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Probabilistic Sequential
Prediction of Cutting Force Using
Kienzle Model in Orthogonal
Turning Process
Probabilistic sequential prediction of cutting forces is performed applying Bayesian
inference to Kienzle force model. The model uncertainties are quantified using the
Metropolis algorithm of the Markov chain Monte Carlo (MCMC) approach. Prior proba-
bilities are established and posteriors of the models parameters and force predictions are
completed using the results of orthogonal turning experiments. Two types of tools with
chamfer (rake) angles of 0 deg and �10 deg are tested under various cutting speed and
feed per revolution values. First, Bayesian inference is applied to two force models, Mer-
chant and Kienzle, to investigate the cutting force prediction at the low feed values for
the 0 deg rake angle tool. Second, the results of the posteriors of the Kienzle model
parameters are used as prior probabilities of the �10 deg rake angle tool. The simulation
results of the 0 deg and �10 deg tool rake angle are compared with the experiments
which are obtained under other cutting conditions for model verification. Maximum pre-
diction errors of 7% and 9% are reported for the tangential and feed forces, respectively.
This indicates a good capability of the Bayesian inference for model parameter identifica-
tion and cutting force prediction considering the inherent uncertainty and minimum input
experimental data. [DOI: 10.1115/1.4041710]
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1 Introduction

Machining models provide relationships between user-selected
inputs (feed, cutting speed, tool geometry) and the process out-
puts, such as cutting forces. The models may be numerical or ana-
lytical in format. In this context, several models have been
proposed [1–4] to predict cutting forces in milling and turning
operations. In general, machining models are deterministic. In
other words, given a set of inputs, a unique set of outputs is
obtained. However, to establish a predictive model, the mean and
distribution in the outputs must be related to the input means and
distributions. This probabilistic approach incorporates the inher-
ence uncertainties. These uncertainties are due to the machine and
machining process, workpiece material, measurement process,
tool material, and tool geometry, among others. The uncertainty
evaluation and probabilistic modeling of the machining process
can be performed by Bayesian inference [5]. Karandikar et al.
[6,7] investigated application of grid-based and Bayesian Markov
chain Monte Carlo (MCMC) to predict the tool life in milling and
turning processes. The grid-based method was used for inference

on Taylor tool life model parameters, whereas the Metropolis
MCMC was applied to estimate the extended Taylor’s model
parameters. The performance comparison of two approaches was
also reported, where the grid-based method was easier to imple-
ment, but it was computationally more expensive for updating a
joint distribution with three or more dimensions. On the other
hand, the Metropolis algorithm facilitated sampling from multi-
variate distributions without sensitivity to the number of the
parameters [8]. Niaki et al. [9,10] developed probabilistic models
using Bayesian inference to predict tool wear in milling of
Nickel-based material. The combined Gibbs-Metropolis algorithm
was used to estimate the unknown parameters of a nonlinear
mechanistic cutting power model. The Metropolis algorithm was
used for predicting the model parameters, whereas the Gibbs sam-
pler was utilized for updating measurement error variance. By
using the algorithm, the model parameters were successfully esti-
mated with the maximum error of 18%.

G€oz€u and Karpat [11] studied application of Bayesian inference
to predict cutting force in micromilling of Titanium alloy TiAl4V.
The Metropolis–Hasting algorithm of MCMC was used to identify
probability distributions of the cutting and ploughing forces coef-
ficients based on experimental measurements and a mechanistic
model of micromilling. The mechanistic model can predict the
cutting and ploughing forces in radial and tangential directions,
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where the cutting forces are linearly proportional to the uncut chip
thickness. Schmitz et al. [12] investigated cutting force prediction
under uncertainty using Bayesian inference for the Merchant
model, where the cutting force is linearly proportional to the feed-
dependent uncut chip thickness. Discrete grid method was used to
update the force model parameters. Mehta et al. [13] developed a
mechanistic force model for cutting force prediction using
MCMC approach again applied to the Merchant model. The force
models, which have been used in the above-mentioned papers,
describe linear relationships between the cutting and ploughing
forces and the feed values. Nevertheless, the probabilistic cutting
force prediction considering the “size effect” phenomenon is yet
to be investigated using nonlinear models such as Kienzle force
model [14]. The term size effect refers to as the nonlinear increase
of the specific cutting energy with decreasing the undeformed
chip thickness. A good summary of the phenomenon and the mod-
eling techniques are given by Vollertsen et al. [15].

