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Abstract
Periodic errors in heterodyne displacement measuring interferometry occur due to frequency
mixing in the interferometer. These nonlinearities are typically characterized as first- and
second-order periodic errors which cause a cyclical (non-cumulative) variation in the reported
displacement about the true value. This study implements an existing analytical periodic error
model in order to identify sensitivities of the first- and second-order periodic errors to the input
parameters, including rotational misalignments of the polarizing beam splitter and mixing
polarizer, non-orthogonality of the two laser frequencies, ellipticity in the polarizations of the
two laser beams, and different transmission coefficients in the polarizing beam splitter. A local
sensitivity analysis is first conducted to examine the sensitivities of the periodic errors with
respect to each input parameter about the nominal input values. Next, a variance-based
approach is used to study the global sensitivities of the periodic errors by calculating the
Sobol’ sensitivity indices using Monte Carlo simulation. The effect of variation in the input
uncertainty on the computed sensitivity indices is examined. It is seen that the first-order
periodic error is highly sensitive to non-orthogonality of the two linearly polarized laser
frequencies, while the second-order error is most sensitive to the rotational misalignment
between the laser beams and the polarizing beam splitter. A particle swarm optimization
technique is finally used to predict the possible setup imperfections based on experimentally
generated values for periodic errors.

Keywords: interferometry, heterodyne, nonlinearity, periodic, sensitivity

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Heterodyne displacement measuring interferometry offers
accurate, high-resolution displacement measurement for non-
contact applications. One limitation to the achievable
accuracy, however, is the superposition of periodic errors on
the measurement signal. These errors are (1) non-cumulative
in nature; (2) repeat with each unit wavelength change in
the optical path; and (3) depend on misalignments and
imperfections in the optical setup, see initial investigations
by Quenelle (1983) and Sutton (1987), for example. Apart
from periodic errors, there are also other sources of error,
such as cosine error, Abbe error, variations in refractive index,
thermal deformations, beam shear, non-planar wavefronts, and

1 Author to whom any correspondence should be addressed.

wavelength instability of the laser source; these are combined
into a single uncertainty expression by Schmitz and Kim
(2007). While any of these error sources may dominate
in a given situation (e.g., uncompensated refractive index
changes for measurements in air often limit the displacement
measurement accuracy), the purpose of this study is to
complete a sensitivity analysis for periodic errors using the
analytical model reported by Cosijns et al (2002).

A sensitivity analysis is used to study how the uncertainty
in model output is related to the uncertainty in the input
parameters, see Saltelli et al (2008), Saltelli (2002), and
Homma and Saltelli (1996). A number of techniques are
available. Local sensitivity analysis is based on the derivative
of the model output with respect to the input. This gradient
approach is inherently local in nature, however, because the
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Figure 1. Depictions of (a) ideal heterodyne interferometer behavior; and (b) frequency leakage (indicated by the frequency terms in
parentheses). The two frequencies, f 1 and f 2, are ideally linearly polarized and orthogonal. This enables the polarizing beam splitter to
separate them based on their polarization states. The periodic error model terms α, βerr, dε1, dε2, θ , ζ , and χ are also identified.

derivative is calculated at a fixed point in the input parameter
space. As an alternative, global sensitivity techniques may be
applied. Saltelli et al (2008) describe variance-based global
sensitivity analysis methods which explore the input parameter
space by randomly selecting data points from this space and
provide a more informative and robust estimate of the behavior
of the model output with respect to variation in the model input.

In this study, a variance-based Monte Carlo approach is
used to estimate both the individual and total effect Sobol’
sensitivity indices for each of the periodic error model inputs
using the methods described by Saltelli et al (2008), Cukier
et al (1978), and Sobol’ (1993). The study reveals that
rotational misalignment of the polarizing beam splitter, the
rotational misalignment of the mixing polarizer, and non-
orthogonality between the two ideally linearly polarized laser
frequencies emitted from the source are the most influential
parameters for periodic errors.

Contour plots are provided for a range of uncertainties in
linear polarizer (LP) angle, non-orthogonality, and polarizing
beam splitter angle to estimate the expected periodic error
for a selected combination of uncertainties. A Monte Carlo
simulation method is used to evaluate the predicted periodic
error for a combination of input uncertainties. Also, a higher
order regression fit is applied to the expected periodic error
data to provide a closed-form expression for periodic error
as a function of the uncertainties in the optical setup. The
application of optimization algorithms to estimating setup
misalignment errors in order to achieve desired performance
levels is also explored. The particle swarm optimization
approach described by Kennedy and Eberhart (1998) is used to
determine the model input parameters (setup misalignments)
given the periodic error data. These results are validated
against experimental data and it is shown that the optimization
was generally successful in predicting setup misalignments.

