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Abstract 
This paper describes numerical and experimental analyses of milling bifurcations, or instabilities. The 
time-delay equations of motions that describe milling behavior are solved numerically for low radial 
immersion conditions and Poincaré maps are used to study the stability behavior, including secondary 
Hopf and period-n bifurcations. The numerical studies are complemented by experiments where 
milling vibration amplitudes are measured under both stable and unstable conditions. The vibration 
signals are sampled once per tooth period to construct experimental Poincaré maps. The results are 
compared to numerical stability predictions. The sensitivity of milling bifurcations to changes in 
natural frequency is also predicted and observed. 
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1 Introduction 
Decades of machining simulation and measurement research has led to significant understanding 

of milling process dynamics. In 1946 Arnold reported on chatter in steel machining (Arnold). Doi and 
Kato described self-excited vibrations using time-delay differential equations in 1956 (Doi and Kato). 
During this time, the notion of “regeneration of waviness” was promoted as the feedback mechanism 
(time-delay term), where the previously cut surface combined with the instantaneous vibration state 
dictates the current chip thickness, force level, and corresponding vibration response (Tobias and 
Fishwick, Tlusty and Polacek, Tobias, Merritt). This work resulted in analytical algorithms that were 
used to produce the now well-known stability lobe diagram that separates the spindle speed-chip width 
domain into regions of stable and unstable behavior (Tobias, Merritt, Tlusty and Polacek, Shridar et al. 
1968a, Hohn et al., Shridar et al. 1968b, Hanna and Tobias, Tlusty and Ismail 1981, Tlusty and Ismail 
1983, Tlusty 1985, Tlusty 1986, Minis and Yanusevsky, Altintas and Budak). 

More recently, Davies et al. used once per revolution sampling to characterize the synchronicity of 
cutting tool motions (measured using a pair of orthogonal capacitance probes) with the tool rotation in 
milling (Davies et al. 1998). This approach was an experimental modification of the Poincaré maps 
used to study state space orbits in nonlinear dynamics. They observed the traditional quasi-periodic 
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chatter associated with the secondary (subcritical) Hopf, or Neimark-Sacker, bifurcation that can occur 
for systems described by periodic time-delay differential equations (Moon and Kalmár-Nagy). 

In 2000, Davies et al. further examined the stability of highly interrupted (or low radial immersion) 
milling (Davies et al. 2000). They reported a doubling of the number of optimally stable spindle 
speeds when the time in cut is small (i.e., low radial depth of cut). In 2001, Moon and Kalmár-Nagy 
reviewed the “prediction of complex, unsteady and chaotic dynamics” in machining (Moon and 
Kalmár-Nagy). They listed the various contributors to nonlinear behavior, including the loss of tool-
workpiece contact due to large amplitude vibration and workpiece material constitutive relations, and 
highlighted previous applications of nonlinear dynamics methods to the study of chatter (Moon, 
Bukkapatnam et al., Stépán and Kalmár-Nagy, Nayfey et al., Minis and Berger, Moon and Johnson). 
They also specified the use of phase-space methods, such as Poincaré maps, to identify changes in 
machining process dynamics. 

Time-domain simulation offers a powerful tool for exploring milling behavior and has been 
applied to identify instability (Smith and Tlusty, Campomanes and Altintas). For example, Zhao and 
Balachandran implemented a time-domain simulation which incorporated loss of tool-workpiece 
contact and regeneration to study milling (Zhao and Balachandran). They identified secondary Hopf 
bifurcation and suggested that “period-doubling bifurcations are believed to occur” for low radial 
immersions (Zhao and Balachandran). They included bifurcation diagrams for limited axial depth of 
cut ranges at two spindle speeds to demonstrate the two bifurcation types. 

Davies et al. extended their initial work in 2002 to present the first analytical stability boundary for 
highly interrupted machining (Davies et al. 2002). It was based on modeling the cutting process as a 
kicked harmonic oscillator with a time delay and followed the two-stage map concept described 
previously (Davies et al. 2000). They used the frequency content of a microphone signal to establish 
the existence of both secondary Hopf and period-2 (period-doubling or flip) instabilities. Mann et al. 
also provided experimental validation of secondary Hopf and period-2 instabilities for up and down 
milling (Mann et al. 2003b). They reported “a kind of period triple phenomenon” (Mann et al. 2003b) 
observed using the once-per-revolution sampled displacement signal recorded from a single degree of 
freedom flexure-based machining platform. 