In this paper, Bayesian inference is applied to the Merchant and
Kienzle force models to predict the cutting forces at very low feed
values in turning. Metropolis algorithm of the MCMC method is
used to estimate the force models’ parameters. In order to investi-
gate the effect of cutting tool geometry on cutting forces, two cut-
ting tool rake angles, 0 deg and �10 deg, are tested under different
cutting conditions in an orthogonal turning process. First, the
probabilistic prediction of tangential force using the Merchant
model for the 0 deg rake angle tool is presented. Next, Bayesian
inference is applied to the Kienzle model to predict tangential and
feed forces for the 0 deg and �10 deg rake angle tools,
sequentially.

This paper is organized as follows: in Sec. 2, deterministic Mer-
chant and Kienzle cutting force models are presented. In Sec. 3,
the experimental setup and the measurement results are illustrated.
In Sec. 4, the Bayesian inference scheme and MCMC method are
presented. In Sec. 5, the application of MCMC to the Merchant
and Kienzle force models using the 0 deg tool rake angle is pre-
sented and discussed. The results of the posterior forces and
parameters of the Kienzle model for the 0 deg rake angle tool are
used to predict forces for the �10 deg rake angle tool in Sec. 6.
Conclusions are provided in Sec. 7.

2 Cutting Force Models

Deterministic models of the Merchant and Kienzle force mod-
els are presented in this section. The Mechanistic Merchant model
is based on an assumption that the tool edge radius is zero.

However, Kienzle force model takes into account the effect of cut-
ting edge radius on specific cutting force coefficient. Weber et al.
[14] investigated increase of the force coefficients comparing two
edge radii of 5 and 50 lm, where the larger cutting edge radius
resulted in a higher specific cutting force. They also reported that
the edge radius of the tool used in the investigations to derive the
Kienzle equation was probably in the range of 10–20 lm.

2.1 Merchant Force Model. Merchant force model describes
linear relationships between cutting force and the uncut chip
thickness, h [16]. Figure 1 displays a schematic orthogonal cutting
model for the cutting forces calculation. According to the figure,
the tangential force, Ft, is calculated as follows:

Ft ¼ Ktbh (1)

where Kt is the tangential cutting force coefficient, b is the width
of cut, and h is the uncut chip thickness. The width of the cut and
the feed value are decided by the machinist, while the cutting
force coefficient must be calculated. In order to calculate Ft, one
needs to find Kt as follows:

Kt ¼ ss
cosðba � arÞ

sin øcð Þcosðøc þ ba � arÞ
(2)

where ss is the shear stress along the shear plane, /c is the shear
plane angle, ba is the average friction angle, and ar is the tool rake
angle. The ss is determined as following:

ss ¼
Fs

As
(3)

where Fs is the shear force, and As is the shear area. The ba is
obtained as follows:

ba ¼ ar þ tan�1 Ff

Ft

� �
(4)

The shear plane angle, /c, can be obtained by measuring the cut
chip thickness, as follows:

øc ¼ tan�1 rccos arð Þ
1� rcsin arð Þ

 !
(5)

rc ¼
h

hc
(6)

Fig. 1 Merchant cutting force diagram
Fig. 2 Machining experiments setup and the cutting forces
directions
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where hc is the cut chip thickness and rc is the chip thickness
ratio.

2.2 Kienzle Force Model. The Kienzle force model
describes a nonlinear relationship between h and the cutting force
components in the tangential and feed directions, Ft and Ff,
respectively [17]

Ft ¼ Ktt:b:h
1�ct (7)

Ff ¼ Kff :b:h
1�cf (8)

where the 1-ct and 1-cf exponents are positive constants less than
one, and Ktt and Kff are the tangential and feed cutting force coef-
ficients. The force coefficients depend on the workpiece material,
and the exponents depend on the geometrical cutting parameters,
cutting speed, and the tool-workpiece combination.

