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A Numerical and Experimental
Investigation of Period-n
Bifurcations in Milling
Numerical and experimental analyses of milling bifurcations, or instabilities, are
detailed. The time-delay equations of motions that describe milling behavior are solved
numerically and once-per-tooth period sampling is used to generate Poincar�e maps.
These maps are subsequently used to study the stability behavior, including period-n
bifurcations. Once-per-tooth period sampling is also used to generate bifurcation dia-
grams and stability maps. The numerical studies are combined with experiments, where
milling vibration amplitudes are measured for both stable and unstable conditions. The
vibration signals are sampled once-per-tooth period to construct experimental Poincar�e
maps and bifurcation diagrams. The results are compared to numerical stability predic-
tions. The sensitivity of milling bifurcations to changes in natural frequency and damping
is also predicted and observed. [DOI: 10.1115/1.4034138]
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Introduction

Many years of machining research have led to a comprehensive
understanding of milling process dynamics. As early as 1946,
Arnold studied chatter in steel machining [1]. Doi and Kato
described self-excited vibrations using time-delay differential
equations in 1956 [2]. During this time, the notion of “regeneration
of waviness” was promoted as the feedback mechanism (time-
delay term), where the previously cut surface combined with the
instantaneous vibration state dictates the current chip thickness,
force level, and corresponding vibration response [3–6]. This work
resulted in analytical algorithms that were used to produce the now
well-known stability lobe diagram that separates the spindle
speed–chip width domain into regions of stable and unstable
behavior [6–17].

In 1998, Davies et al. used once-per-revolution sampling to
characterize the synchronicity of cutting tool motions with the tool
rotation in milling [18]. This approach was an experimental modi-
fication of the Poincar�e maps used to study state-space orbits in
nonlinear dynamics. They observed the traditional quasi-periodic
chatter associated with the secondary (subcritical) Hopf, or
Neimark-Sacker, bifurcation that can occur for systems described
by periodic time-delay differential equations [19].

In 2000, Davies et al. further examined the stability of highly
interrupted (or low radial immersion) milling [20]. They reported
a doubling of the number of optimally stable spindle speeds when
the time in cut is small (i.e., low radial depth of cut). In 2001,
Moon and Kalm�ar-Nagy reviewed the “prediction of complex,
unsteady and chaotic dynamics” in machining [19]. They listed
the various contributors to nonlinear behavior, including the loss
of tool–workpiece contact due to large amplitude vibration and
workpiece material constitutive relations, and highlighted previ-
ous applications of nonlinear dynamics methods to the study of
chatter [21–26]. They also specified the use of phase-space
methods, such as Poincar�e maps, to identify changes in machining
process dynamics.

Time domain simulation offers a powerful tool for exploring mill-
ing behavior and has been applied to identify instability [27–28].
For example, Zhao and Balachandran implemented a time domain
simulation, which incorporated loss of tool–workpiece contact and

regeneration to study milling [29]. They identified secondary Hopf
bifurcation and suggested that “period-doubling bifurcations are
believed to occur” for low radial immersions. They included bifur-
cation diagrams for limited axial depth of cut ranges at two spindle
speeds to demonstrate the two bifurcation types.

Davies et al. extended their initial work in 2002 to present the
first analytical stability boundary for highly interrupted machining
[30]. It was based on modeling the cutting process as a kicked har-
monic oscillator with a time delay and followed the two-stage
map concept described previously [20]. They used the frequency
content of a microphone signal to establish the existence of both
secondary Hopf and period-2 (period-doubling or flip) instabil-
ities. Mann et al. also provided experimental validation of second-
ary Hopf and period-2 instabilities for up and down milling [31].
They reported “a kind of period triple phenomenon” observed
using the once-per-revolution sampled displacement signal
recorded from a single degree-of-freedom flexure-based machin-
ing platform.

