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We describe the application of a vector-based radius approach to optical bench radius measurements in
the presence of imperfect stage motions. In this approach, the radius is defined using a vector equation
and homogeneous transformation matrix formulism. This is in contrast to the typical technique, where
the displacement between the confocal and cat’s eye null positions alone is used to determine the test
optic radius. An important aspect of the vector-based radius definition is the intrinsic correction for mea-
surement biases, such as straightness errors in the stage motion and cosine misalignment between the
stage and displacement gauge axis, which lead to an artificially small radius value if the traditional
approach is employed. Measurement techniques and results are provided for the stage error motions,
which are then combined with the setup geometry through the analysis to determine the radius of cur-
vature for a spherical artifact. Comparisons are shown between the new vector-based radius calculation,
traditional radius computation, and a low uncertainty mechanical measurement. Additionally, the mea-
surement uncertainty for the vector-based approach is determined using Monte Carlo simulation and
compared to experimental results. © 2008 Optical Society of America

OCIS codes: 220.4840, 120.3180, 120.3940, 120.6650.

1. Introduction

The radius is a primary descriptor of spherical and
mildly aspherical optics. Accurate knowledge of this
value is critically important when spacing individual
elements in a lens assembly, for example. An optical
bench is typically the preferred measurement plat-
form to determine the radius with low uncertainty.
On an optical bench, the radius is defined by the
best-fit sphere over the clear aperture. It is deter-
mined using a phase measuring interferometer to
identify two critical positions of the test optic: confo-

cal and cat’s eye. See Fig. 1, where the test optic is
represented as a sphere without loss of generality.
With the artifact at either of these positions, the
wavefront reflects back on itself, and the interfero-
metric cavity is null. A linear transducer measures
displacement as the test optic is translated between
the two null positions, and the recorded value is nom-
inally the radius of the best-fit sphere to the surface.
Although the test sequence is straightforward, there
are a number of potential error sources. These in-
clude identification of null at confocal and cat’s
eye, wavefront aberrations in the interferometer,
figure error of the measured surface, displacement
transducer errors, and stage error motions between
confocal and cat’s eye, including both translational
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and rotational deviations from the nominally single
degree of freedom motion along the transducer axis
[1–7].
The importance of considering the stage error mo-

tions is demonstrated in Fig. 2. An example is trans-
lation error in the y direction during the z direction
motion between confocal and cat’s eye results in a
transducer value that is less than the radius by
the sag in the surface. Note that the transducer read-
ing is less than the true radius regardless of the error
sign; this leads to a bias in the radius measurement.
In subsequent sections, this translation error will be
referred to as a straightness error of the z motion in
the y direction and is designated as δyðzÞ. By this no-
tation, it is emphasized that the error is a (nonlinear)
function of the z position, in general. Other error mo-
tions include straightness error of the zmotion in the
x direction, δxðzÞ, and rotational errors about the x, y,
and z axes during z motion, εxðzÞ, εyðzÞ, and εzðzÞ, re-
spectively. The rotational errors couple with offsets
between the transducer axis and interferometer
optical axis to produce the well known Abbe errors.
The purpose of this paper is to demonstrate im-

proved radius measurement accuracy on a typical op-
tical bench using (1) the vector definition of radius
described in Refs. [8–10], (2) measurements of the
stage error motions, and (3) measurements of geo-
metric offsets that depend on the optical bench con-

figuration. The following sections describe the vector
definition of the radius measurement, error motion
measurements, and the final measurement results
for a calibrated (24:5mm radius) Zerodur sphere.
The results show that using a commercial instru-
ment and the traditional radius measurement, the
measured radius of the calibrated sphere is 35 μm
too small. This bias is removed when we apply our
vector-based error motion correction. The primary
benefit of this approach is that it is no longer neces-
sary to engineer a high quality optical bench to rea-
lize accurate measurements. Rather, the error
motions must simply be repeatable and well charac-
terized because our approach directly compensates
for their influence.

2. Vector Radius Definition

Our vector-based approach, which compensates for
errors in the stage motion between confocal and cat’s
eye, is applied to define the radius, R, in Ref. [10].
The method is based on a homogeneous transforma-
tion matrix (HTM) formalism and intrinsically leads
to an unbiased estimate of R. The method defines the
radius as the magnitude of the difference between
two vectors rather than a simple projection onto
the displacement transducer axis, as seen in Fig. 2.
One of the vectors captures the stage, and therefore
the test optic motion, and the other defines the focus
location of the wavefront exiting the interferometer.
This focus location can be thought of as the “probe”
used to identify the optic center of curvature (confo-
cal) and surface (cat’s eye). The HTM approach
[11–13] is well known in the precision engineering
community and is commonly used to compensate er-
ror motions in machining centers and coordinate
measuring machines.