3 Experimental Setup and Results

Tube turning (orthogonal cutting) experiments were performed
on a Haas TL-1 CNC lathe; see Fig. 2. The dry machining tests
were completed using a Kennametal turning insert, CCMW3252,
with 0 deg rake angle as well as uncoated inserts SPGW09T308
with the rake angle �10 deg and the edge radius of 20 lm. The
latter insert was designed and produced with the special edge
geometry by Zermet Zerspanung GmbH with the ISO grade of
P25.

The tubular workpiece material was AISI 1020 steel with an
outer diameter of 25.4 mm and wall thickness of 2.1 mm. The cor-
responding chip width was 2.1 mm. Feed values of h¼ {0.051,
0.076, and 0.102} mm/rev, as well as three cutting speeds of
Vc¼ {60, 80, and100} m/min were selected. The experiments
were repeated three times for each cutting speed-feed combina-
tion. Therefore, the total number of experiments was 54. A three-
axis force dynamometer (Kistler 9257B) was used to measure the
cutting forces in the tangential and feed directions. For both tool
geometries, one to two data sets were used to update the probabil-
istic models, while the others were used for the probabilistic
model verification.

3.1 Results of the Cutting Force and Chip Thickness
Measurement. Twelve tangential and feed forces were selected
for training of the Merchant and Kienzle model parameters. Fig-
ures 3 and 4 display the tangential and feed force data under dif-
ferent cutting conditions using the two tool geometries (0 and
�10 deg rake angles). The mean is provided together with one
standard deviation error bars. As expected, the forces increase

with the increase of feed for the both geometries. One interesting
observation is that the tangential force component is larger for the
0 deg rake tool, while the feed component is larger for the
�10 deg rake tool.

Figure 5 shows the mean and one standard deviation of cut chip
thickness values, which were measured by a dial caliper along the
machined chips. The values are used to train the prior of the mer-
chant model parameters for the 0 deg rake angle tool. According
to the figure, the cut chip thickness values increase with an
increase in feed values.

4 Bayesian Inference

Bayesian inference enables the prior or initial belief about a
parameter, to be updated by new experimental results. In Bayesian
inference, a probability represents a degree of belief. According to
Eq. (9), the posterior probability, p(x|y), which represents new
beliefs after new information is obtained, is calculated by multi-
plying the prior, p(x), by the likelihood function p(y|x) and divid-
ing by the normalizing function. Using the Bayesian approach, the
posterior distribution of the one study can be used as the prior dis-
tribution of a second study

p xjyð Þ ¼ p xð ÞpðyjxÞð
p xð Þp yjxð Þdx

(9)

The integral in Eq. (9) is often referred to as the marginal proba-
bility and generally does not have a closed-form solution. There-
fore, various computational approaches have been developed to
supplement or replace analytical integration to determine the pos-
terior distribution. One popular numerical approach is the MCMC
algorithm [18]. This algorithm has played a significant role in
machine learning, statistics, econometrics, physics, and decision
analysis over the last two decades.

4.1 Markov Chain Monte Carlo Approach. The MCMC
method is a sampling technique used to draw sample from a prob-
ability density function (PDF). Random samples, x, are generated
using a Markov chain mechanism to approximate a distribution of
interest, which is often called target distribution, p(x). Among the
different MCMC methods, the Metropolis–Hastings (MH) algo-
rithm is the most popular. The MH technique can be used for
drawing samples from symmetric and asymmetric proposal distri-
butions. Metropolis algorithm is a special case of the MH algo-
rithm, where the proposal function is symmetric. A normal
distribution is often used as a symmetric proposal PDF denoted as
q(x). A candidate sample, xnew, drawn from the proposal

Fig. 3 Tangential and feed force components for training of the priors using tool rake angle 0 deg
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distribution is either accepted or rejected depending on an accep-
tance ratio of the posteriors, r. In each iteration, the Markov chain
moves to xnew if the sample is accepted. Otherwise, the chain
remains at the current value of x. The algorithm proceeds for N �
1 iterations to obtain N samples from the target distribution using
the following steps [7]:

(1) Initialize a starting sample x0,
(2) For i ¼ 0 to i¼N � 1:

• Select a candidate xnew from a proposal distribution,
q(xnew| xi),

• Calculate the acceptance ratio, r ¼ ðpðxnewÞ=PðxiÞÞ,
• Generate a random number, u� uniform (0,1),