The semidiscretization, time finite element analysis, and multi-
frequency methods were also developed to produce milling stabil-
ity charts that demonstrate both instabilities [32–36]. In Ref. [37],
it was shown using the semidiscretization method that the period-
2 bifurcation exhibits closed, lens-like, curves within the second-
ary Hopf lobes, except for the highest speed stability lobe. The
same group reported further experimental evidence of quasi-
periodic (secondary Hopf), period-2, period-3, period-4, and
combined quasi-periodic and period-2 chatter, depending on the
spindle speed–axial depth values for a two degree-of-freedom
dynamic system [38]. A perturbation analysis was performed in
Ref. [39] to identify the secondary Hopf and period-2 instabilities.
Additionally, numerical integration was implemented to construct
a bifurcation diagram for a selected spindle speed that demon-
strated the transition from stable operation to quasi-periodic
chatter as the axial depth is increased.

St�ep�an et al. continued to explore the nonlinear aspects of mill-
ing behavior in 2005 [40]. They described stable period-2 motion
where the tool does not contact the workpiece in each tooth period
(even in the absence of runout). For a two flute cutter, for exam-
ple, only one tooth contacts the workpiece per revolution; they
referred to this condition as the “fly over effect” and included a
bifurcation diagram for these proposed stable and unstable period-
2 oscillations.
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The effect of the helix angle on period-2 instability was first
studied by Zatarain et al. [41]. They found that, depending on the
helix angle, the closed, lens-like, curves within the secondary
Hopf lobes change their size and shape. They also found that these
closed islands of stability can appear even in the highest speed
stability lobe (in contrast to the results when helix angle is not
considered). Experimental results were provided. This work was
continued in Ref. [42], where the authors emphasized that, at axial
depths equal to the axial pitch of the cutter teeth, the equation of
motion becomes an autonomous delay differential equation so the
period-2 instability is not possible. Patel et al. also studied the
helix effect in up and down milling using the time finite element
approach [43].

In this paper, time domain (numerical) simulation is used to
predict milling dynamics. Periodic sampling of the milling signals
is then applied to identify the presence of period-n bifurcations, in
additional to the well-known quasi-periodic instability. Experi-
ments are performed using flexure-based setups and the results are
compared to time domain predictions. Period-n bifurcations are
predicted and experimentally verified for n¼ 2, 3, 6, 7, 8, and 15.
Additionally, the sensitivity of the bifurcation behavior to system
dynamics, including both natural frequency and damping, is
explored using both numerical simulation and experiments. The
paper presents experimental evidence of new period-n bifurca-
tions and, therefore, provides another step forward in the rich pro-
gression of machining science over the past decades.

Time Domain Simulation

Time domain simulation enables the numerical solution of the
coupled, time-delay equations of motion for milling in small time
steps. It is well suited to incorporating all the intricacies of milling
dynamics, including the nonlinearity that occurs if the tooth leaves
the cut due to large amplitude vibrations and complicated tool
geometries (including runout, or different radii, of the cutter teeth,
nonproportional teeth spacing, and variable helix). The simulation
is based on the Regenerative Force, Dynamic Deflection Model
described by Smith and Tlusty [27]. As opposed to stability maps
that provide a global picture of the stability behavior, time domain
simulation provides information regarding the local cutting force
and vibration behavior (at the expense of computational effi-
ciency) for the selected cutting conditions. The simulation used in
this study proceeds as follows (see Fig. 1):

(1) the instantaneous chip thickness is determined using the
vibration of the current and previous teeth at the selected
tooth angle

(2) the cutting force components in the tangential (t) and nor-
mal (n) directions are calculated using

FtðtÞ ¼ ktcbhðtÞ þ kteb

FnðtÞ ¼ kncbhðtÞ þ kneb
(1)

where b is the axial depth of cut, h(t) is the instantaneous
chip thickness, and the cutting force coefficients are identi-
fied by the subscripts t or n for direction and c or e for cut-
ting or edge effect.

(3) the force components are used to find the new displace-
ments by numerical solution of the differential equations of
motion in the x (feed) and y directions

mx€x þ cx _x þ kxx ¼ FtðtÞcos ð/Þ þ Fn sin ð/Þ
my€y þ cy _y þ kyy ¼ FtðtÞsin ð/Þ � Fn cos ð/Þ

(2)

where m is the modal mass, c is the modal viscous damping
coefficient, and k is the modal stiffness. The subscripts
identify the direction and multiple degrees-of-freedom in
each direction can be accommodated.

