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a  b  s  t  r  a  c  t

In  modal  testing,  an impulse  is often  used  to excite  the structure  and  a linear  transducer  is  used  to
measure  the  response.  For  these  impact  tests,  two signals  are  measured:  the  impulsive  force  and  the
vibration  response.  Any  lack  of synchronization  in  the  time  domain  acquisition  of  the  two  signals  results
in  a frequency-dependent  phase  error in the frequency  response  function,  or  FRF.  However,  knowledge
of  the  time  delay  may  be  used  to correct  the  corresponding  phase  error.  In  this  research,  tests  were
eywords:
amics
odal

ime delay
ccelerometer

conducted  to  measure  the  frequency-dependent  phase  error for  a capacitive  sensor  and  a frequency
domain  technique  is  proposed  to  correct  the FRF.  The  method  was  validated  using  an  FRF  measurement
of  a cylindrical  artifact  mounted  in a milling  machine  spindle.

©  2013 Elsevier  Inc.  All  rights  reserved.
apacitive sensor

. Introduction

It is often necessary to identify the vibration response of
tructures. Examples include bridges, automobiles, machine tools,
nd measuring instruments. The vibration characteristics of these
tructures are traditionally described using the frequency response
unction, or FRF. This complex-valued function defines the vibra-
ion output to force input ratio in the frequency domain [1]. It
epresents the steady-state (particular) solution to the system dif-
erential equation of motion. In the following paragraphs, the FRF
s derived and then the influence of a time delay in the response

easurement on the FRF phase is described.

.1. FRF definition

For a lumped parameter1 single degree of freedom spring-
ass-damper system with a harmonic force input, the timedomain

quation of motion is:

ẍ + cẋ + kx = Feiωt, (1)

here m is the mass, c is the viscous damping coefficient, k is the

tiffness, and f (t) = Feiωt is the force (ω is the forcing frequency in
ad/s). Also, x(t) is the displacement, ẋ(t) is the velocity, and ẍ(t) is
he acceleration.

∗ Corresponding author. Tel.: +1 117046875086.
E-mail address: tony.schmitz@uncc.edu (T.L. Schmitz).

1 In a lumped parameter system, the mass is concentrated at the coordinate that
escribes the system motion and the spring and damper are assumed to be massless.

141-6359/$ – see front matter © 2013 Elsevier Inc. All rights reserved.
ttp://dx.doi.org/10.1016/j.precisioneng.2013.12.007
The total solution to the forced vibration equation of motion (Eq.
(1)) has two parts: the homogeneous, or transient, solution; and
the particular, or steady-state, solution. The steady-state portion
remains after the transient has attenuated and it persists as long as
the force is acting on the system. The particular solution takes the
same form as the forcing function. The resulting vibration has the
same frequency as the harmonic force. Specifically, given the force
f (t) = Feiωt , the corresponding steady-state response can be writ-
ten as x(t) = Xeiωt . Given this form for the position, the velocity is
ẋ(t) = iωXeiωt and the acceleration is ẍ(t) = (iω)2Xeiωt = −ω2Xeiωt .
Substituting these expressions in Eq. (1) gives:

(−mω2 + iωc + k)Xeiωt = Feiωt. (2)

Eq. (2) relates the force to the resulting vibration as a function of
the forcing frequency, ω.  Rewriting gives the ratio of the output (the
complex-valued vibration, X) to the input (the real-valued force, F);
this is the FRF for the system [2].

X

F
(ω) = 1

−mω2 + iωc + k
(3)

Eq. (3) can be rewritten using the frequency ratio, r = ω/ωn, where
ωn =

√
k/m (rad/s) is the (undamped) natural frequency, and

dimensionless damping ratio, � = c/2
√

km; see Eq. (4). The FRF is
typically represented as either the real, Re(X/F(r)), and imaginary,
Im(X/F(r)), parts or, alternately, the magnitude, |X/F(r)|, and phase,

�(r). See Eqs. (5)–(8).