If u � r:
Accept the proposal: xiþ1¼ xnew,

Else:
Reject the proposal: xi¼ xnew,

End If
(3) End For
In order to reduce the excessive autocorrelation of the drawn

samples using Metropolis algorithm, the thinning technique is
used. Additionally, the proposal distribution of the samples is
tuned by selecting the sample acceptance rate roughly between 25
and 45%, [19,20]. The initial iterations are typically discarded as
burn-in period to reduce the effect of the initial errors at the begin-
ning of the chain [21]. A practical way to evaluate convergence to
the chain’s stationary distribution is by observing the traces and

histograms of the parameters [5]. To assess convergence of
MCMC draws within a chain, Geweke method is used. The
method proposes a convergence diagnostic for Markov chains
based on comparison of the last part of the chain against some
smaller interval in the beginning of the chain (e.g., the first 10%
and last 50% after removing the burn-in period). If the chain is at
the stationary condition, the sample means of two intervals are
almost equal (e.g., the difference is less than 3%) [22].

In this paper, blockwise updating technique of the Metropolis
algorithm is used to sample from bivariate probability distribu-
tions. In this method, proposal distributions are selected to have
the same dimensionality as the target distributions, so that the pro-
posal distributions are either accepted or rejected as a block.

5 Application of Markov Chain Monte Carlo to

Merchant and Kienzle Force Models Using Rake Angle

0 Deg Tool

Bayesian MCMC approach is applied to the Merchant force
model to predict the tangential force, first. Next, MCMC approach
is applied to the Kienzle force model to predict the tangential and
feed forces. Summary of the steps of the MCMC application to
the force models are described as following:

(1) Establishing the priors of the force models’ parameters.
(2) Parameters updating using the likelihood function of the

measured forces.

Fig. 4 Tangential and feed force components for training of the priors using tool rake angle 210 deg

Fig. 5 Mean and one standard deviation of the cut chip thick-
ness using the 0 deg rake angle tool Fig. 6 Prior distribution of /c
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(3) Computing of the posterior distribution of the force mod-
els’ parameters and cutting forces using MCMC Metropolis
algorithm.

5.1 Application of Markov Chain Monte Carlo to
Merchant Model. In the Merchant force model, there is uncer-
tainty in the force coefficient, Kt, due to the uncertainty in the
model parameters, /c, ba, and ss. The uncertainty evaluation and
minimization using Bayesian MCMC are explained in this
section.

5.1.1 Establishing the Priors. Prior of the model parameters
were obtained from literature reviews [12]. In the literatures, the
results of the cutting tests were reported for a range of tool
rake angles, þ5, 0, and �7 deg, the cutting speed values of
100–400 m/min and feed values of 0.1–0.5 mm/rev. The prior
mean and one standard deviation values of the parameters are
given as follows:

(1) /c¼ 17 6 4 deg
(2) ba¼ 30 6 5 deg
(3) ss¼ 550 6 80 MPa

Figure 6 shows the normal prior distribution of /c, and Fig. 7
illustrates joint Gaussian prior distribution of ba and ss, with an
independent covariance matrix. Monte Carlo sampling was

practiced for Eq. (2) to find the distribution of tangential force
coefficient, Kt. The mean and one standard deviation of Kt were
computed to be 2447 and 528 MPa.

Once again, Monte Carlo simulation was used to calculate the
prior for the tangential cutting force using Eq. (1). Figure 8 illus-
trates the functional form of the prior mean value, two standard
deviation (2r) uncertainty intervals, and the training force data
points. According to the figure, the prior mean function
underestimates the forces.

5.1.2 Parameters Updating. This section describes the model
parameters updating using the likelihood function and Metropolis
MCMC method. In this regard, first, the parameter /c is updated
using the measured hc. Next, random samples from the posterior
of /c, together with the measured force values are used to update
the joint PDF of the parameters ba and ss [12]. Likelihood func-
tion of the shear plane angle is written as following:

p /m
c j/c

� �
¼ e

�ð/c�/m
c Þ

2

2rc;m2 (10)

where /m
c is the measured shear plane angle, which is calculated

using measured cut chip thickness, hc, as an input into Eqs. (5)
and (6), rc,m is the standard deviation or variation of the measured
cut chip thickness, which is obtain to be 7–10% of the mean value.
The likelihood is the value of the normal PDF for the measured

Fig. 7 Joint distribution of ba and ss

Fig. 8 Prior function of tangential cutting force with 62r
standard deviation uncertainty intervals

Fig. 9 Comparison of prior and posterior distributions of /c

after three updates

Fig. 10 Joint PDF of ba and ss after three updates
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shear plane angle, /m
c , given the specified values of the /c as

prior. This likelihood function describes how likely the measure-
ment result at a feed is, given force parameters priors. In other
word, if the priors result in a force, which is near to the measured
force, the likelihood is high; otherwise it is low.