(4) the tool rotation angle is incremented and the process is
repeated.

The instantaneous chip thickness depends on the nominal, tooth
angle-dependent chip thickness, the current vibration in the direc-
tion normal to the surface, and the vibration of previous teeth at
the same angle. The chip thickness can be expressed using the cir-
cular tooth path approximation as

hðtÞ ¼ ft sin ð/Þ þ nðt� sÞ � nðtÞ (3)

where ft is the commanded feed per tooth, / is the tooth angle, n
is the normal direction (see Fig. 1), and s is the tooth period. The
tooth period is defined as

s ¼ 60

XNt
sð Þ (4)

where X is the spindle speed in rpm and Nt is the number of teeth.
The vibration in the direction of the surface normal for the current
tooth depends on the x and y vibrations as well as the tooth angle
according to

n ¼ x sin ð/Þ � y cos ð/Þ (5)

For the simulation, the strategy is to divide the angle of the cut
into a discrete number of steps. At each small time-step, dt, the
cutter angle is incremented by the corresponding small angle, d/.
This approach enables convenient computation of the chip thick-
ness for each simulation step because: (1) the possible teeth orien-
tations are predefined; and (2) the surface created by the previous
teeth at each angle may be stored. The cutter rotation

d/ ¼ 360

SR
degð Þ (6)

depends on the selection of the number of steps per revolution
(SR). The corresponding time-step is

dt ¼ 60

SR � X sð Þ (7)

A vector of angles is defined to represent the potential orientations
of the teeth as the cutter is rotated through one revolution of the
circular tool path, /¼ [0, d/, 2 d/, 3 d/,…, (SR – 1) d/]. The
locations of the teeth within the cut are then defined by referenc-
ing entries in this vector.

Fig. 1 Milling simulation geometry. The normal and tangential
direction cutting forces, Fn and Ft, are identified. The fixed x
and y directions, as well as the rotating normal direction, n, are
also shown. The angle / defines the tooth angle. The tool feed
is to the right for the clockwise tool rotation and the axial depth
is in the z direction.
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In order to accommodate the helix angle for the tool’s cutting
edges, the tool may be sectioned into a number of axial slices.
Each slice is treated as an individual straight tooth end mill, where
the thickness of each slice is a small fraction, db, of the axial
depth of cut, b. Each slice incorporates a distance delay

rv ¼ db tan ðcÞ (8)

relative to the prior slice (nearer the cutter free end), which
becomes the angular delay between slices

v ¼
db tan cð Þ

r
¼

2db tan cð Þ
d

radð Þ (9)

for the rotating end mill, where d is the end mill diameter and c is
the helix angle. In order to ensure that the angles for each axial
slice match the predefined tooth angles, the delay angle between
slices is

v ¼ d/ (10)

This places a constraint on the db value. By substituting d/ for v
and rearranging, the required slice width is

db ¼ d � d/
2 tan cð Þ

(11)

Using the time domain simulation approach [44], the forces and
displacements may be calculated. These results are then sampled
once-per-tooth period to generate Poincar�e maps, bifurcation dia-
grams, and stability maps. These are described in the following
three sections.

Poincar�e Maps

Poincar�e maps were developed using both experiments and
simulations. For the experiments, the displacement and velocity
of a flexible workpiece (the tool dynamic stiffness was much
higher) were recorded and then sampled once-per-tooth period. In
simulation, the displacement and velocity were predicted, but the
same sampling strategy was applied. By plotting the displacement
versus velocity, the phase space trajectory could be observed in
both cases. The once-per-tooth period samples were then superim-
posed and used to interrogate the milling process behavior. For
stable cuts, the motion is periodic with the tooth period, so the
sampled points repeat and a single grouping of points is observed.
When secondary Hopf instability occurs, the motion is quasi-
periodic with tool rotation because the chatter frequency is (gener-
ally) incommensurate with the tooth passing frequency. In this
case, the once-per-tooth sampled points do not repeat and they
form an elliptical distribution. For period-2 instability, the motion
repeats only once every other cycle (i.e., it is a subharmonic of the
forcing frequency). In this case, the once-per-tooth sampled points
alternate between two solutions. For period-n instability, the
sampled points appear at n distinct locations in the Poincar�e map.