A vector relationship describing R requires the
definition of two coordinate frames. The first is at-
tached to the stage that carries the test optic. The
second, our reference coordinate frame, is fixed to
ground and is used to locate the probe (interfero-
meter focus). The reference z axis is taken to be co-
incident with the displacement transducer axis. The
two frames are identified in Fig. 3. The test optic is
rigidly attached to the stage and is therefore fixed in
the stage coordinate frame. Its center of curvature is
located by the vector, s~Xt, where the subscript indi-
cates the test optic (t) and the superscript the stage
(s) coordinate frame. The probe (p) location is identi-
fied by a vector expressed in reference (r) frame co-
ordinates, r~Xp. These two vectors are also shown
in Fig. 3.

A radius measurement is depicted in Fig. 4. The
reference and stage coordinate frames are initially
coincident at the confocal position (panel a). The
stage and test optic are then moved to the cat’s
eye position (panel b). In the example shown, the
δyðzÞ error motion causes the displacement transdu-
cer value, measured along the stage z axis, to be less
than the actual radius, described by the vector ~R
in Fig. 4.

Fig. 1. Confocal and cat’s eye interferometric null positions for
optical bench radius measurements. In the absence of all errors,
the displacement between these two positions gives the test optic
radius of curvature over the clear aperture of the phase measuring
interferometer.

Fig. 2. In the presence of stage error motions, depicted simply as
a y straightness error in the zmotion here, a biased radius value is
obtained from the linear transducer displacement.
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The new vector definition of radius is shown in
Fig. 5. Here a new vector, r~Xce

t , is introduced that
identifies the test optic center of curvature in the re-
ference frame, rather than the stage frame. The trail-
ing superscript, ce, emphasizes that this vector is
defined when the test optic is in the cat’s eye position.
This enables construction of the vector equation
r~Xce

t þ ~R ¼ r~Xp. Solving for ~R gives ~R ¼ r~Xp −
r~Xce

t ,
the magnitude of which is the quantity of interest.
Unfortunately, r~Xce

t is not explicitly known. It is de-
termined by the position of the test optic in the stage
frame and the detailed motion of the stage during the
translation from confocal to cat’s eye. An HTM can be
used to transform the coordinates and to take this
motion into account. An HTM is a 4 × 4 matrix that
captures the (small) rotations and/or translations of
one coordinate system relative to another, and en-
ables a vector described in one system to be mapped
to the other [11–13]. Equation (1) shows the HTM,
rTs, for this case:

rTs ¼

2
664

1 −εzðzÞ εyðzÞ δxðzÞ
εzðzÞ 1 −εxðzÞ δyðzÞ
−εyðzÞ εxðzÞ 1 d

0 0 0 1

3
775; ð1Þ

where d is the displacement recorded by the linear
transducer during the z motion between confocal
and cat’s eye, the error motions are the parasitic dis-
placements and rotations that occurred between con-
focal and cat’s eye, and the “1” in the (4,4) position
indicates unity scaling. Using Eq. (1), r~Xce

t is deter-
mined from r~Xce

t ¼ rTs
s~Xt. The test optic radius is de-

fined as the magnitude of ~R, so the final radius
expression is

R2 ¼ j~Rj2 ¼ jr~Xp −
r~Xce

t j2 ¼jr~Xp −
rTs

s~Xtj2: ð2Þ

Because the reference and stage frames are
coincident at the confocal position (Fig. 4), s~Xt can
be written as

s~Xt ¼ r~Xp þ

2
64
dxcf

dycf

dzcf

1

3
75 ¼

2
64

rxp þ dxcf
ryp þ dycf

dzcf

1

3
75; ð3Þ

where dxcf , dycf , and dzcf represent errors in the cap-
ability to null the interferometer at confocal in the
three coordinate directions, it is assumed that the
z direction offset of the probe in the reference coordi-
nate system is zero, and the “1” entry in the (4,1) po-
sition is a placeholder to provide dimensional
compatibility with the 4 × 4 HTM, rTs. Inserting
Eqs. (1) and (3) in Eq. (2) gives the full expression
for the radius. See Eq. (4). Expanding Eq. (4) gives

Fig. 3. Coordinate frames for vector radius definition. The refer-
ence frame is fixed and has the origin ~or. The stage frame with
origin ~os is attached to the moving stage, which carries the test
optic.