Posterior distribution of /c was calculated by multiplying the
prior of the into the likelihood function using Metropolis algo-
rithm. In this context, N¼ 10,000 samples were drawn from the
proposal normal distribution, q(/c). After removing the first 1500
points as the burn-in period, the acceptance rate of 28% was
obtained. Figure 9 shows the prior and posterior distributions of
/c after three updates. The posterior mean value is 10.9 deg, and
the one standard uncertainty interval is minimized to 0.29 deg.

The same procedure was followed to update the joint prior dis-
tribution of (ba,ss) using the measured force values and the sam-
ples from the /c posterior. Similarly, blockwise MCMC method
was exercised to draw N¼ 10,000 samples from the joint normal
proposal distribution, q(ba,ss). After discarding of the first 1500
samples as the burn-in period, the acceptance rate of 41% was
obtained. Figure 10 displays the joint posterior distributions of ba

and ss after three updates. The mean values of ba and ss, are
30.8 deg and 559 MPa, and the standard deviations are 3.8 deg and
17 MPa, respectively.

Although, the prior joint PDF of (ba,ss) were taken to be inde-
pendent, the parameters become correlated after running the
MCMC simulation. This can be quantified using Pearson correla-
tion coefficient. The correlation coefficient is the measure of lin-
ear relationship between two parameters defined as the covariance
of the parameters divided by the product of their standard devia-
tions; see the following equation:

q ba; ssð Þ ¼ covðba; ssÞ
rba

rss

(11)

The correlation coefficient of the parameters, ba and ss, was calcu-
lated to be �0.2. Monte Carlo simulation is used to calculate the
posterior distribution of the coefficient, Kt, using the posteriors of
the model parameters, /c, ba, and ss, for Eq. (2). Figure 11 shows
the prior and posterior distributions of Kt. The posterior mean and
standard deviation values were computed to be 3408 and
135 MPa. As illustrated, the uncertainty is minimized after three
updates.

5.1.3 Cutting Force Prediction. Figure 12 demonstrates the
posterior function of the cutting force with two standard deviation
(2r) uncertainty intervals.

As can be seen in Fig. 12, despite of the uncertainty assignment
to the posterior mean function, the Merchant model is not able to

predict all the training forces within the experimental feed values.
This represents the nonlinear relationship of the forces and uncut
chip thickness at the low feed values. The nonlinearity can be due
to the increase of the specific cutting energy with the reduced
uncut chip thickness or increase of tool edge radius, so that the
energy expended in shearing the chip due to the apparent more
negative effective rake angle (size effect phenomenon) [23]. The
size effect is often described with the Kienzle force model [14].

5.2 Application of Markov Chain Monte Carlo to Kienzle
Model. Blockwise Metropolis algorithm is again used to evaluate
the uncertainty of the Kienzle force model parameters and the
forces prediction. The uncertainty of the tangential and feed
forces, Ft and Ff, originates from the uncertainty in the model
parameters Ktt, Kff, ct, and cf.

5.2.1 Establishing the Prior. The parameter identification
starts with establishing prior values for Ktt, Kff, ct, and cf. The
mean and standard deviation of the parameters were taken from
Ref. [24] for a range of low carbon steel cutting operations

(1) Ktt¼ 1620 6 96 MPa
(2) Kff¼ 350 6 140 MPa
(3) ct¼ 0.28 6 0.04
(4) cf¼ 0.33 6 0.025

Figure 13 shows the priors of the pairs (Ktt,ctt) and (Kff,cf) using
Gaussian joint distributions; the covariance matrices were taken
to be independent. Moreover, the functional form of the mean val-
ues for the priors with two standard deviation uncertainty intervals
are displayed in Fig. 14. The training data are also shown. Accord-
ing to the figure, the prior mean function of the tangential force
over-estimates the training force data, while the prior mean func-
tion of the feed force underestimates it.

