the free end
3Through simulation, it was determined that the addition of more

connection coordinates (N42) did not appreciably change the predicted

assembly frequency responses.
of the contact) K matrices are provided in Table 3. The
receptances for the substructures I, III, IV, and V were
determined using the Timoshenko beam formulation (100
elements were used in all instances) [17–19]. The sub-
structure II receptances were computed as described in
Section 2 using Bishop and Johnson’s closed-form solu-
tions for Euler–Bernoulli beams [15]. In both cases, the
frequency-independent damping coefficient for the holder
and tool was taken to be 0.0015.
A comparison of the 30 measurements and predictions is

shown in Fig. 16. The top panel shows the measurements
(log–linear magnitude with a range of 4� 10�7–4� 10�5
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Fig. 16. Top—measured FRF magnitudes (log–linear scale) for 30 tool overhang lengths (66.0mm FRF is identified); middle—predicted magnitudes

using N ¼ 2K matrices; and bottom—percent difference between measured and predicted (dominant) natural frequencies, fn.

Table 4

K matrix values (N ¼ 2) for varying tool geometry study

Case Left Right

1 kyf (N/m) 1.05� 108 6.31� 107

kym (Nm/m) 1.89� 109 9.80� 108

kyf (N/rad) 4.74� 106 3.87� 106

kym (Nm/rad) 6.40� 107 4.26� 107

cyfo (N/m) 1.03� 1013

cymo (Nm/m) 5.50� 1014

2 kyf (N/m) 1.05� 108 6.31� 107

kym (Nm/m) 1.89� 109 9.80� 108

kyf (N/rad) 4.74� 106 3.87� 106

kym (Nm/rad) 6.43� 107 4.24� 107

cyfo (N/m) 1.03� 1013

cymo (Nm/m) 3.18� 1014

3 kyf (N/m) 3.33� 108 2.15� 108

kym (Nm/m) 3.44� 1010 1.77� 1010

kyf (N/rad) 1.82� 107 1.25� 107

kym (Nm/rad) 1.16� 106 7.41� 105

cyfo (N/m) 8.77� 1012

cymo (Nm/m) 4.42� 1013
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m/N vs. frequency in Hz); the middle panel displays the
predictions (same scale); and the bottom panel shows the
percent difference between the measured and predicted
(dominant) natural frequencies as a function of the tool
overhang length. Agreement of 2% or better is observed
for all 30 cases. It is also seen in the top two panels that,
although the general trend is increased amplitude and
reduced frequency with increasing overhang length, the
tool point magnitudes are attenuated near 800 and
1200Hz. This is due to dynamic interaction between the
tool/holder clamped-free fundamental mode and the
spindle modes at these frequencies [20].

5.2. Shrink fit holders with varying tool geometries

In a second study 19.1 and 25.4mm diameter carbide
tool blanks were inserted in shrink fit holders using
different insertion and overhang lengths. The spindle–
holder interface for the 25 000 rpm spindle was HSK 63A.
Results are presented for the following cases: (1) 19.1mm
diameter tool (101.6 overall), 25.4mm insertion length; (2)
19.1mm diameter (152.4 overall), 25.4mm insertion; and
(3) 25.4mm diameter (152.4mm overall), 25.4mm inser-
tion. The constant cross-section substructures were again
modeled as shown in Fig. 15. The material properties in
Table 1 were applied and the K matrix values (N ¼ 2) are
provided in Table 4.

Experimental results are provided in Figs. 17–19. The
real and imaginary parts (linear scale) of the measured
(dotted line) and predicted (solid line) results are shown. In
Fig. 17, good agreement is observed for Case 1. A notable
exception is the increased amplitude for the predicted
spindle mode near 400Hz. The cause for this disagreement
is presumably due to inaccuracy in the standard holder
measurements which propagate to the spindle–holder base
subassembly receptances and, subsequently, to the tool
point response predictions. For the Case 2 result in Fig. 18,
the tool overhang length increase results in a decrease in
the fundamental bending frequency to a value near the
400Hz spindle mode. As demonstrated in Fig. 16,
interaction occurs between the spindle and tool modes.
Because the predicted spindle mode is too flexible, this
interaction is stronger in the predicted case and yields
separated modes for the assembly response. The interaction
is also apparent in the measured case, but there is less
separation due to the stiffer spindle mode. This effect is
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Fig. 17. Case 1 results—19.1mm diameter tool (101.6 overall), 25.4mm insertion length. The spindle mode near 400Hz is too flexible in the predicted

response (solid line).

Fig. 18. Case 2 results—19.1mm diameter tool (152.4 overall), 25.4mm insertion length. Interaction between the tool and spindle mode near 400Hz is

stronger in the predicted response (solid line).
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again observed in Case 3 (Fig. 19). The 25.4mm diameter
tool (same overhang as Case 2) again gives a fundamental
bending frequency near the 400Hz spindle mode. The
exaggerated interaction is seen, although the tool mode is
now slightly to the left of the spindle mode.

6. Conclusion

This paper describes the third generation receptance
coupling substructure analysis (RCSA) model for tool
point frequency response prediction. We extended the
three-component model to include multiple connections
between the tool and holder along the interference contact
within the holder. We believe this to be a preferred solution
because the stiffness/damping is now located at the
appropriate locations, rather than artificially at the
junction between the portions of the tool inside and
outside the holder. Finite-element models were developed
to determine the position-dependent stiffness and equiva-
lent viscous damping values for a thermal shrink fit
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Fig. 19. Case 3 results—25.4mm diameter tool (152.4 overall), 25.4mm insertion length. Interaction between the tool and spindle mode near 400Hz is

again stronger in the predicted response (solid line).
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connection between the tool and holder. Predictions of the
tool point frequency response were completed and mea-
surements of the modeled spindle–holder–tool assemblies
were performed. The results generally agreed, although
sensitivity of the assembly response to accurate identifica-
tion of spindle–holder base receptances was demonstrated
in specific instances.
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