2. Periodic error description and measurement

Figure 1 shows a single-pass interferometer setup. For
the ideal case (figure 1(a)), the two coherent, collinear,
orthogonally polarized laser frequencies, f 1 and f 2, are
perfectly separated at the polarizing beam splitter and are
directed into the reference and measurement arms of the
interferometer. Note that a Doppler shift, fd , occurs for
the frequency in the measurement arm during motion. Due
to imperfections in the optics or setup (figure 1(b)), however,
there may be leakage of each frequency into both the
measurement and reference arms. This frequency leakage
can exist due to non-orthogonality of the two frequencies
emitted from the laser source; rotational misalignment of the
laser beam with respect to the polarizing beam splitter (PBS);
ellipticity of the polarization states; different transmission
coefficients for the individual laser beams at the PBS; and
rotational misalignment of the polarization axes with respect
to the mixing LP. Ghost reflections, nonlinearities in the phase
measuring electronics, and beam shear have also been found
to induce periodic errors.

Several researchers have reported analytical and
numerical models for periodic errors, including Rosenbluth
and Bobroff (1990), Bergamin et al (1992), Hou and Wilkening
(1992), Hou and Zhao (1994), Wu and Su (1996), Wu
and Deslattes (1998), Stone and Howard (1998), Schmitz
and Beckwith (2003), and Schmitz et al (2006). Cosijns
et al (2002) developed a seven-parameter analytical model
for periodic errors which included the rotational misalignment
of the input laser beam with respect to the PBS, α; non-
orthogonality of the linearly polarized frequencies, βerr;
ellipticity in the polarizations of the two frequencies, dε1

and dε2; rotational misalignment of the mixing LP (or
analyzer), θ ; and the two transmission coefficients for the PBS,
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Figure 2. (a) Photograph of a single-pass, heterodyne interferometer experimental setup; and (b) schematic of a setup. Note that the
polarizer and half-wave plate each had a rotational degree of freedom (DOF) about the beam axis to vary the level of periodic error.

ζ and χ . All other parameters were assumed to be ideal.
In the work presented here, the Cosijns et al (2002) model
is used to compute the sensitivity of the periodic error with
respect to the seven inputs. (The Cosijns et al (2002) model
is detailed in the appendix as a convenience to the reader.)
In this study, the first- and second-order periodic errors are
identified analytically and are summed to obtain the worst-
case periodic error. The sensitivity analysis is performed with
respect to this sum, as well as the first- and second-order errors
independently.

Figure 2 shows the single-pass heterodyne interferometer
setup used to verify the Cosijns et al (2002) periodic error
model. The two-frequency laser head emits the laser beams
with nominally orthogonal polarizations that pass through
a half-wave plate to a non-polarizing beam splitter (80%

transmission/20% reflectance), which splits it into two parts:
the reference beam (used as the phase reference in the phase
measuring electronics) and the measurement beam (which
travels to the interferometer). The reference beam is collected
using the reference fiber optic pick-up (which includes a
LP oriented at 45◦ relative to the nominally orthogonal
linear polarizations for the two heterodyne frequencies) and
forms the reference signal. The measurement beam passes
through the PBS where one frequency is (ideally) directed
into the reference arm of the interferometer with the stationary
retroreflector, while the other frequency is directed into
the measurement arm with the moving retroreflector. The
frequency in the measurement arm is Doppler-shifted during
motion of the moving retroreflector. The two laser beams
recombine at the PBS and are directed to the mixing LP.
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The interference signal is then collected by the measurement
fiber optic pick-up. A half-wave plate is used to artificially
vary the rotational misalignment between the two nominally
orthogonal, linearly polarized frequencies that make up the
source laser beam and the PBS. The orientation of the mixing
LP can also be adjusted to vary the periodic error magnitudes.
The non-orthogonality of the two frequencies emitted from
the laser source, the ellipticities of the two laser beams, and
the different transmission coefficients in the PBS are errors
inherent in the system and cannot be externally manipulated
in this setup2. Experiments were carried out for a range of α

and θ values, where α was modified using the half-wave plate
and θ was varied by the angular orientation of the mixing LP.

3. Sensitivity analysis

Saltelli et al (1999) defined sensitivity as: ‘The study of how
the uncertainty in the output of a model can be apportioned to
different sources of uncertainty in model input.’ The purpose
of this work is to identify which parameters in the single-
pass heterodyne interferometer setup are most influential on
periodic error by performing a sensitivity analysis. Given
this information, efforts in aligning the interferometer may
be optimized. An overview of local and global sensitivity
analysis methods is provided in the following subsections.