The bivariate likelihood function of the measured tangential
force given the Kienzle force coefficients is

p FtmjKtt; ctð Þ ¼ e
�ððKtt :b:h

1�ct Þ�FtmÞ2

2rFtm
2

(12)

where pv(Ftm|Ktt,ct) is the likelihood function of the measured tan-
gential force mean, Ftm, given specified prior values of the force
coefficients, (Ktt,ct), at an experimental feed value. The likelihood
function is expressed as a non-normalized normal distribution,
where rFtm is the standard deviation of the tangential measured
force. The likelihood function was also calculated for the meas-
ured feed force mean, Ffm, given specified prior values of the force
coefficients, (Kff,cf). In this study, the standard deviation of the
tangential and feed forces was considered 4–6% of the measured

Fig. 11 Comparison of prior and posterior distributions of the
Kt, after three updates

Fig. 12 Posterior function of tangential cutting force with 62r
standard deviation uncertainty intervals
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forces mean values. Joint posterior distributions, (Ktt,ct) and
(Kff,cf), were calculated by multiplying the priors into the likeli-
hood functions using blockwise Metropolis algorithm. N¼ 10,000
samples were drawn from the proposal normal distributions,
q(Ktt,ct) and q(Kff,cf), and 1500 samples were considered as the
burn-in period. The covariance matrices of the proposal

distributions were tuned, so that the acceptance rate values of
44% and 33% were obtained for the drawn samples of the tangen-
tial and feed model parameters, respectively.

Figure 15 displays the bivariate posterior distributions of Ktt

and ct (left), which is obtained after one update, in addition to Kff

and cf (right) achieved after two updates using measured forces.

Fig. 13 Joint Gaussian prior distributions of Ktt and ctt (left), and Kff and cf (right) for the tool rake angle 0 deg

Fig. 14 Prior functions of the tangential forces (left) and feed force (right) with 62r standard deviation uncertainty intervals
for the tool rake angle 0 deg

Fig. 15 Joint posterior distributions of Ktt and ctt (left), and Kff and cf (right), for the tool rake angle 0 deg
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For the tangential force component, the mean values of Ktt and ct

are computed to be 1573 MPa and 0.24, and the standard devia-
tions are 84 MPa and 0.023, respectively. For the feed force com-
ponent, the mean values of Kff and cf are 870 MPa and 0.36, and
the standard deviations are 58 MPa and 0.022, respectively. Com-
paring the posterior and prior joint distributions, it is seen that the
uncertainties are reduced. Additionally, the model parameters
become correlated with the correlation coefficient of �0.78 for
(Ktt,ct) and �0.85 for (Kff,cf) joint distributions.

5.2.2 Cutting Force Prediction. Force prediction is performed
using the posterior distributions of Ktt and ct and Kff and cf for
Eqs. (7) and (8). Figure 16 shows the functional form of the tan-
gential and feed forces posteriors with the mean and two standard
deviations. The regression fit is characterized by R2¼ 0.99 (tan-
gential force), and R2¼ 0.98 (feed force). As can be seen, only
one force is used for updating of the tangential force posterior,
and two forces are used for training of the feed force posterior
function. The posterior mean functions closely agree with the
forces. This is due to the influence of the informative prior knowl-
edge in the tangential direction (which leads to using of only one
training force) and less informative prior in the feed direction.

Figure 17 illustrates the prediction of the cutting forces
obtained under other cutting conditions. As can be seen, all the
force data appear within the uncertainty intervals. Table 1 lists the
experimental force values and the predicted mean with two stand-
ard deviation (2r) uncertainty intervals of the tangential and feed

forces for the 0 deg tool rake angle. Percent error between the
measured and predicted mean forces is also reported in the table,
where the maximum prediction error for the tangential force was
calculated to be 5% and for the feed force is 8%. This indicates
that the algorithms are able to identify the model parameters and
predict the forces with a good degree of accuracy. Consequently,
the probabilistic prediction of the forces using Kienzle model
causes more accurate estimation and can capture the nonlinearity
of the measured forces in both tangential and feed directions.