The semi-discretization, time finite element analysis, and multi-frequency methods were also 
developed to produce milling stability charts that demonstrate both instabilities (Mann et al. 2003, 
Insperger et al. 2003, Insperger and Stépán, Mann et al. 2004, Merdol and Altintas Y). In (Govekar et 
al.), it was shown using the semi-discretization method that the period-2 bifurcation exhibits closed, 
lens-like, curves within the secondary Hopf lobes, except for the highest speed stability lobe. The 
same group (Gradišek et al.) reported further experimental evidence of quasi-periodic (secondary 
Hopf), period-2, period-3, period-4, and combined quasi-periodic and period-2 chatter, depending on 
the spindle speed-axial depth values for a two degree of freedom dynamic system. A perturbation 
analysis was performed in (Mann et al. 2005) to identify the secondary Hopf and period-2 instabilities. 
Additionally, numerical integration was implemented to construct a bifurcation diagram for a selected 
spindle speed that demonstrated the transition from stable operation to quasi-periodic chatter as the 
axial depth is increased. 

Stépán et al. continued to explore the nonlinear aspects of milling behavior in 2005 (Stépán et al.). 
They described stable period-2 motion where the tool does not contact the workpiece in each tooth 
period (even in the absence of runout). For a two flute cutter, for example, only one tooth contacts the 
workpiece per revolution; they referred to this condition as the “fly over effect” and included a 
bifurcation diagram for these proposed stable and unstable period-2 oscillations. 

The effect of the helix angle on period-2 instability was first studied by (Zatarain et al.). They 
found that, depending on the helix angle, the closed, lens-like, curves within the secondary Hopf lobes 
change their size and shape. They also found that these closed islands of stability can appear even in 
the highest speed stability lobe (in contrast to the results when helix angle is not considered). 
Experimental results were provided. This work was continued in (Insperger et al. 2006), where the 
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authors emphasized that, at axial depths equal to the axial pitch of the cutter teeth, the equation of 
motion becomes an autonomous delay differential equation so the period-2 instability is not possible. 
Patel et al. also studied the helix effect in up and down milling using the time finite element approach 
(Patel et al.). 

In this paper, period-n bifurcations are experimentally identified for n = 2, 3, 6, 7, and 15. 
Additionally, the sensitivity of the bifurcation behavior to system dynamics is explored. A comparison 
of numerical simulation predictions and experiments is also presented. 

2 Poincaré Maps 
In this study, Poincaré maps were developed using both experiments and simulations. For the 

experiments, the displacement and velocity of the flexible workpiece were recorded and then sampled 
once per tooth period. In simulation, the displacement and velocity were predicted, but the same 
sampling strategy was applied. By plotting the displacement versus velocity, the phase space trajectory 
can be observed in both cases. The once per tooth period samples are then superimposed and used to 
interrogate the milling process behavior. For stable cuts, the motion is periodic with the tooth period, 
so the sampled points repeat and a single grouping of points is observed. When secondary Hopf 
instability occurs, the motion is quasi-periodic with tool rotation because the chatter frequency is 
(generally) incommensurate with the tooth passing frequency. In this case, the once per tooth sampled 
points do not repeat and they form an elliptical distribution. For period-2 instability, on the other hand, 
the motion repeats only once every other cycle (i.e., it is a sub-harmonic of the forcing frequency). In 
this case, the once per tooth sampled points alternate between two solutions. For period-n instability, 
the sampled points appear at n locations. 

3 Time-domain Simulation 
Time-domain simulation entails the numerical solution of the governing equations of motion for 

milling in small time steps. It is well-suited to incorporating all the intricacies of milling dynamics, 
including the nonlinearity that occurs if the tooth leaves the cut due to large amplitude vibrations and 
complicated tool geometries (including runout, or different radii, of the cutter teeth, non-proportional 
teeth spacing, and variable helix). The simulation is based on the Regenerative Force, Dynamic 
Deflection Model described by (Smith and Tlusty). As opposed to stability lobe diagrams that provide 
a “global” picture of the stability behavior, time-domain simulation provides information regarding the 
“local” cutting force and vibration behavior (at the expense of computational efficiency) for the 
selected cutting conditions. The simulation used in this study proceeds as follows: 

1. the instantaneous chip thickness is determined using the vibration of the current and previous 
teeth at the selected tooth angle 

2. the cutting force is calculated 
3. the force is used to find the new displacements 
4. the tooth angle is incremented and the process is repeated. Modal parameters are used to 

describe the system dynamics in the x (feed) and y directions, where multiple degrees of 
freedom in each direction can be accommodated. 