3.1. Local sensitivity analysis

In local sensitivity analysis, the derivative of the model output
is computed with respect to the input. The derivative, ∂Y/∂X,
of a model output, Y, with respect to an input variable, X,
represents the mathematical definition of sensitivity. However,
this definition is local in nature because the derivative must be
evaluated at a fixed point in the input space; information about
the variation is therefore available only at that point. For
linear models, the behavior at points far from the evaluation
location can be determined by linear extrapolation, but this
is not possible for nonlinear problems. Also, local sensitivity
methods do not account for the uncertainty in the input variable
and are therefore not recommended for models with uncertain
inputs. For higher dimensional models with a large number of
input parameters, it becomes particularly difficult to compute
sensitivities with respect to each variable over the entire range
of the input parameter space. However, local sensitivity
analysis does provide an initial estimate of those inputs that
are most influential on the output.

3.2. Global sensitivity analysis

Although a local, gradient-based sensitivity analysis does
provide a measure of the local response of the outputs
obtained by individually varying each input, it is ineffective
for exploring the entire input parameters space in the case
of uncertain inputs. The volume of the space explored is
zero because the sensitivity is calculated at a single point
with respect to one parameter, while all other parameters are

2 These error sources were not quantified, but were assumed to remain
constant for all experiments.

kept constant. In order to obtain better estimates of variation
of the outputs over the entire input parameter space, global
sensitivity analysis is applied. Variance-based methods enable
the computation of output sensitivities given uncertain inputs.
These methods compute the output values at a number of points
in the input parameter space and use information obtained from
a large number of model evaluations to calculate the sensitivity
of the output with respect to each input. Global sensitivity
measures provide an estimate of how much output variance
would be reduced if a particular input parameter was fixed at
a certain value. Saltelli et al (2008) list selected features of
variance-based methods:

• the sensitivity indices are model independent;
• they can capture the full range of input uncertainty;
• they can estimate the individual, as well as interactive,

effects of model input on output;
• they can handle inputs which have some logical

dependence on each other.

Various techniques have been suggested for sampling
individual input parameter sets, including random sampling,
Latin hypercube sampling, and quasi-random number
generators. This study employs the Latin hypercube sampling
method for generating the input parameter dataset. The
advantage of Latin hypercube sampling is that it provides
improved coverage over the entire input parameter space.
Subsequently, it avoids the formation of clusters in the input
parameter space which can occur when using random sampling
techniques.

Sobol’ (2001) described a Monte Carlo method for
computing global sensitivity indices of arbitrary groups of
factors. The individual effect of an input is defined as the
reduction in output variance when the input is fixed at a
certain value. The sensitivity index, Si , is defined in terms
of the unconditional variance of the output, V(Y), and the
variance in the output Y when the input parameter, Xi , is fixed,
V [E (Y |Xi)]:

Si = V [E (Y | Xi)]

V (Y )
. (1)

This index represents the primary (first order) effect of Xi on
Y without taking into consideration interaction effects. These
individual effect sensitivity indices identify which parameters
most influence output variation and can be used in a factor
prioritization setting.

The total effect sensitivity index takes into consideration
the interactive effects of the various input parameters on output
variance. The total effect sensitivity index, STi , shown in
(2) is expressed in terms of V(Y) and the output variance
V [E (Y |X∼i )], which is the variance computed when all
parameters except Xi are fixed. The total effect sensitivity
indices can be used in a factor fixing setting. If STi is
approximately zero, then Xi can be fixed at any value within
its input range without affecting the output variance:

STi = 1 − V [E (Y |X∼i )]

V (Y )
. (2)

A Monte Carlo approach was used here to compute the
Sobol’ sensitivity indices, where larger sample sizes yield an
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increased accuracy of the results. The step-by-step procedure
adopted to calculate the sensitivity indices follows.

First, the two N × k matrices, A and B, were defined
as shown in (3) using a Latin hypercube sampling technique,
where N is the number of samples and k is the number of
input parameters (k = 7 in this case). The column of each
matrix corresponds to a selected input parameter (identified by
the subscript) with random values within its input uncertainty
range (the sample number is indicated by the superscript).
Note that A and B are generated independently and are separate
matrices:

A,B =

⎡
⎢⎢⎢⎢⎢⎢⎣

x1
1 x1

2 · · · x1
k−1 x1

k

x2
1 x2

2 · · · x2
k−1 x2

k
...

...
. . .

...
...

xN−1
1 xN−1

2 · · · xN−1
k−1 xN−1

k

xN
1 xN

2 · · · xN
k−1 xN

k

⎤
⎥⎥⎥⎥⎥⎥⎦

. (3)

Second, a Ci matrix (i = 1 to k) was defined as shown in (4)
for each input parameter by replacing the ith column of the B
matrix with the ith column of the A matrix:

Ci =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

x1
1B x1

2B · · · x1
iA · · · x1

k−1B x1
kB

x2
1B x2

2B · · · x2
iA · · · x2

k−1B x2
kB

...
...

. . .
...

. . .
...