Bifurcation Diagrams

In the bifurcation diagrams developed for this study, the once-
per-tooth sampled displacement (vertical axis) was plotted against
the axial depth of cut (horizontal axis). The transition in stability
behavior from stable (at low axial depths) to period-n or second-
ary Hopf instability (at higher axial depths) is then directly
observed. This diagram represents the information from multiple
Poincar�e maps over a range of axial depths, all at a single spindle
speed. A stable cut appears as a single point (i.e., the sampled
points repeat when only forced vibration is present). A period-2
bifurcation, on the other hand, appears as a pair of points offset
from each other in the vertical direction. This represents the two
collections of once-per-tooth sampled points from the Poincar�e

map. A secondary Hopf bifurcation is seen as a vertical distribu-
tion of points; this represents the range of once-per-tooth sampled
displacements from the elliptical distribution of points in the
Poincar�e map.

Stability Maps

Stability maps, or stability lobe diagrams, identify the limiting
axial depth of cut (vertical axis) as a function of spindle speed
(horizontal axis). Traditionally, this limit is represented as a single
contour which separates stable (forced vibration only) from unsta-
ble (secondary Hopf or period-n) parameter combinations. This
map provides a global view of the stability behavior, but does not
identify the type of instability. Because a bifurcation diagram
presents the stability behavior as a function of axial depth, but
only at one spindle speed, it can be considered as a high fidelity
vertical slice of a stability map. Conversely, a stability map can be
interpreted as a series of bifurcation diagrams where a binary
switching function is used to categorize the behavior represented
by the vertical distribution of once-per-tooth sampled points as
either stable or unstable.

In this work, the binary stability is identified using a new stabil-
ity metric, M, based on once-per-tooth sampling [45]. The metric
builds on the approach in Ref. [46–48] where the standard devia-
tion of the periodically sampled milling audio signal was calcu-
lated. The new stability metric is

M ¼

XN

i¼2

xs ið Þ � xs i� 1ð Þ

N
(12)

where xs is the vector of once-per-tooth sampled x (feed direction)
displacements and N is the length of the xs vector. Other variables,
such as y displacement (perpendicular to x in the plane of the cut)
or cutting force could be selected as well. With this new stability
metric, the absolute value of the differences in successive sampled
points is summed and then normalized. Because the sampled
points repeat for a stable cut (forced vibration), the M value is
ideally zero. For unstable cuts, however, M > 0.

Experimental Validation of Period-n Bifurcations

In this section, comparison is made between time domain simu-
lation predictions and milling experiments for multiple setups; the
presence of period-n bifurcations, as well as their sensitivity to the
structural dynamics, is presented. A single degree-of-freedom
(SDOF) flexure was used to define the system dynamics, where
the SDOF flexure was much less stiff than the cutting tool [31].
The flexure setup also simplified the measurement instrumenta-
tion. The flexure motions were measured using a capacitance
probe (CP), laser vibrometer (LV), and low mass accelerometer.
In order to enable once-per-tooth sampling of the vibration sig-
nals, a laser tachometer (LT) was used. A small section of reflec-
tive tape was attached to the tool holder and the corresponding
(digital) tachometer signal was used to perform the periodic
sampling.

The cutting tool was a 19.1 mm diameter, single flute carbide
square end mill (30 deg helix angle). Modal impact testing verified
that the cutting tool dynamic stiffness (1055 Hz natural frequency,
0.045 viscous damping ratio, and 4.2� 107 N/m stiffness) was
much higher than the SDOF flexure. Cutting tests were completed
using Fig. 2 setup. The measured flexure dynamics and cutting
conditions are listed in Table 1. Each cut of the 6061-T6 alumi-
num workpiece was performed using a feed per tooth of 0.10 mm/
tooth. The aluminum alloy cutting force coefficients were: ktc

¼ 792� 106 N/m2, knc ¼ 352� 106 N/m2, kte ¼ 26� 103 N/m,
and kne ¼ 28� 103 N/m.

Results for period-2, 3, 6, 7, and 8, and 15 bifurcations are
displayed in Figs. 3–9. In each figure, the left plot shows the
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simulated behavior and the right plot shows the experimental
result, where the cut entry and exit transients were removed before
plotting. Good agreement is observed in each case.