6 Sequential Force Prediction Using the Kienzle Force

Model

Sequential force prediction is performed by using the posterior
distributions of the Kienzle model parameters from the 0 deg rake
tool as the prior distributions for the �10 deg rake angle tool; see
Fig. 18. As illustrated in the figure, the model parameter priors are
trained by 0 deg rake experiments to obtain the posterior force dis-
tributions. Next, the posterior distributions of the 0 deg rake angle
tool are used as prior probabilities for the �10 deg rake angle tool.
The training procedure can be continued to update and predict the
forces using other rake angles as well.

6.1 Model Parameter Identification. To establish the mean
and standard deviation for the priors of the new geometry (tool
rake angle �10 deg), following steps were implemented:

Fig. 16 Posterior functions of tangential (left) and feed (right) force with 62r standard deviation uncertainty intervals for the
tool rake angle 0 deg

Fig. 17 Posterior functions for prediction of tangential (left) and feed (right) forces with 62r standard deviation uncertainty
intervals for the tool rake angle 0 deg
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(1) The prior mean and standard deviation values of Ktt and ctt

parameters, for �10 deg rake tool, are taken to be equal to
the posterior of the previous geometry.

(2) The prior mean values of Kff and cf parameters, for �10 deg
rake tool, are again taken to be equal to the posterior mean
values of the previous geometry.

(3) The prior standard deviations of Kff and cf parameters, for
�10 deg rake tool, are taken to be equal to the priors of the
0 deg rake tool, 140 MPa, and 0.025.

The above-mentioned approach for establishing of the prior’s
standard deviations denotes that allocating larger uncertainty on
the prior values (i.e., less confidence in the prior knowledge) ena-
bles the simulation to rely more on the measurements. If more
weight is given to the experiments, the parameters follow the like-
lihood function. On the other hand, defining smaller uncertainty
on the prior distributions (more informative prior knowledge)
refers that the simulation relies more on the prior. Based on this
argument, it was decided to allocate smaller uncertainties to the
tangential force model parameters (due to the more informative
priors) and larger ones to the feed force model parameters.

Functional forms of the prior mean values, two standard devia-
tion (2r) uncertainty intervals, and the training force data points
are shown in Fig. 19. According to the figure, the prior mean func-
tion of the tangential force approximates the training force data
better than prior mean function of the feed force and both
underestimate the data.

Once again, N¼ 10,000 samples were drawn from the proposal
normal distributions, q(Ktt,ct) and q(Kff,cf), and 1500 samples were
considered as the burn-in period. The covariance matrices of the
proposal distributions were tuned, so that the acceptance rate values
of 45% and 39% were obtained for the drawn samples of the tan-
gential and feed model parameters, respectively. Figure 20 shows
the bivariate posterior distributions of Ktt and ct and Kff and cf after
one and two force updates, respectively. For the tangential force
component, the mean values of Ktt and ct are1658 MPa, and 0.27
and the standard deviations are 70 MPa and 0.017. For the feed
force component, the mean values of Kff and cf, are 1255 MPa and
0.39 and the standard deviations are 72 MPa and 0.021. Comparing
the posterior and prior joint distributions, it is seen that the uncer-
tainties are reduced after updating. Additionally, the correlation

Table 1 Measured and predicted forces and the corresponding percentage error using the 0 deg tool rake angle

No. Vc (m/min) f (mm/rev) Ft_measured (N) Ft_predicted (N) Ft_error (%) Ff_measured (N) Ff_predicted (N) Ff_error (%)

1 60 0.051 259 7.7
2 80 0.051 336, 341,361 (352, 9.67) 4.7, 3.2, 2.5 263 (279, 6.7) 5
3 100 0.051 297 6
4 60 0.076 472, 475 (475 ,14.2) 0.6 348 (360, 9.9) 3.5
5 100 0.076 462 2 376, 382 4.2, 5.7
6 60 0.102 583 1.7 419, 426 3.3, 1.6
7 80 0.102 605 (593,19) 2 (433, 13.2)
8 100 0.102 567 4.5 463 6.5

Fig. 18 Sequential training and prediction of cutting forces using Bayesian updating for different tool rake
angles

Fig. 19 Prior functions of the tangential forces (left) and feed force (right) with 62r standard deviation uncertainty intervals
for the tool rake angle 210 deg
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coefficient of the model parameters were calculated to be �0.53
for (Ktt,ct) and �0.80 for (Kff,cf) joint distributions.