...

xN−1
1B xN−1

2B · · · xN−1
iA · · · xN−1

k−1B xN−1
kB

xN
1B xN

2B · · · xN
iA · · · xN

k−1B xN
kB

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

(4)

Third, the model output was computed using input samples
from the A, B, and Ci matrices as shown in (5). This generates
the output vectors, where each row of the A, B, and Ci matrices
forms a single input data point. Finally, the individual effect
and total effect sensitivity indices were defined as shown in
(6) and (7), respectively:

yA =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

f
(
A1

)
f

(
A2

)
...

f
(
AN−1

)
f

(
AN

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

yB =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

f
(
B1

)
f

(
B2

)
...

f
(
BN−1

)
f

(
BN

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

yCi
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

f
(
C1

i

)
f

(
C2

i

)
...

f
(
CN−1

i

)
f

(
CN

i

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(5)

Si =
1
N

∑N
j=1 y

j

Ay
j

Ci
− f 2

0

1
N

∑N
j=1

(
y

j

A

)2 − f 2
0

, where f 2
0 =

⎛
⎝ 1

N

N∑
j=1

y
j

A

⎞
⎠

2

(6)

STi =
1
N

∑N
j=1 y

j

By
j

Ci
− f 2

0

1
N

∑N
j=1

(
y

j

A

)2 − f 2
0

. (7)

Once the Sobol’ sensitivity indices are calculated, their values
must be interpreted. The index Si is a measure of how much the
output variance can be reduced by fixing Xi . It is independent
of the interactive effects or the total effect sensitivity indices.
The total effect index STi is greater than Si in the presence of
interactive effects; it is equal to Si when there are no interactive
effects. The difference between STi and Si is a measure of
the interactive effects for a particular parameter. If STi is
zero (Si is also equal to zero), this indicates that a particular
parameter has no influence on the output and can be fixed at
any value within its input uncertainty range. The sum of all
Si indices is equal to 1 for models with no interactive effects
(additive models) and is less than 1 for models with interactive
effects (non-additive models). The difference 1 − ∑k

i=1 Si is
an indicator of how significant interactive effects are in the
model. The sum of all STi should be greater than 1 in general
and is equal to 1 for additive models.

4. Predicting periodic error from input uncertainty

A first objective of this study was to predict the expected
periodic error magnitude based on the input uncertainties
for a particular heterodyne interferometer setup. As noted
previously, the Cosijns et al (2002) model was implemented
to complete this activity. This section describes the procedure
and the results are provided in section 6. As shown in section 6,
the most important parameters in the Cosijns et al (2002)
model were determined to be α, θ , and βerr based on a global
sensitivity analysis. The expected value of periodic error for a
given combination of setup uncertainties (in these values) was
then determined using Monte Carlo simulation. The expected
value of periodic error was considered to be the value below
which 95% (approximately two standard deviations, or 2σ )
of the periodic error values computed by the Monte Carlo
simulation occurred (a sample size of 2000 was used).

The expected periodic error was computed for a complete
array of uncertainties in the rotational misalignment of the
PBS, rotational misalignment of the mixing LP, and non-
orthogonality of the two frequencies. The uncertainties in the
ellipticities and transmission coefficients were kept constant
due to their low sensitivity. Contour plots are provided
for different values for uncertainty in the mixing polarizer
orientation.

From the simulation data, a regression fit with higher order
terms was then completed in order to obtain an expression for
the expected value of periodic error, pe (the sum of first-
and second-order contributions, considered as a worse case
scenario). A satisfactory fit was obtained with the inclusion of
cubic terms. The expression is of the form shown in (8), where
the b terms are the regression coefficients, k = 3 is the number
of variables (α, θ , and βerr for the simplified model), and x
specifies the uncertainties in α, θ , and βerr. This expression
provides an estimate of the expected value of periodic error
given uncertainties in the setup misalignments. The expression
does not incorporate variation in the uncertainties in the beam
ellipticities, dε1 and dε2, or the transmission coefficients,
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ξ and χ ; their uncertainties were assumed to be constant:

pe = b0 +
k∑

p=1

bpxp +
k∑

p=1

k∑
q=p

bpqxpxq

+
k∑

p=1

k∑
q=p

k∑
r=q

bpqrxpxqxr . (8)

5. Predicting interferometer setup misalignments

The second objective of this study was to predict the setup
misalignments based on the measured periodic error. The
approach is described here and results are provided in
section 6. Corrective measures can then be taken to reduce
these errors. An optimization problem was solved to find
the setup misalignments which would produce the same
periodic error as the measured error. The objective function
of the optimization problem was defined to minimize the
difference between the periodic error measured using the phase
measuring electronics and the periodic error predicted using
the Cosijns et al (2002) model using the setup misalignment
values of the candidate solution. The objective function was

minimize f = (FOm − FOc)
2 + (SOm − SOc)