A bifurcation diagram for a spindle speed of 3800 rpm and
radial depth of 5 mm was predicted by simulation and then cuts
were performed from 1 mm to 7 mm axial depths in 0.5 mm steps.
The CP displacement signal was sampled using the LT to con-
struct an experimental bifurcation diagram; Fig. 10 provides the
comparison between prediction and experiment. For this axial
depth of cut range, period-3 bifurcations were observed (see the
period-3 entry from Table 1 for the flexure dynamics).

A simulated stability map for the same axial depth of cut range
as Fig. 10, but spindle speeds from 3300 rpm to 4300 rpm is
displayed in Fig. 11 (the same dynamics were again used). The
diagram was constructed by completing time domain simulations
over a grid with a spindle speed resolution of 10 rpm and an axial
depth resolution of 0.1 mm. The initial transients were removed

and the M value for each simulation was calculated (see Eq. 1).
An arbitrarily small value of 1 lm was selected to differentiate
between stable and unstable parameter combinations; this contour
is shown in Fig. 11 and identifies the stability limit. The transition
from stable to unstable behavior at 3800 rpm observed in Fig. 10
is replicated. The transition from secondary Hopf to period-3 to
secondary Hopf seen in the bifurcation diagram is not detailed in
the stability map, however.

Sensitivity to Natural Frequency

Experiments were completed to demonstrate the sensitivity of
the period-n bifurcation behavior to changes in natural frequency.
During the cutting trials, material was removed from the work-
piece. This lowered the workpiece mass and, subsequently,
increased the flexure’s natural frequency. Since the mass of the
chips is much smaller than the workpiece, this material removal
resulted in small changes in natural frequency. The variation in
system dynamics for the results presented in Figs. 12–15 is pro-
vided in Table 2. The higher period-n bifurcations exhibited suffi-
cient sensitivity to flexure natural frequency that, within a single
cut, both period-n bifurcation and quasi-periodic behavior (sec-
ondary Hopf bifurcation) were observed. For these tests, the cut-
ting tool was a 19.1 mm diameter, single flute carbide square end
mill (30 deg helix angle). The cutting tool dynamic response was:
1055 Hz natural frequency, 0.045 viscous damping ratio, and
4.2� 107 N/m stiffness. Each cut of the 6061-T6 aluminum work-
piece was performed using a feed per tooth of 0.10 mm/tooth.
The aluminum alloy cutting force coefficients were: ktc¼ 792
� 106 N/m2, knc ¼ 352� 106 N/m2, kte ¼ 26� 103 N/m, and kne

¼ 28� 103 N/m.
Figures 12–15 display the flexure’s feed direction velocity (dx/

dt) in the time domain. The continuous signal is displayed as a
solid line, while the circles are the once-per-tooth sampled points.
In each figure, the left plot shows the simulated behavior and the
right plot shows the experimental behavior. Good agreement is
observed. The time domain simulation was modified to account

Fig. 2 Milling experimental setup with LV, piezo-accelerometer
(PA), LT, and CP

Table 1 Cutting conditions and flexure dynamics for experiments

Cutting conditions Flexure dynamics

Period-n
(figure number)

Spindle
speed (rpm)

Axial depth,
b (mm)

Radial depth
(mm)

Stiffness
(N/m)

Natural
frequency (Hz)

Viscous damping
ratio (%)

2 (3) 3486 2.0 1.0 9.0� 105 83.0 2.00
3 (4) 3800 4.5 5.0 5.6� 106 163.0 1.08
6 (5) 3200 18.0 1.0 5.6� 106 202.6 0.28
6 (6) 3250 15.5 1.0 5.6� 106 205.8 0.28
7 (7) 3200 14.5 1.0 5.6� 106 204.1 0.28
8 (8) 3310 15.0 2.0 2.1� 106 130.1 1.47
15 (9) 3200 14.0 1.0 5.6� 106 204.8 0.28

Fig. 3 Poincar�e map for period-2 bifurcation. (Left) simulation and (right) experiment.
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Fig. 4 Poincar�e map for period-3 bifurcation. (Left) simulation and (right) experiment. The
phase space trajectory is represented by the solid line and the once-per-tooth sampled points
are displayed as circles.