6.2 Cutting Force Prediction. Posterior force prediction was
performed using the posterior distributions of Ktt and ct and Kff

and cf for Eqs. (7) and (8). Figure 21 shows the functional form of
the posterior tangential and feed forces with the mean and stand-
ard deviation of 2r. The regression fit parameters are R2¼ 0.96
(tangential force), and R2¼ 0.965 (feed force). The posterior of
the tangential force was achieved using only one update due to the

Fig. 20 Joint posterior distributions of Ktt and ctt (left), and Kff and cf (right) for the tool rake angle 210 deg

Fig. 21 Posterior functions of tangential (left) and feed (right) forces with 62r standard deviation uncertainty intervals for the
tool rake angle 210 deg

Fig. 22 Posterior functions for prediction of tangential (left) and feed (right) forces with 62r standard deviation uncertainty
intervals for the tool rake angle 210 deg

011009-10 / Vol. 141, JANUARY 2019 Transactions of the ASME

Downloaded From: https://manufacturingscience.asmedigitalcollection.asme.org on 12/07/2018 Terms of Use: http://www.asme.org/about-asme/terms-of-use



more informative prior. This demonstrates the effectiveness of
Bayesian inference as compared to least squares curve fitting,
which requires at least two data points for the parameter identifi-
cation, in this case. On the other hand, the posterior of feed force
was obtained after two updates due to its less informative prior.
According to the figures, the posterior mean functions accurately
represent the training forces in tangential and feed directions.

Figure 22 illustrates the prediction of the tangential and feed
test forces using the posterior functions. As can be seen, all the
force data appear within the uncertainty intervals. Table 2 lists the
experimental force values and the predicted mean tangential and
feed forces with two standard deviation (2r) uncertainty intervals
for the �10 deg tool rake angle. Once more, the percent error
between the measured and predicted mean forces were calculated
and reported in the table. The maximum prediction error for the
tangential force was calculated to be 7% and for the feed force
was obtained to be 9%. This implies that the model parameters
identification and forces prediction were performed with a good
degree of accuracy using MCMC method applied to the Kienzle
force model.

7 Conclusions

In this research, cutting forces prediction was performed using
Bayesian inference (MCMC simulation) for the Merchant and
Kienzle force models. The Mechanistic Merchant model is based
on an assumption that the tool edge radius is zero, whereas the
Kienzle force model takes into account the effect of cutting edge
radius on specific cutting force coefficient. The results of the prob-
abilistic force predictions using Merchant and Kienzle models for
a 0 deg rake angle tool were obtained and discussed. Sequential
force prediction was carried out by using the posterior probabil-
ities of the Kienzle force model parameters for the 0 deg rake tool
as the prior probabilities for the �10 deg rake tool. The main con-
clusions are summarized as following:

(1) The Kienzle force model predicted the tangential and feed
cutting forces, successfully, while the Merchant model
could not. The reason is that the Kienzle model can con-
sider the size effect phenomenon in turning process. This
refers to the nonlinearity due to the increase of the specific
cutting energy with the reduced uncut chip thickness or
increase of tool edge radius.

(2) The Kienzle posterior functions could predict the tangential
and feed forces with the good degree of accuracy for both
tool geometries. Using the 0 deg rake angle tool, the maxi-
mum prediction error values were reported 5% for the tan-
gential force and 8% for the feed force. Using the 10 deg
rake angle tool, the maximum errors of 7% for the tangen-
tial force and 9% for the feed force were obtained.

(3) The posterior functions of the tangential force components
for both geometries were obtained using only one updating
process, which is impossible in the case of parameter deter-
mination by least squares curve fitting. The uncertainty of
the initial belief was reduced after updating in all instances.
This suggests that Bayesian inference offers a preferred
approach to force modeling by incorporating the minimal
input and predicting forces under inherent uncertainties.

The result of the study can be further used to investigate the
effect of cutting tools geometry and material on cutting force
using Bayesian inference. The sequential probabilistic technique
allows to incorporate historical knowledge about process parame-
ters into the current simulation, so that the number of experiments
is reduced.
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