2 , (9)

where FOm and SOm are the measured first- and second-order
periodic errors and FOc and SOc are the candidate periodic
errors computed using the Cosijns et al (2002) model. A
particle swarm optimization (PSO) technique was used to
solve the optimization problem. In PSO, a swarm of candidate
individuals are initialized in the design space. The value of
the objective function is calculated and the best individual
in the swarm is identified. The velocity vector, Vi , for each
step in the optimization consists of four terms: the inertia
term, the neighborhood term (subscript n), the global term
(subscript g), and the personal term (subscript p). In (10),
the C terms are coefficients which determine the weight of
each parameter (i.e. their contribution to the velocity), the R
terms are random numbers, w is the inertia weight, Vi−1 is
the velocity in the previous step, Xn is the position of the
neighborhood best particle, Xg is the position of the global
best particle, Xp is the position of the personal best particle,
and Xi is the current position. The new position of the particle
is computed using (11):

Vi = wVi−1 + CnRn(Xn − Xi)

+ CgRg(Xg − Xi) + CpRp(Xp − Xi) (10)

Xi+1 = Xi + Vi. (11)

The inertia weight controls the influence of the previous
velocity on the new velocity. A large inertia weight facilitates
greater exploration by encouraging the new search areas in
the design space; this gives the optimization process its global
nature. The inertia weight is typically reduced linearly in each
iteration until it reaches zero. The neighborhood weight makes
use of the intelligence of particles in the local neighborhood
in determining the velocity vector. The neighborhood term
is not always included in standard PSO algorithms. The
global weight determines how much influence the global best

particle has on the velocity vector, while the personal weight
determines how much the velocity vector of a particle depends
on its personal best. In this study the velocity equation was
truncated to include only the global and personal terms. It
was found through trial and error that the inertia term, wVi−1,
and the neighborhood component, CnRn(Xn − Xi), did not
contribute to improving the result or increasing computational
efficiency and they were therefore not considered. The results
obtained using only the personal and global weights were
found to be sufficiently robust.

The optimization was initially performed taking into
consideration all seven variables/setup parameters in the
Cosijns et al (2002) model. However, in most interferometer
setups, only the rotational alignment of the laser beam
and PBS and the rotational alignment of the mixing LP
are controlled, while the other parameters depend on
component manufacturing and cannot be changed in situ. The
optimization algorithm was therefore modified to consider
only these two parameters. It was observed that most periodic
errors can be corrected by varying only these two parameters.
Figure 3 shows an example of the optimization process where
the swarm is plotted at different stages with arrows indicating
the velocity components. Black dots indicate particles that
are closest to the optimum solution, while white dots indicate
particles that are furthest away (the arrows show the velocity).
The migration toward the α and θ combination in the 50th
iteration identifies the parameter combination that yields the
measured first- and second-order periodic errors. For figure 3,
the optimization was performed with target first- and second-
order errors of 10 nm each. From the optimization process, a
combination of α = 22.9◦ and θ = 6.6◦ was obtained which
would produce this combination of periodic errors.

The optimization problem was applied to the experimental
periodic error data obtained over a range of α and θ values. The
error magnitudes are supplied to the PSO algorithm and the α

and θ values were compared to those used in the experimental
setup. Also, as a check for the optimization accuracy, periodic
errors were computed for a range of α and θ values using the
Cosijns et al (2002) model. This periodic error data was then
input to the PSO algorithm and the α and θ values obtained
from the algorithm were compared to the original α and θ

values used in the model to compute periodic error.

6. Results

6.1. Experimental verification of the periodic error model

Experiments were carried out with the moving retroreflector
(mounted on the air bearing stage) commanded to translate
with a velocity of 50 mm min−1, while position data were
collected at a sampling frequency of 312.5 kHz. To determine
the periodic error, a polynomial fit was first extracted from
the position data to isolate the (residual) periodic error from
the macro-scale position data. The discrete Fourier transform
of the position data was then performed. From this result,
the first- and second-order periodic error magnitudes were
identified based on their frequency. These magnitudes were
compared with analytical values computed using the Cosijns

6
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Figure 3. Example particle swarm optimization process; results for the 1st, 10th, and 50th iterations are provided.

Figure 4. First-order (top) and second-order (bottom) periodic errors; analytical (left) and experimental (middle) results are included. The
differences between the analytical and experimental results are also included (right).

et al (2002) model for a range of α and θ values (±20◦). The
angle α was set by the orientation of the half-wave plate, while
θ was varied by changing the mixing LP angle. Figure 4 shows
the comparison of experimental results and model predictions
for the first- and second-order periodic errors; they are found
to be in good agreement with each other except for very large

misalignments. Figure 4 also displays the differences between
the experimental and predicted results.