Fig. 5 Poincar�e map for period-6 bifurcation. (Left) simulation and (right) experiment.

Fig. 6 Poincar�e map for a second period-6 bifurcation. (Left) simulation and (right)
experiment.

Fig. 7 Poincar�e map for period-7 bifurcation. (Left) simulation and (right) experiment.
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for the changing natural frequency due to mass loss. After each
time-step, the change in mass was calculated based on the volume
of the removed chip and the density of the workpiece material
(2700 kg/m3). This change in mass was then used to update the
flexure’s natural frequency for the next time-step.

A summary of the behavior seen in Figs. 12–15 is provided
here.

(1) Figure 12 exhibits period-6 behavior from 4 to 11 s,
followed by quasi-periodic behavior until the end of the
cut.

(2) Figure 13 shows period-6 behavior from 4 to 13 s and
then quasi-periodic behavior is observed until the end of
the cut.

(3) Figure 14 displays quasi-periodic behavior from the begin-
ning of the cut until 11 s and then period-7 behavior from
11 to 15 s.

(4) Figure 15 exhibits quasi-periodic behavior from the begin-
ning of the cut until 8 s, period-15 behavior from 8 to
13 s, and then quasi-periodic behavior until the end of
the cut.

Fig. 9 Poincar�e map for period-15 bifurcation. (Left) simulation and (right) experiment.

Fig. 10 Bifurcation diagram for 3800 rpm and 5 mm radial depth of cut. (Left) simulation and
(right) experiment.

Fig. 8 Poincar�e map for period-8 bifurcation. (Left) simulation and (right) experiment.

Fig. 11 Simulated stability map for period-3 experimental
setup from Table 1 (M 5 1 lm contour). The transition from sta-
ble to unstable behavior occurs at approximately 2.6 mm for a
spindle speed of 3800 rpm. The inset shows the bifurcation dia-
gram progression at 3800 rpm from stable to quasi-periodic
instability to period-3 and back to quasi-periodic behavior.
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Fig. 12 Variation in bifurcation behavior with changes in natural frequency. Period-6 bifurca-
tion is observed. (Left) simulation and (right) experiment.

Fig. 15 Variation in bifurcation behavior with changes in natural frequency. Period-15 bifurca-
tion is observed. (Left) simulation and (right) experiment.

Fig. 13 Variation in bifurcation behavior with changes in natural frequency. Period-6 bifurca-
tion is observed. (Left) simulation and (right) experiment.

Fig. 14 Variation in bifurcation behavior with changes in natural frequency. Period-7 bifurca-
tion is observed. (Left) simulation and (right) experiment.
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Sensitivity to Damping

In addition to the changes in bifurcation behavior with natural
frequency, the sensitivity to damping was also evaluated. In order
to vary the experimental damping, the flexure-based setup dis-
played in Fig. 2 was replaced with a second flexure to enable
adjustable viscous damping. The approach was to add an eddy
current damper to the flexure as described in Ref. [49]; see Fig.
16. In the figure, it is seen that a copper conductor is attached to
the moving platform. As the conductor moves through the mag-
netic field generated by the permanent magnets (PM) located on
each side, a velocity-dependent force is produced which opposes
the motion. The effect is viscous damping that can be increased or

decreased by changing the gap between the conductor and
magnets.

To explore the sensitivity of period-n behavior to damping,
machining trials were conducted over a range of axial depths of
cut (1 mm to 10 mm) with four different flexure damping values.
In all cases, the spindle speed was 3310 rpm, the radial depth of
cut was 2 mm, and the feed per tooth was 0.1 mm/tooth. The cut-
ting tool was a 19.1 mm diameter, single flute carbide square end
mill (30 deg helix angle): 1055 Hz natural frequency, 0.045 vis-
cous damping ratio, and 4.2� 107 N/m stiffness. The 6061-T6 alu-
minum alloy cutting force coefficients were: ktc ¼ 792� 106N/m2,
knc ¼ 352� 106N/m2, kte ¼ 26� 103N/m, and kne ¼ 28� 103N/m.
Table 3 details the tunable flexure dynamics for the four damping
values.