X

F
(r) = 1

k

(
1

(1 − r2) + i2�r

)
= 1

k

(
(1 − r2) − i2�r

(1 − r2)2 + (2�r)2

)
(4)

dx.doi.org/10.1016/j.precisioneng.2013.12.007
http://www.sciencedirect.com/science/journal/01416359
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http://crossmark.crossref.org/dialog/?doi=10.1016/j.precisioneng.2013.12.007&domain=pdf
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Fig. 2. Representation of a time delay between the actual (solid line) and measured
(dotted line) vibration signals.

Fig. 3. Effect of 50 ms  time delay on phase: (top) 1 Hz frequency gives a −18 deg
phase lag; (middle) 2 Hz  frequency gives a −36 deg phase lag; and (bottom) 3 Hz
frequency gives a −54 deg phase lag.
ig. 1. Vector description of the relationships between the real/imaginary parts and
agnitude/phase. The phase indicates the complex displacement lag relative to the

orce (real-valued and pointing to the right along the real axis).

e
(

X

F
(r)

)
= 1

k

(
(1 − r2)

(1 − r2)2 + (2�r)2

)
(5)

m
(

X

F
(r)

)
= 1

k

(
−2�r

(1 − r2)2 + (2�r)2

)
(6)

X

F
(r)

∣∣∣ =
√(

Re
(

X

F
(r)

))2
+

(
Im

(
X

F
(r)

))2

= 1
k

√
1

(1 − r2)2 + (2�r)2
(7)

(r) = tan−1

(
Im(X/F(r))
Re(X/F(r))

)
= tan−1

( −2�r

1 − r2

)
(8)

he relationships between the real/imaginary parts and the magni-
ude/phase are conveniently defined in the complex plane as shown
n Fig. 1. Based on this vector representation of the FRF at a partic-
lar r value, it is seen that a phase error will affect both the Re and

m values.

.2. Time delay

Next, consider the effect of a time delay between the actual sys-
em response and the measured vibration. This can be introduced,
or example, by the amplifying/signal conditioning electronics that
onvert the transducer output to the voltage that is subsequently
ampled and converted from the timedomain to the frequency
omain for the FRF computation. As shown schematically in Fig. 2,
he measurement signal may  be time delayed by a small amount
elative to the actual vibration. For a constant time delay, this yields

 phase error that increases linearly with frequency. Fig. 3 displays
he actual, xa, and measured, xm, signals for a 50 ms  time delay at
hree different oscillating frequencies, f, of {1, 2, and 3} Hz. The cor-
esponding phase errors are {−18, −36, and −54}  deg. The phase
rror was calculated using Eq. (9).

�(f ) = cos−1
(

xaxm

|xa||xm|
)

(9)

sing Eq. (9), the frequency-dependent phase error can be cal-
ulated for any time delay between xa and xm. Fig. 4 shows the

inearly-varying phase error for a range of time delays from 10 �s
o 100 �s. The slope for each linear trend is listed in the legend. It
s seen that a 50 �s delay gives a slope of −18 deg/kHz and, there-
ore, a −90 deg phase error at 5000 Hz. Using Fig. 1, it is observed

Fig. 4. Frequency-dependent phase error, ��, as a function of frequency, f. The
linear trends for time delays from {10 to 100} �s are displayed.
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Fig. 5. Exp

hat a −90 deg phase error switches the amplitudes of the real and
maginary parts and changes the sign of the imaginary part.

. Background

The basic hardware required to measure FRFs includes: a mecha-
ism for known force input across the desired frequency range (or
andwidth); a transducer for vibration measurement, again with
he required bandwidth; and a dynamic signal analyzer to record
he time-domain force and vibration inputs and convert these into
he desired FRF. This conversion includes calculating the Fourier
ransform of the inputs and then computing their complex ratio.
he FRF may  be expressed as: receptance/compliance, the ratio of
isplacement to force; mobility, the ratio of velocity to force; or
ccelerance/inertance, the ratio of acceleration to force, depending
n the selected transducer [2].