Fig. 4. Illustration of radius measurement on an optical bench.
The reference and stage coordinate frames are identified for the
(a) confocal and (b) cat’s eye positions.

Fig. 5. Vector-based radius definition. The radius is not defined
by the linear transducer value only, but by the vector equation
r~Xce

t þ ~R ¼ r~Xp.
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Eq. (5). The estimate of the radius is then equal to the
square root of Eq. (5), i.e., R ¼

ffiffiffiffiffiffiffiffiffiffi
hR2i

p
, where the

angled bracket represents the expectation value.
The expectation, or expected, value is mathemati-
cally defined as the product of the parameter and
its probability distribution integrated over all
possible values [14]. All parameters are assumed
to be uncorrelated:

R2 ¼ j~Rj2 ¼

��������

2
664

rxp
ryp
0
1

3
775 −

2
664

1 −εzðzÞ εyðzÞ δxðzÞ
εzðzÞ 1 −εxðzÞ δyðzÞ
−εyðzÞ εxðzÞ 1 d

0 0 0 1

3
775

2
664

rxp þ dxcf
ryp þ dycf

dzcf

1

3
775

��������

2

; ð4Þ

R2 ¼ ½−dxcf þ εzðzÞðryp þ dycf Þ − εyðzÞdzcf − δxðzÞ�2
þ ½−dycf − εzðzÞðrxp þ dxcf Þ þ εxðzÞdzcf − δyðzÞ�2
þ ½−dzcf þ εyðzÞðrxp þ dxcf Þ
− εxðzÞðryp þ dycf Þ − d�2: ð5Þ

Once the error motions are characterized, if repeata-
ble, the values may be simply substituted into Eq. (5)
to arrive at our improved estimate of the radius.

3. Measurement of Error Motions

The optical bench selected for this study is a 100mm
aperture phasemeasuring interferometer (Veeco RTI
4100) with a linear slide (THK Y3V008) and digital
encoder (Renishaw, 0:25 μm resolution) oriented
nominally parallel to the motion axis and the inter-
ferometer’s horizontal optical axis. See Fig. 6. Mea-
surements of the rotational and translational
errors during z motion from confocal to cat’s eye
for this system are detailed in the following para-
graphs. It is important that the error motions be
measured relative to the reference (displacement
transducer) axis. We measure the error motions over
a motion range just beyond the confocal and cat’s eye
positions; then only the change in the angle and/or
translation errors between the confocal and cat’s
eye positions are used for Eq. (5).

A. Rotational Error Motions

The rotational errors were measured using two dif-
ferent setups. First, εxðzÞ (pitch) and εyðzÞ (yaw) were
measured using the phase measuring interferometer
directly. A transmission flat was mounted to the in-
terferometer to give a planar wavefront, and a return
flat was mounted to the stage to provide a target. See
Fig. 7. The fringe pattern was nulled, and the stage
location was then incremented in z steps of 0:85mm
(∼0:033 in) from the approximate confocal to cat’s eye
positions. At each step, the z position was recorded

using the slide’s digital encoder. The tilt coefficients
due to the slide’s rotational errors were determined
using phase shifting to find the optical path differ-
ence map between the transmission and return flats.
The tilt coefficients were then used to compute εxðzÞ
and εyðzÞ. To determine the repeatability, ten mea-
surement sets were completed over the 25:4mm
range (the radius test optic was a calibrated Zerodur

sphere with a radius of approximately 24:5mm so
the 25:4mm range was sufficient). The average rota-
tional error and standard deviation, σ, for the ten
sets at each measurement location are provided in
Fig. 8. A range of 152:6 μrad with an average σ of
6:2 μrad is observed for εxðzÞ, while a range of
93:2 μrad with an average σ of 3:8 μrad is observed
for εyðzÞ. In both cases, the trends are approximately
linear, but this cannot be assumed in general. In
Fig. 8 confocal was located near z ¼ 0 and cat’s eye
near z ¼ −24:5mm. Note that this sign convention
matches Fig. 5 and the rotational errors obey the
right hand rule, as pictured.