Simulated and experimental bifurcation diagrams are presented
in Figs. 17–20 for the dynamics defined in Table 3. It is observed
that as the damping increases, the region of period-2 behavior
diminishes in size and, in Fig. 20 with a damping ratio of 3.55%,
it disappears all together. The stable behavior persists up to an
axial depth of approximately 4 mm for Figs. 17–19. The period-2
behavior is then seen for decreasing ranges of axial depth as the
damping increases. It continues to approximately 8.2 mm for
1.47%, to approximately 7.6 mm for 1.91%, and to approximately
6.8 mm for 2.34%. In all cases, the period-2 behavior is followed
by a second stable zone at higher axial depths.

To observe the global behavior, stability maps were generated
using the same time domain simulation implemented to construct
Figs. 17–20. The spindle speed range was 2600 rpm to 3800 rpm
in steps of 20 rpm and the axial depth range was 0.2 mm to 10 mm
in steps of 0.2 mm. The results are presented in Figs. 21–24, where
a vertical line is added to each figure at 3310 rpm to indicate the
position of the bifurcation diagrams in Figs. 18–20. The stability
metric defined in Eq. 1 was used to identify stable and unstable
conditions for each grid point.

Conclusions

This paper presented numerical and experimental analyses of
milling bifurcations, or instabilities. Numerical simulation was
used to solve the time-delay equations of motions that describe
milling behavior. Once-per-tooth period sampling was employed
to study the stability behavior, including period-n bifurcations,
using Poincar�e maps. Bifurcation diagrams and stability maps
were also presented. The numerical predictions were verified by
experiments, where milling vibration amplitudes were measured
for both stable and unstable conditions using flexure-based setups.
The vibration signals were also sampled once-per-tooth period to

Table 2 Changes in flexure natural frequency due to mass removal

Flexure dynamics Cutting conditions

Period-n
(figure number)

Natural frequency,
beginning of cut (Hz)

Natural frequency,
end of cut (Hz)

Change in natural
frequency (Hz)

Change in
mass (g)

Spindle speed
(rpm)

Axial depth,
b (mm)

Radial
depth (mm)

6 (12) 202.4 202.7 0.3 4.8 3200 18.0 1.0
6 (13) 205.7 205.9 0.2 4.1 3250 15.5 1.0
7 (14) 204.1 204.3 0.2 3.9 3200 14.5 1.0
15 (15) 204.7 204.9 0.2 3.7 3200 14.0 1.0

Fig. 16 Milling experimental setup with variable viscous damp-
ing. The setup includes a LV, PA, LT, CP, moving conductor, and
PM. The top photograph shows the flexure without the PM; the
copper conductor is visible inside the parallelogram leaf-type
flexure. The lower photograph shows the PM in place. The mag-
nets are positioned on both sides of the copper conductor and
provide the eddy current damping effect.

Table 3 Flexure dynamics for damping sensitivity experiments

Period-n
(figure number)

Stiffness
(N/m)

Natural
frequency (Hz)

Viscous damping
ratio (%)

2 (17) 2.1� 106 130.0 1.47
2 (18) 2.1� 106 130.0 1.91
2 (19) 2.1� 106 130.0 2.34
- (20) 2.1� 106 130.0 3.55
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Fig. 17 Bifurcation diagram for 1.47% damping (3310 rpm). (Left) simulation and (right)
experiment. Stable behavior is observed up to approximately 4 mm, period-2 behavior then
occurs up to approximately 8 mm, then stable behavior is again seen.

Fig. 20 Bifurcation diagram for 3.55% damping (3310 rpm). (Left) simulation and (right)
experiment.

Fig. 19 Bifurcation diagram for 2.34% damping (3310 rpm). (Left) simulation and (right)
experiment.

Fig. 18 Bifurcation diagram for 1.91% damping (3310 rpm). (Left) simulation and (right)
experiment.
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construct experimental Poincar�e maps and bifurcation diagrams.
The sensitivity of milling bifurcations to changes in natural fre-
quency and damping were predicted. It was observed that the
bifurcation behavior exhibited significant sensitivity to changes in
the structural dynamics.
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