The differences in figure 4 can be explained by the
uncertainties in the optical setup parameters. For any given
combination of α and θ , a new periodic error estimate can be
computed taking setup uncertainties into account as described

7
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Figure 5. Differences between the experimental and predicted
first-order (left) and second-order (right) periodic errors, including
the upper limits (top surface) obtained by considering uncertainty.

Figure 6. Local sensitivity for the first-order (left) and second-order
(right) periodic errors with respect to α, βerr, θ , dε1, and dε2. The
top plots show periodic errors and the bottom plots show
sensitivities.

in section 4. Thus, upper limits for periodic error can be
estimated by considering the input uncertainties. It is seen
in figure 5 that the differences between the analytical and the
experimental periodic errors are accounted for when including
setup uncertainty.

6.2. Sensitivity analysis

6.2.1. Local sensitivity. Local sensitivities for the first- and
second-order periodic errors were computed with respect to
each of the setup parameters, independently while all the
other parameters were maintained at their nominal values.
Figure 6 shows the sensitivities with respect to the rotational
misalignment between the laser beam and PBS, α, the non-
orthogonality of the two laser beams, βerr, the rotational
misalignment of the mixing LP, θ , and the two polarization
ellipticities, dε1 and dε2. Figures 7 and 8 show sensitivities
with respect to the transmission coefficients, χ and ζ . The
misalignment of the LP and the PBS transmission coefficients
have no effect on periodic error when all the other parameters
are maintained at their nominal values. Therefore, the

Figure 7. Local sensitivity for the first-order (left) and second-order
(right) periodic errors with respect to χ . The top plots show periodic
errors and the bottom plots show sensitivities.

Figure 8. Local sensitivity for the first-order (left) and second-order
(right) periodic errors with respect to ζ . The top plots show periodic
errors and the bottom plots show sensitivities.

sensitivities of these parameters were computed with α =
1◦. From the figures it is observed that both first- and second-
order errors are most influenced by α and βerr (which overlap
in figure 7). Local sensitivity, however, provides no indication
of the interactive effects between different variables. A global
sensitivity analysis was therefore also completed.

6.2.2. Sobol’ sensitivity indices. The Sobol’ individual effect
and total effect sensitivity indices were computed using the
Monte Carlo approach described previously with a sample
size of 1 × 106. The input parameter uncertainty ranges used
in the analysis are listed in table 1 (normal distributions were
assumed).

Table 2 shows the individual effect, total effect, and
interactive effect sensitivity indices computed for the sum of
the first- and second-order periodic errors as a worse case
scenario, as well as for consideration of first- and second-
order errors independently. As seen from the results for the
given input range, periodic order error is mainly dominated
by βerr. However, the total sensitivity indices for α and θ are
also significant, indicating that their interactive effects with

8
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Table 1. Uncertainty ranges for input parameters.

Parameter Uncertainty range (3σ )

α 5◦

θ 5◦

dε1 1◦

dε2 1◦

ζ 0.05
χ 0.05
βerr 1◦

other parameters are important. The angular orientations α, θ ,
and βerr are the main interacting parameters. The polarization
ellipticities, dε1 and dε2, and the transmission coefficients, ζ

and χ , have little influence. Other simulations conducted with
different input uncertainty values produced similar results.
Also, the second-order periodic error depends primarily
on α.

6.3. Periodic error prediction

The expected values of periodic errors were computed for an
array of input uncertainties: α = 0◦ to 5◦, θ = 0◦ to 5◦,
and βerr = 0◦ to 1◦. The lines of the constant periodic error
(the sum of the first- and second-order errors in nm) were
plotted in the α–βerr plane for different values of θ uncertainty.
From these contour plots, the expected value of periodic error
can be identified for a given combination of input parameter
uncertainties. The uncertainty in the ellipticities was fixed
at 1◦ and the transmission coefficient uncertainties were both
0.05. Figures 9 and 10 show results for θ uncertainties of 5◦

and 2◦, respectively. Using these figures, a regression fit (with
higher order terms) to the expected periodic error sum, pe, was
completed. The fit is shown in (12), where insignificant terms
have been eliminated. Note that the α, θ , and βerr terms are the
3σ normally distributed uncertainties. This equation can be
used to estimate the expected periodic error given uncertainties
in α, θ , and βerr for any single pass heterodyne interferometer
setup:

pe = 0.4115 + 0.2807β2
err + 0.0011α2θ

+ 0.0009αθ2 − 0.0048αθ − 0.0788βerr

+ 0.0182αβerr + 0.0005α3 − 0.0092αβ2
err. (12)

6.4. Setup misalignments prediction

Based on knowledge of the first- and second-order periodic
error magnitudes, the Cosijns et al (2002) model was applied to

Figure 9. Contour plot for the expected periodic error sum (θ = 5◦).