The rotational error εzðzÞ (referred to as roll) was
measured using a differential electronic level consist-
ing of two sensing heads (electronic levels, Federal
EGH-13W1) and a single amplifier (Federal EAS-

Fig. 6. (Color online) Photograph of the optical bench. The linear
slide and stage are used to position the test optic relative to the
probe (the phase measuring interferometer converging wavefront
focus—not visible). The displacement is recorded using the digital
encoder attached to the slide.
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2150). One electronic level was attached to the stage,
and the other was mounted to the interferometer to
provide a fixed reference. Differences in rotation
about the z axis between the two levels were ampli-
fied and recorded every 1:68mm (0:066 in.) over the
same 25:4mm z range. The setup is shown in Fig. 9
and the results are provided in Fig. 10. A total of ten
repetitions were again completed and the standard
deviation error bars are included. The range is
46:1 μrad and the average σ is 3:4 μrad.
B. Straightness Error Motions

The straightness error motions in the x and y direc-
tions for the z motion contribute to the terms, δxðzÞ
and δyðzÞ. A fixed angle misalignment between the
motion axis and the displacement transducer axis
(referred to as squareness) also contributes to these
terms. The squareness error is nominally zero in this
instrument; therefore we need only measure the
straightness error for our estimates of δxðzÞ and
δyðzÞ. Uncertainty in our squareness condition is con-
sidered in the uncertainty analysis, however. The
straightness error motions were collected using a
dial indicator and reference surface (straightedge).
To avoid the requirement for a highly accurate and
costly straightedge, a nominally flat steel block

was used, and the well known straightedge reversal
technique was applied [15]. (Because the test optic
size was small in this case, a 24:5mm diameter
sphere, an optical flat would also have provided an
acceptable reference surface.) In this approach, the
dial indicator is used to sample lateral deviations re-
lative to the straightedge in two orientations in order
to distinguish between slide error motions and im-
perfections in the straightedge. The first setup is de-
scribed by Eq. (6), where MðzÞ is the slide (or
machine) straightness as a function of the z position,
SðzÞ is the straightedge flatness deviations, and I1ðzÞ
represents the indicator values. See Fig. 11. In the
second setup, the block is elevated and turned upside
down and the indicator orientation is reversed to
again measure the same block surface, but from
the opposite direction. This causes the relative con-
tribution of the slide error to switch sign as shown in
Eq. (7). The slide straightness is then computed as
shown in Eq. (8). The setup-dependent slope of
MðzÞ is finally removed to isolate the straightness er-
ror. Note that the straightness measurement must be
performed as coincident as possible with the displa-
cement transducer axis.

I1ðzÞ ¼ MðzÞ þ SðzÞ; ð6Þ

Fig. 7. (Color online) Setup for rotational error measurements.
The tilt coefficients from the interferometric phase maps were
used to calculate εxðzÞ and εyðzÞ.

Fig. 8. Rotational errors for stage zmotion. The errors were mea-
sured using a transmission/return flat setup on the phase measur-
ing interferometer. The mean values and standard deviations from
ten repeated tests are shown.

Fig. 9. (Color online) Setup for the εzðzÞ measurements.

Fig. 10. Measurements results for εzðzÞ. The data were collected
using an electronic level system.
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I2ðzÞ ¼ −MðzÞ þ SðzÞ; ð7Þ

MðzÞ ¼ I1ðzÞ − I2ðzÞ
2

: ð8Þ

The measurements results are displayed in Figs. 12
and 13 for the x and y directions, respectively. A total
of ten repetitions were completed, and the standard
deviation error bars are included.

C. Offsets

In addition to the error motions, the offsets between
the reference coordinate frame origin and probe loca-
tion in the x and y directions, rxp and ryp, are also
required. See Fig. 5 and Eq. (5). As shown in Fig. 14,
the reference frame was fixed at the surface of the
digital encoder at the nominal z location of the probe.
The vertical offset, ryp, was determined to be 166mm
using a height gauge that was zeroed at the encoder
surface and raised to the converging wavefront focus.
The horizontal offset, rxp, was visually estimated at
13mm. Again, these values follow the coordinate sys-
tem sign convention.