 
The instantaneous chip thickness depends on the nominal, tooth angle-dependent chip thickness, the 
current vibration in the direction normal to the surface, and the vibration of previous teeth at the same 
angle. The chip thickness can be expressed using the circular tool path approximation as 
( ) ( ) ( ) ( )sinth t f n t n tφ τ= + − − , where ft is the commanded feed per tooth,  φ is the tooth angle, n 

Experimental Validation of Period-n Bifurcations in Milling Andrew Honeycutt and Tony Schmitz

364



 

 

is the normal direction, and τ is the tooth period. The tooth period is defined as 
60

tN
τ =

Ω
 (sec), where 

Ω is the spindle speed in rpm and Nt is the number of teeth. The vibration in the direction of the 
surface normal for the current tooth depends on the x and y vibrations as well as the tooth angle 
according to ( ) ( )sin cosn x yφ φ= − .  

For the simulation, the strategy is to divide the angle of the cut into a discrete number of steps. At 
each small time step, dt, the cutter angle is incremented by the corresponding small angle, dφ. This 
approach enables convenient computation of the chip thickness for each simulation step because: 1) 
the possible teeth orientations are predefined; and 2) the surface created by the previous teeth at each 

angle may be stored. The cutter rotation 
360

d
SR

φ =  (deg) depends on the selection of the number of 

steps per revolution, SR. The corresponding time step is 
60

dt
SR

=
⋅Ω

 (sec). A vector of angles is 

defined to represent the potential orientations of the teeth as the cutter is rotated through one 
revolution of the circular tool path, φ = [0, dφ, 2 dφ, 3 dφ, … , (SR – 1) dφ]. The locations of the teeth 
within the cut are then defined by referencing entries in this vector. 

In order to accommodate the helix angle for the tool’s cutting edges, the tool may be sectioned into 
a number of axial slices. Each slice is treated as an individual straight tooth endmill, where the 
thickness of each slice is a small fraction, db, of the axial depth of cut, b. Each slice incorporates a 
distance delay ( )tanr dbχ γ=  relative to the prior slice (nearer the cutter free end), which becomes 

the angular delay between slices:  
( ) ( )tan 2 tandb db

r d

γ γ
χ = =  (rad) for the rotating endmill, where 

d is the endmill diameter and γ is the helix angle. In order to ensure that the angles for each axial slice 
match the predefined tooth angles, the delay angle between slices is dχ φ= . This places a constraint 

on the db value. By substituting dφ for χ and rearranging, the required slice width is 
( )2 tan

d d
db

φ

γ

⋅
= . 

Using the time-domain simulation approach, the forces and displacements may be calculated. 
These results are then sampled once-per-tooth period to generate the bifurcation diagrams. 

4 Experimental Results 
A single degree of freedom (SDOF) flexure was used to define the system dynamics. Modal 

impact testing verified that the cutting tool dynamic stiffness (1055 Hz natural frequency, 0.045 
viscous damping ratio, and 4.2×107 N/m stiffness) was much higher than the SDOF flexure. The 
flexure setup also simplified the measurement instrumentation. The flexure motions were measured 
using both a laser vibrometer and a low mass accelerometer. In order to enable once per tooth 
sampling of the vibration signals, a laser tachometer was used. A small section of reflective tape was 
attached to the tool and the corresponding laser tachometer signal used to perform the once per tooth 
sampling. 

The cutting tool was a 20 mm diameter, single flute carbide square endmill. Modal impact testing 
verified that the cutting tool stiffness was much higher than the SDOF flexure. Each cut of the 6061-
T6 aluminum workpiece was performed using a feed per tooth of 0.10 mm/tooth. 
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Cutting tests were completed using the Fig. 1 setup. The measured flexure dynamics and cutting 
conditions are listed in Table 1. Results for period-2, 3, 6, 7, and 15 bifurcations are displayed in Figs. 
2-7. In each figure, the left plot shows the simulated behavior and the right plot shows the 
experimental result. Good agreement is observed in each case. 

 
  

 
Figure 1. Photograph of experimental setup. 

 
Table 1. Cutting conditions and flexure dynamics for experiments. 
Cutting conditions Flexure dynamics 

Period-n 
Spindle  
speed 
(rpm) 

Axial 
depth, b 

(mm) 

Radial  
depth 
(mm) 

Stiffness 
(N/m) 

Natural  
frequency 

(Hz) 

Damping  
ratio (%) 

2 3486 2.0 1 9.0×105 83.0 2.00 

3 3800 4.5 5 5.6×106 163.0 1.08 

6 3200 18.0 1 5.6×106 202.6 0.28 

6 3250 15.5 1 5.6×106 205.8 0.28 

7 3200 14.5 1 5.6×106 204.1 0.28 

15 3200 14.0 1 5.6×106 204.8 0.28 
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Figure 2. Poincaré section for period-2 bifurcation. (Left) simulation, (right) experiment. 
 