Figure 10. Contour plot for the expected periodic error sum
(θ = 2◦).

compute the values of the corresponding interferometer setup
misalignments using the PSO approach described previously.
Given these predicted misalignments, corrective measures
can be applied to reduce the error. The optimization was
performed with periodic errors obtained both experimentally
and analytically for a wide range of α and θ values to determine
if the optimization algorithm returned the appropriate α and θ

values in both instances.
The α and θ values obtained from the optimization process

were plotted as three-dimensional (3D) surfaces. A 3D surface

Table 2. Sobol’ sensitivity indices (important indices are indicated using a bold font).

Individual effect Si Total effect STi Interactive effect STi – Si

FO + SO FO SO FO + SO FO SO FO + SO FO SO

α 0.202 0.038 0.979 0.462 0.348 0.999 0.260 0.310 0.020
θ 0.034 0.040 0.001 0.284 0.341 0.002 0.250 0.301 0.001
dε1 0.034 0.041 0.001 0.114 0.141 0.002 0.080 0.099 0.001
dε2 0.035 0.041 0.001 0.115 0.141 0.002 0.080 0.100 0.001
ζ 0.002 0.001 0.001 0.013 0.015 0.002 0.011 0.014 0.001
χ 0.002 0.001 0.001 0.012 0.014 0.002 0.011 0.013 0.001
βerr 0.349 0.421 0.001 0.581 0.697 0.021 0.231 0.276 0.020
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Figure 11. PSO results with periodic error input: (left) analytical periodic error data; (right) experimental periodic error data.

Figure 12. Differences between PSO algorithm results and input α and θ values based on periodic error: (left) analytical periodic error data;
(right) experimental periodic error data.

of the true values for α and θ (i.e., the input α and θ values for
the analytical results and setup α and θ values for experimental
results) was also included as an overlapping layer. From
figure 11 it is seen that the output α and θ values obtained
from the PSO algorithm match closely with the analytical
input data values. Although similar trends are observed for
the experimental data, the results are not as closely matched.
Figure 12 shows the difference between the input α and θ

values and the values obtained from the optimization algorithm
for both analytical and experimental data.

For the analytical data, large differences in θ are observed
when α is zero. This is because θ does not have any
independent effect on periodic error in the model and only
acts in combination with α. Thus, when α is equal to zero,
θ is free to take up any value without affecting the output;
the result is large errors in predicting θ values in this specific

case. The differences in α are small. Experimental results
show significant differences in both α and θ for low α. These
can be attributed to uncertainty in the periodic error data itself
(figure 4). Ideally, for low α and θ values, the periodic error
should be close to zero. However, the input α and θ settings for
the experimental data are subject to their own uncertainties.
From table 2, it is seen that the second-order periodic error
is highly sensitive to α. Therefore, during the optimization
process where α and θ values are being estimated from the
measured periodic error the opposite holds true, i.e. the α

value is highly sensitive to the second-order periodic error
level. Since some periodic errors are always present due to
measurement limitations, it is propagated to high estimated
values of α and, therefore, large errors during the optimization
process.

10



Meas. Sci. Technol. 22 (2011) 035305 V Ganguly et al

7. Conclusions

In this work, sensitivity analyses were completed for periodic
errors in heterodyne displacement measuring interferometry.
The initial local sensitivity analysis showed that periodic
error depends mostly on variations in the misalignment about
the optical axis between the laser head polarizations and
the interferometer’s polarizing beam splitter, α, and non-
orthogonality between the two linearly polarized frequencies
emitted from the laser head, βerr. The Sobol’ global sensitivity
index method was then used to evaluate individual and total
effect sensitivity indices. The sensitivity indices obtained from
this analysis suggested that periodic error depends mainly on
α, βerr, and the angular misalignment of the mixing LP for the
interferometer, θ . Only βerr showed a significant individual
effect; however, α and θ were shown to interact with each
other, as well as with βerr, and significantly affect periodic
error. This suggests that, in order to restrict periodic error
to a low value, the rotational alignment of the laser head
with the PBS and the rotational alignment of the mixing
LP must be accurate. Also, a laser source with orthogonal
(linearly polarized) frequencies must be selected. Using
a Monte Carlo simulation approach, the expected periodic
error for input uncertainties was determined and contour plots
were developed. Based on these results, a regression fit was
completed to obtain a closed-form expression that can be used
to predict periodic error given the uncertainties in the optical
setup. This could be used to evaluate the applicability of a
commercial system to a particular measurement application
(based on the manufacturer-specified uncertainty in the beam
orthogonality, for example).