4. Results

Radius measurements were completed using a
Fizeau configuration of the phase measuring inter-
ferometer with an f =1:5 transmission sphere (Opti-
max, 100mm aperture). The test artifact was a
24:466mm radius Zerodur sphere. The radius was
calibrated on a Moore-48 coordinate measuring ma-
chine (CMM) at the National Institute of Standards
and Technology, Gaithersburg, Maryland, USA. The
combined standard uncertainty, uc, for the calibra-
tion is 50nm. The null locations and corresponding
linear encoder values for the interferometric radius
measurements were determined by three proce-
dures: (1) visual examination of null interference
fringes, (2) correction for nonnull conditions using
the interferometer manufacturer’s software algo-
rithm, and (3) a linear regression to the Zernike a0

2
(power) coefficients obtained from optical phase dif-
ference maps at a series of z positions near confocal
and cat’s eye. For the latter, the measurement
procedure is demonstrated in Fig. 15.

Fig. 12. Straightness errors in the x direction for z motion, δxðzÞ.

Fig. 13. Straightness errors in the y direction for z motion, δyðzÞ.

Fig. 14. (Color online) Illustration of probe location in reference
coordinate frame.

Fig. 11. (Color online) First setup for y straightness of z motion,
δyðzÞ, measurement.
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A. Monte Carlo Simulation

In the traditional radius measurement, the radius
would be determined by the displacements obtained
from the linear encoder alone. However, we show
that Eq. (5) must be applied in the presence of stage
error motions to obtain an unbiased radius estimate.
There is uncertainty in the terms contributing to
Eq. (5) and this affects the radius uncertainty. With
such a complicated nonlinear equation for the mea-
surand, a Monte Carlo simulation is the ideal ap-
proach to determine both the mean (expected)
radius value and the associated standard deviation
(combined standard uncertainty). The Monte Carlo
simulation was selected because direct substitution
of the input mean values into the measurand (or
quantity under test) equation is correct only if the
equation is a linear combination of the random vari-
ables and Eq. (5) is clearly nonlinear [14]. Rigorously,
the expectation value of an arbitrary function is
equal to the function (e.g., Eq. (5)) multiplied by
the probability distributions for all random variables
integrated over all possible values of the random
variables (assuming the random variables are uncor-
related) [14]. Only if the function is linear does this
simplify and equate to a direct substitution of expec-
tation values.
The Monte Carlo simulation proceeded by ran-

domly selecting a value for each input variable
(dxcf , dycf , dzcf , rxp, ryp, d, δxðzÞ, δyðzÞ, εxðzÞ, εyðzÞ,
and εzðzÞ) from the specified distribution, calculating
R, and repeating these steps over many iterations
(1 × 105). The mean value and standard deviation
(or standard uncertainty) for each input are de-
scribed in the following paragraphs. Normal distri-
butions were assumed unless otherwise specified,
and the variables were assumed to be uncorrelated.

The confocal nulling uncertainties were estimated
based on a residual 0.2 wave fringe pattern in the
“nulled” condition. The dzcf uncertainty was set
equal to the 0.2 wave error divided by the average
slope of the a0

2 versus z line from multiple confocal
null linear regressions (∼46waves=mm). The result-
ing 4 μm standard uncertainty was used for dxcf, dycf ,
and dzcf . Zero mean values were assumed.

As noted, ryp was estimated to be 166mm using a
height gauge. The standard uncertainty was set to
0:13mm based on the manufacturer’s recommenda-
tion. The mean value of rxp was 13mm; the standard
uncertainty in the visual estimation technique was
selected to be 1mm.

The displacement recorded by the linear encoder
between confocal and cat’s eye, d, was 24:431mm.
This value was the average of multiple measure-
ments using the linear regression procedure for null
identification. The standard uncertainty of 0:7 μm
was set by the standard deviation in d from the same
measurement set (eight repetitions with eight points
each at confocal and cat’s eye).

The value of the error motions at the confocal and
cat’s eye positions were determined by linear inter-
polation between the individual measurement points
identified in Figs. 8, 10, 12, and 13. The mean null
locations were obtained from the same data set used
to identify d. The standard uncertainty in the rota-
tional error motions was conservatively set equal
to the maximum standard deviation recorded at
any point over the multiple repetitions. For the
translational errors, the uncertainty from a potential
cosine misalignment between the linear encoder axis
and slide axis was considered. Based on a maximum
misalignment of 1 deg, or π

180 rad, the standard un-
certainties, u, for δxðzÞ and δyðzÞ were calculated
using Eq. (9), where the

ffiffiffi
3

p
factor indicates a uni-

form distribution of the misalignment angle and a
probability of 100% that the actual value lies within
the �1 deg range [16]:

u ¼
π

180ffiffiffi
3

p d: ð9Þ

Example Monte Carlo results are displayed in
Fig. 16. The mean radius is 24:459mm, and the stan-
dard deviation (combined standard uncertainty) is
7 μm. The mean value represents a bias correction
of 28 μm relative to the linear encoder value of
24:431mm. Figure 17 shows the comparison between
the traditional radius approach and our vector-based
approach. We also compare the three null identifica-
tion methods. All of these values can be compared to
the calibrated value for the sphere, which is also
shown in the figure. The Monte Carlo result includes
error bars that represent a coverage factor of k ¼ 2
(∼95% confidence interval) to arrive at an expanded
uncertainty, U, of 14 μm.