There are three common types of force excitation. These include:
xed frequency sine wave, where the FRF is determined one fre-
uency at a time by applying a sinusoidal force at each frequency
ithin the desired bandwidth; random signal, where the frequency

ontent of the random signal may  be broadband (white noise) or
runcated to a limited range (pink noise) and the response is aver-
ged over a selected time interval; and impulse, where a short
uration impact is used to excite the structure over a broad fre-
uency range and the corresponding response is measured. To
enerate these known excitation forces, two common types of
orce input hardware are applied:shaker, which includes a harmon-
cally driven armature actuated along its axis by a magnetic coil or
ydraulic force, and a base; and impact hammer, which incorpo-
ates a force transducer located at a metal, plastic, or rubber tip to
easure the force input during a hammer strike. When a hammer is

sed in conjunction with a vibration transducer, the measurement
rocedure is referred to as impact testing.

Vibration transducers are available in both non-contact and
ontact types. While non-contact transducers, such as capacitive
ensors and laser vibrometers, may  be preferred because they do
ot influence the system dynamics (by adding mass), contacting
ypes, such as accelerometers, are often more convenient to imple-

ent. As a compromise, low mass accelerometers may  be used to
inimize the influence on the test structure. They are attached at

he location of interest using wax, adhesive, a magnet, or a threaded
tud and then removed when the testing is completed. In this study,
oth a capacitive sensor and a piezoelectric accelerometer were

sed. Brief descriptions of each are included here for completeness.

Noncontact capacitive sensors measure changes in capacitance,
he ability of a body to hold an electrical charge. When a voltage is
pplied to two conductors separated by some distance, an electric
ntal setup.

field is produced between them and positive and negative charges
collect on each conductor. If the polarity of the voltage is reversed,
then the charges also reverse. Capacitive sensors use an alternat-
ing voltage which causes the charges to continually reverse their
positions. This charge motion generates an alternating electric cur-
rent which is detected by the sensor. The amount of current flow is
determined by the capacitance, which depends on the surface area
of the conductors, the distance between them, and the dielectric
constant of the material between them (such as air). The capaci-
tance, C, is directly proportional to the surface area, A, and inversely
proportional to the distance, d, between them. A larger surface area
and smaller distance produces a larger current. For two parallel
plate conductors, the capacitance is given by:

C = εrε0
A

d
, (10)

where εr is the dielectric constant (or static relative permittivity)
and ε0 is the electric constant (or vacuum permittivity). The value
of the dielectric constant is 1 in vacuum and the electric constant
is 8.854187817. . . × 10−12 A s/(V m).

Typically, the probe is one of the conductors and the measure-
ment target is the other. If the sizes of the sensor and the target and
dielectric constant of the material between them are assumed to
be constant, then any change in capacitance is due to a change in
the distance between the probe and the target [3].

Accelerometers for structural vibration measurement typically
use the piezoelectric effect to generate a voltage signal that is pro-
portional to acceleration. An accelerometer includes, at minimum,
a seismic mass, piezoelectric material, and package that is con-
nected to the structure under test. The piezoelectric material may
be quartz, tourmaline, barium titanate, or lead zirconate titanate,
or PZT, and produces a charge when strained by the inertial force
applied by the mass during motion of the package. The correspond-
ing voltage is equal to this charge divided by the piezoelectric
material’s capacitance. The output voltage is proportional to the
inertial force and, therefore, the acceleration.

3. Experimental setup

In this study, the effect of a time delay in a capacitive sensor
(relative to a piezoelectric accelerometer) was measured. The two
transducers were used to measure the vibration of an oscillating
target. The target was vibrated sinusoidally using a modal shaker
(TIRAvib 51075) capable of generating oscillations up to 5000 Hz.