 

Figure 3. Poincaré section for period-3 bifurcation. (Left) simulation, (right) experiment. 
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Figure 4. Poincaré section for period-6 bifurcation. (Left) simulation, (right) experiment. 
 

Figure 5. Poincaré section for a second period-6 bifurcation. (Left) simulation, (right) experiment. 
 

Figure 6. Poincaré section for period-7 bifurcation. (Left) simulation, (right) experiment. 
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Figure 7. Poincaré section for period-15 bifurcation. (Left) simulation, (bottom) experiment. 
 

    Experiments were also completed to demonstrate the sensitivity of the period-n bifurcation behavior 
to changes in natural frequency. During cutting, material is removed from the workpiece which lowers 
the workpiece mass and, subsequently, increases the flexure’s natural frequency. Since the mass of the 
chips is much smaller than the workpiece, these changes result in small changes in natural frequency. 
The changes in system dynamics for the experiments presented in Figs. 9-12 are provided in Table 2. 
The higher period-n bifurcations exhibited sufficient sensitivity to flexure natural frequency that, 
within a single cut, both period-n bifurcation and quasi-periodic behavior were observed. 
 

Table 2. Changes in flexure natural frequency due to mass removal. 
 Flexure dynamics Cutting conditions 

Period-n 
(figure 

number) 

Natural 
frequency at 

the beginning 
of the cut 

(Hz) 

Natural 
frequency 
at the end 
of the cut 

(Hz) 

Change in 
natural 

frequency 
(Hz) 

Change 
in mass 

(g) 

Spindle  
speed 
(rpm) 

Axial 
depth, b 

(mm) 

Radial  
depth 
(mm) 

6 (8) 202.4 202.7 0.3 4.8 3200 18.0 1 

6 (9) 205.7 205.9 0.2 4.1 3250 15.5 1 

7 (10) 204.1 204.3 0.2 3.9 3200 14.5 1 

15 (11) 204.7 204.9 0.2 3.7 3200 14.0 1 
 

Figures 8-11 show the flexure’s feed (x) direction velocity (dx/dt) versus time. The continuous 
signal is displayed as a solid line, while the circles are the once-per-tooth sampled points. In each 
figure, the left plot shows the simulated behavior and the right plot shows the experimental behavior. 
Good agreement is observed. The time-domain simulation was altered to account for the changing 
natural frequency due to mass loss. After each time step, the change in mass was calculated based on 
the volume of the removed chip and the density of the workpiece material. This change in mass was 
then used to update the flexure’s natural frequency for the next time step. 

A summary of the behavior seen in Figs. 8-11 is provided here. 
1. Figure 8 exhibits period-6 behavior from 4 to 11 s, followed by quasi-periodic behavior 

until the end of the cut. 
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2. Figure 9 shows period-6 behavior from 4 to 13 s and then quasi-periodic behavior is 
observed until the end of the cut. 

3. Figure 10 displays quasi-periodic behavior from the beginning of the cut until 11 s and 
then period-7 behavior from 11 to 15 s. 

4. Figure 11 exhibits quasi-periodic behavior from the beginning of the cut until 8 s, period-
15 behavior from 8 to 13 s, and then quasi-periodic behavior until the end of the cut 

 

Figure 8. Variation in bifurcation behavior with changes in natural frequency. Period-6 bifurcation is 
observed. (Left) simulation, (right) experiment. 

 

Figure 9. Variation in bifurcation behavior with changes in natural frequency. Period-6 bifurcation is observed. 
(Left) simulation, (right) experiment. 
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Figure 10. Variation in bifurcation behavior with changes in natural frequency. Period-7 bifurcation is observed. 
(Left) simulation, (right) experiment. 

 

Figure 11. Variation in bifurcation behavior with changes in natural frequency. Period-15 bifurcation is observed. 
(Left) simulation, (right) experiment. 

5 Conclusions 
This paper described numerical and experimental analyses of milling bifurcations. Numerical 

simulation was used to solve the time-delay equations of motions that describe milling behavior and 
Poincaré maps were used to study the stability behavior, including secondary Hopf and period-n 
bifurcations. Experiments were completed where milling vibration amplitudes were measured under 
both stable and unstable conditions. The vibration signals were sampled once per tooth period to 
construct experimental Poincaré maps. The results were compared to numerical stability predictions. 
The sensitivity of milling bifurcations to changes in natural frequency was also predicted and 
observed. 
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