Fig. 15. Measurement sequence for determining confocal and
cat’s eye locations by linear regression. A sequence of phase maps
is recorded at z positions on each side of confocal (1 to 2) and cat’s
eye (4 to 5). The best fit line is used to determine the null location.
The 3 to 4 step is translation between confocal and cat’s eye. Note
that the z direction is positive to the left.
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5. Discussion

The data points identified by the open circles (visual
null identification), triangles (software null correc-
tion), and diamonds (linear regression) in Fig. 17 re-
present the traditional radius measurement results
and show an average 35 μm bias with respect to the
calibrated (CMM) value. Careful identification of the
null using a linear regression approach or the soft-
ware null correction provides more repeatable radius
estimates, but the result is still biased. The standard
deviations (repeatability) corresponding to the three
null identification approaches are 11 μm, 1 μm, and
0:7 μm, respectively. The vector-based radius defini-
tion (identified by the square) clearly yields a more
accurate radius estimate. With a 95% confidence in-
terval, the vector-based approach shows a corrected
measurement bias in agreement with the cali-
brated value.
By isolating single error motion terms in the

Monte Carlo simulation, we can explore the domi-
nant cause of the bias correction. For this instru-
ment, we find that the bias in the traditional
radius measurement is dominated by two factors,
an Abbe error and the uncertainty in the cosine error.
The Abbe error is caused by the combination of the

Abbe offset, ryp, and the rotational error motions. As
pointed out in the literature [6], the uncertainty in
the cosine error alone surprisingly leads to a bias
in the measurement. Also, the bias is quite sensitive
to the uncertainty level in the misalignment between
the motion and linear encoder axes (note that this
uncertainty indicates a lack of knowledge regarding
the squareness between the two axes). The sensitiv-
ity is shown in Fig. 18, which summarizes Monte
Carlo results for a range of possible cosine error un-
certainties. The expected cosine error is still taken to
be zero. Only the uncertainty is increased and varies
between 0 and �2 deg (recall that a �1 deg uncer-
tainty range was assumed for the result shown in
Fig. 17). All other inputs were identical to the values
previously described. We see that the mean value of
R is quite sensitive to the possible misalignment and
an uncertainty range between �1:8 deg and
�1:9 deg completely removes the bias between the
interferometric and mechanical Zerodur sphere mea-
surements. The error bars in this figure are based
only on the standard deviation obtained from the
Monte Carlo simulation. No coverage factor was
applied.

6. Conclusions

This paper described a case study for identifying an
unbiased radius estimate and associated uncertainty
using a vector-based radius definition and a Monte
Carlo simulation. Unlike the traditional optical
bench approach that relies solely on the recorded dis-
placement between the confocal and cat’s eye null po-
sitions, radius was defined here using a vector
equation and homogeneous transformation matrix
formulism. The vector-based approach enabled the
stage error motions to be considered directly in the
radius calculation. Experimental results and mea-
surement techniques were provided for the stage er-
ror motions, which were then combined with the
setup geometry, to determine the unbiased radius es-
timate and combined standard uncertainty for a
spherical artifact. Comparisons between the

Fig. 17. Summary of Zerodur sphere radius measurements
results.

Fig. 18. (Color online) Sensitivity of mean radius value to
uncertainty in the alignment angle between the stage and inter-
ferometer axes.

Fig. 16. (Color online) Monte Carlo simulations results for
unbiased radius estimate using the vector-based definition.
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vector-based radius calculation, traditional radius
computations, and a mechanically calibrated value
show that the vector-based definition provides an ac-
curate radius of curvature estimate. The important
outcome is that, provided the error motions are well
characterized and repeatable, accurate radius mea-
surements can be performed on a less expensive op-
tical bench when using the radius-based definition to
calculate the radius of curvature.
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