A function generator (Hewlett Packard 33120A) was used to drive
the shaker at the desired fixed frequency. The target motion was
measured using both a low-mass accelerometer (PCB 352C23) and a
capacitive sensor (Lion Precision C23B). The capacitive sensor signal
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Fig. 8. Phase error between accelerometer and capacitive sensor. The best fit slope
is  −12.9 deg/kHz.
Fig. 6. Photograph (top view) of experimental setup.

as amplified using a Lion Precision CPL 290 Elite series amplifier.
he amplifier bandwidth was set to 15 kHz. Data for both sensors
as simultaneously acquired at 100 kHz using an NI data acqui-

ition (DAQ) card. Fig. 5 shows a schematic representation of the
easurement setup. A photograph is provided in Fig. 6.
Measurements were conducted over a frequency range of

00–5000 Hz. The measured data was digitally filtered using a 3rd
rder bandpass filter with a bandwidth of 100 Hz centered at the
scillation frequency. An example measurement result for 3000 Hz
s provided in Fig. 7. A constant time delay between the accelerom-
ter and capacitive sensor signals is observed. Fig. 8 shows the
easured phase error (due to the time delay) as a function of the

scillation frequency. Within the measured bandwidth, the phase
rror varied linearly with frequency at a rate of −12.9 deg/kHz,
hich is consistent with the manufacturer-reported value [4]. Scat-

er from the linear best fit in the 1000–2000 Hz and 4000–4500 Hz
anges is suggested to be due to compliance in the wax interface
etween the accelerometer and target.

. Phase correction algorithm

Given the frequency-dependent phase error for the capacitive

ensor (Fig. 8), the effect of the time delay can be removed from the
easured FRF. The measured phase, �m, is corrected by subtracting

he phase error, ��, which is determined from the product of the

Fig. 7. Example measurement results for 3000 Hz excitation frequency.
Fig. 9. Comparison between accelerometer and capacitive sensor FRFs. The cor-
rected capacitive sensor result matches the accelerometer result.

slope, S, from Fig. 8, (deg/Hz), and the frequency, f (Hz). See Eq. (11),
where �c is the corrected phase.

�c(f ) = �m − ��  = �m − Sf (11)

The real and imaginary parts of the measured FRF are then corrected
using �c . See Eqs. (12) and (13), where it is assumed that the FRF
magnitude is not affected by the time delay. Note that this approach
is equivalent to multiplying the measured signal by eiω� in the fre-
quency domain,2 where � is the time delay. However, knowledge of
the time delay value is not required for the method described here.
Additionally, Eq. (11) can be modified to incorporate nonlinearities
in the measured phase.

Re
(

X

F
(f )

)
c

=
∣∣∣X

F
(f )

∣∣∣ cos(�c(f )) (12)

Im
(

X

F
(f )

)
c

=
∣∣∣X

F
(f )

∣∣∣ sin(�c(f )) (13)

To demonstrate the correction algorithm, FRF tests were performed

on a cylindrical artifact (a modified boring bar blank) mounted in
the spindle of a Haas TM-1 CNC vertical machining center (CAT-
40 interface). A modally-tuned hammer (PCB 086C04) was used to
excite the structure and the response was  measured at the free end
of the artifact using both the capacitive sensor and accelerometer.

2 This is a non-causal operation, but would be performed as a post-processing
step.
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he data for all three sensors was acquired simultaneously at a
00 kHz sampling rate using the NI data acquisition device.