The use of an optimization algorithm as a predictive tool
in estimating α and θ errors based on the measured periodic
error magnitudes was also investigated. The periodic error
obtained from the phase measuring electronics was used to
find corresponding setup imperfections. Although this method
does show some promise, it fails for low values of α due to
model limitations (e.g., ghost reflections, beam shear, and
nonlinearities in the phase measuring electronics were not
considered) and uncertainties associated with periodic error
measurements.
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Appendix

The Cosijns et al (2002) analysis propagates: ellipticity of
the two (nominally linear) polarizations; non-orthogonality
between the two polarizations; rotation of the polarization
axes relative to the polarizing beam splitter (which ideally
separates the coincident frequencies into the measurement
and reference paths); transmission coefficient variations for

the polarizing beam splitter; and rotation of the mixing LP,
which causes interference of the measurement and reference
beams, relative to its nominal 45◦ orientation (for vertical
and horizontal source polarizations) through the interference
equations to arrive an expression for the periodic phase error,
�φpe. See (A.1), where θ is the deviation of the polarizer angle
from 45◦ and the variables A–F are defined in (A.2)–(A.7).

�φpe = − tan−1

(
A + B sin (2θ) + C cos (2θ)

D + E sin (2θ) + F cos (2θ)

)
(A.1)

A = (−(ζ 2 sin(β)2 + χ2 cos(β)2) cos(dε1/2) sin(dε2/2)

− (ζ 2 cos(α)2 + χ2 sin(α)2) sin(dε1/2)

cos(dε2/2)) cos(�φ) + (ζ 2 cos(α) sin(β)

+ χ2 sin(α) cos(β)) cos(dε1/2 + dε2/2) sin(�φ)

(A.2)

B = ((ζ 2 sin(β)2 − χ2 cos(β)2) cos(dε1/2) sin(dε2/2)

+ (ζ 2 cos(α)2 − χ2 sin(α)2) sin(dε1/2)

cos(dε2/2)) cos(�φ) + (−ζ 2 cos(α) sin(β)

+ χ2 sin(α) cos(β)) cos(dε1/2 + dε2/2) sin(�φ) (A.3)

C = ζχ(cos(β) sin(β) cos(dε1/2) sin(dε2/2)(1 − cos(2�φ))

+ sin(α) sin(β) cos(dε1/2) cos(dε2/2) sin(2�φ)

− cos(α) cos(β) sin(dε1/2) sin(dε2/2) sin(2�φ)

− sin(α) cos(α) sin(dε1/2) cos(dε2/2)(1 + cos(2�φ)))

(A.4)

D = ((ζ 2 sin(β)2 + χ2 cos(β)2) cos(dε1/2) sin(dε2/2)

+ (ζ 2 cos(α)2 + χ2 sin(α)2) sin(dε1/2)

cos(dε2/2)) sin(�φ) + (ζ 2 cos(α) sin(β)

+ χ2 sin(α) cos(β)) cos(dε1/2 + dε2/2) cos(�φ) (A.5)

E = ((−ζ 2 sin(β)2 + χ2 cos(β)2) cos(dε1/2) sin(dε2/2)

+ (−ζ 2 cos(α)2 + χ2 sin(α)2) sin(dε1/2)

cos(dε2/2)) sin(�φ) + (−ζ 2 cos(α) sin(β)

+ χ2 sin(α) cos(β)) cos(dε1/2 + dε2/2) cos(�φ) (A.6)

F = ζχ(cos(β) sin(β) cos(dε1/2) sin(dε2/2) sin(2�φ)

+ cos(α) cos(β)(cos(dε1/2) cos(dε2/2)

− sin(dε1/2) sin(dε2/2) cos(2�φ))

+ sin(α) sin(β)(− sin(dε1/2) sin(dε2/2)

+ cos(dε1/2) cos(dε2/2) cos(2�φ))

+ sin(α) cos(α) sin(dε1/2) cos(dε2/2) sin(2�φ)) (A.7)

In these equations, dε1 and dε2 are the ellipticities of
the two coincident beams (ideally zero), α and β are the
orientation of the two polarizations relative to the polarizing
beam splitter axes, ζ and χ are the transmission coefficients
for the polarizing beam splitter (ideally equal to one), and
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�φ = 4πn·�l
λ

is the phase change introduced by a
given displacement, �l (n is the refractive index for the
propagating medium and λ is the wavelength) for a single
pass configuration of the interferometer. Note that the two
angles, α and β, together determine both non-orthogonality
between the two polarizations and rotation of the polarization
axes relative to the polarizing beam splitter. For orthogonal,
but rotationally misaligned, beams β = −α. When the beams
are perfectly aligned with the PBS, α = β = 0. In this study,
the model is modified in order to introduce a term specifically
for non-orthogonality. Therefore, β is expressed as β = α +
(non-orthogonality error) = α + βerr. The displacement error,
�lpe, due to the periodic phase error (A.1) is provided in (A.8).

�lpe = �φpe · λ

4πn
(A.8)
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