Fig. 9 shows the measured and corrected FRFs obtained using
he capacitive sensor. Note that the uncorrected capacitive sen-
or measurement deviates from the accelerometer FRF at higher
requencies. In particular, for the mode near 4300 Hz in the uncor-
ected capacitive sensor FRF, the measured (dashed line) real part
esembles the imaginary part of an error-free mode and the imag-
nary part resembles the inverted real part of an error-free mode.
maller differences are also observed for the lower frequency
odes. However, the corrected capacitive sensor result (dotted

ine) matches the accelerometer result (solid line).
. Conclusions

In this study, the frequency-dependent phase error induced by
 time delay is analyzed. It is shown for an example capacitive

[
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sensor system that, provided the phase error is measured, its effect
can be removed in a post-processing step. A frequency domain
correction algorithm is demonstrated for FRF measurements com-
pleted on a milling spindle-cylindrical artifact setup. The measure-
ments show that the corrected FRF measured using the capacitive
sensor agrees with the FRF measured using the piezoelectric
accelerometer.

References

1] Ewins DJ. Modal testing: theory. practice and application. 2nd ed. Hertfordshire:
Research Studies Press LTD; 2000.

2] Schmitz T, Smith KS. Mechanical vibrations: modeling and measurement. New
3] http://www.lionprecision.com/tech-library/technotes/cap-0020-sensor-theory.
html

4] Lion Precision, TechNote LT03-0031 EliteSeries Amplitude/Phase Frequency
Response, 2011.

http://refhub.elsevier.com/S0141-6359(13)00191-8/sbref0005
http://refhub.elsevier.com/S0141-6359(13)00191-8/sbref0005
http://refhub.elsevier.com/S0141-6359(13)00191-8/sbref0005
http://refhub.elsevier.com/S0141-6359(13)00191-8/sbref0005
http://refhub.elsevier.com/S0141-6359(13)00191-8/sbref0005
http://refhub.elsevier.com/S0141-6359(13)00191-8/sbref0005
http://refhub.elsevier.com/S0141-6359(13)00191-8/sbref0005
http://refhub.elsevier.com/S0141-6359(13)00191-8/sbref0005
http://refhub.elsevier.com/S0141-6359(13)00191-8/sbref0005
http://refhub.elsevier.com/S0141-6359(13)00191-8/sbref0005
http://refhub.elsevier.com/S0141-6359(13)00191-8/sbref0005
http://refhub.elsevier.com/S0141-6359(13)00191-8/sbref0005
http://refhub.elsevier.com/S0141-6359(13)00191-8/sbref0005
http://refhub.elsevier.com/S0141-6359(13)00191-8/sbref0005
http://refhub.elsevier.com/S0141-6359(13)00191-8/sbref0005
http://refhub.elsevier.com/S0141-6359(13)00191-8/sbref0005
http://refhub.elsevier.com/S0141-6359(13)00191-8/sbref0010
http://refhub.elsevier.com/S0141-6359(13)00191-8/sbref0010
http://refhub.elsevier.com/S0141-6359(13)00191-8/sbref0010
http://refhub.elsevier.com/S0141-6359(13)00191-8/sbref0010
http://refhub.elsevier.com/S0141-6359(13)00191-8/sbref0010
http://refhub.elsevier.com/S0141-6359(13)00191-8/sbref0010
http://refhub.elsevier.com/S0141-6359(13)00191-8/sbref0010
http://refhub.elsevier.com/S0141-6359(13)00191-8/sbref0010
http://refhub.elsevier.com/S0141-6359(13)00191-8/sbref0010
http://refhub.elsevier.com/S0141-6359(13)00191-8/sbref0010
http://refhub.elsevier.com/S0141-6359(13)00191-8/sbref0010
http://refhub.elsevier.com/S0141-6359(13)00191-8/sbref0010
http://refhub.elsevier.com/S0141-6359(13)00191-8/sbref0010
http://www.lionprecision.com/tech-library/technotes/cap-0020-sensor-theory.html
http://www.lionprecision.com/tech-library/technotes/cap-0020-sensor-theory.html

	Phase correction for frequency response function measurements
	1 Introduction
	1.1 FRF definition
	1.2 Time delay

	2 Background
	3 Experimental setup
	4 Phase correction algorithm
	5 Conclusions
	References


