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a b s t r a c t

This paper describes a digital algorithm that can be applied in real time to measure and compensate first
and second order periodic error in heterodyne displacement measuring interferometers. Comparisons
are made between the new algorithm and the traditional frequency domain measurement approach,
where the error signal is Fourier transformed into the frequency domain to identify periodic error
magnitudes. Experimental results are provided for both constant velocity and non-constant velocity
conditions.
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. Introduction

Differential-path interferometry offers the unique combination
f high accuracy, range, and resolution for demanding, non-contact
isplacement measurement applications, such as position feedback
or precision manufacturing equipment (e.g., lithographic stages
or semiconductor fabrication) and transducer calibration. A com-

on interferometer choice in these situations is the heterodyne (or
wo frequency) Michelson-type setup with single, double, or mul-
iple passes of the optical paths. These systems infer changes in the
elected optical path length difference by monitoring the optically
nduced variation in the photodetector current, which is generated
rom the optical interference signal. The phase measuring electron-
cs convert this photodetector current to displacement by digitizing

he phase progression of the photodetector signal. Due to non-ideal
erformance, mixing between the two heterodyne frequencies may
ccur, which results in periodic errors superimposed on the desired
isplacement data.

∗ Corresponding author. Tel.: +1 352 392 8909; fax: +1 352 392 1071.
E-mail address: tschmitz@ufl.edu (T.L. Schmitz).
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A preferred feature of any position transducer is linear
peration, where the output signal is directly proportional to dis-
lacement. The existence of first or second order periodic errors,
ith amplitudes that vary cyclically with the target position,
owever, leads to nonlinear performance in heterodyne interfer-
meters. This limits the achievable accuracy to approximately the
anometer level (or higher) depending on the optical setup, even
hen the interferometer is operated in vacuum to minimize the

rror associated with variations in the refractive index of air due
o uncompensated fluctuations in temperature, pressure, humid-
ty, and composition. Frequency mixing in the interferometer leads
o both first order periodic error, which appears as single sideband
SSB) modulation on the data at a spatial frequency of one cycle per
isplacement fringe, and second order periodic error, with a spatial
requency of two cycles per displacement fringe.

To compensate for these errors, real-time digital error measure-
ent may be applied. Because it requires no changes to the optical

onfiguration, it enables convenient implementation for existing

ystems. This paper describes experiments used to evaluate the
eal time, first and second order periodic error measurement-
ompensation for both constant and non-constant target velocity
onditions [2,3] using an extension of a scheme proposed by Chu
nd Ray [1]. To differentiate from the original approach [1], the

http://www.sciencedirect.com/science/journal/01416359
http://www.elsevier.com/locate/precision
mailto:tschmitz@ufl.edu
dx.doi.org/10.1016/j.precisioneng.2008.10.001
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the sum of a higher frequency sinusoid pair and the macroscale
(quadratic) motion.
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xtended method is referred to here as the time domain regres-
ion, or TDR, algorithm. The results reported in this paper were
btained using a single pass,1 heterodyne Michelson-type interfer-
meter that enabled: (1) isolation of periodic error as the primary
ncertainty source in displacement measuring interferometry and
2) variation of the frequency mixing that leads to periodic error so
hat the error amplitude could be changed. During constant veloc-
ty target motion (achieved using an air bearing stage), the first
nd second order errors were measured using the TDR algorithm
nd traditional frequency domain approach [4–6] for validation
urposes. In the frequency domain approach, the periodic error
agnitudes are determined by computing the discrete Fourier

ransform of the time domain displacement data. This measure-
ent step requires constant velocity motions. For this reason,

irect comparison between the TDR and frequency domain meth-
ds could only be achieved under constant velocity conditions.
arious frequency-mixing levels were realized by adjustment of the
etup optics. Additionally, data was collected during non-constant
elocity motions and the time-dependent first and second order
rror results were computed using the TDR algorithm. These results
re reported. An overview of the digital logic, hardware-based TDR
pproach is also provided.

. Periodic error background

As noted, the focus of this work is periodic error measurement
nd compensation for heterodyne Michelson-type interferome-
ers. In these systems, imperfect separation of the two light
requencies into the measurement (moving) and reference (fixed)
aths has been shown to produce first and second order peri-
dic errors. The two heterodyne frequencies are typically carried
n collinear, mutually orthogonal, linearly polarized laser beams
n a method referred to as polarization coding. Unwanted leak-
ge of the reference frequency into the measurement path, and
ice versa, may occur due to a number of influences, including
on-orthogonality between the ideally linear beam polarizations,
lliptical polarization of the individual beams, imperfect optical
omponents, parasitic reflections from individual optical surfaces,
nd/or mechanical misalignment between the interferometer ele-
ents (laser, polarizing optics, and targets). In a perfect system,
single frequency travels to a fixed target, while a second, sin-

le frequency travels to a moving target and is Doppler shifted
ccording to the target motion. Interference of the combined
ignals yields a perfectly sinusoidal trace with phase that dif-
ers from a corresponding reference phase signal in response to

otion of the moving target. However, the inherent frequency leak-
ge in actual implementations produces an interference signal,
hich is not purely sinusoidal (i.e., contains unintended spectral

ontent) and leads to periodic error in the measured displace-
ent.
Early investigations of periodic error in heterodyne Michelson

nterferometers were completed by Fedotova [7], Quenelle [8], and
utton [9]. Several researchers have subsequently reported studies
f periodic error and its reduction [7–36]. Topics that have been
ddressed include: (1) periodic error measurement under various
onditions [e.g. [10–13]]; (2) frequency domain analysis techniques
4–6]; (3) analytical modeling approaches [14–18]; (4) Jones calcu-

us modeling methods [13,19]; (5) reduction of periodic error [e.g.
4,20,21]]; (6) uncertainty evaluation of interferometric displace-

ent measurement [22,23].

1 In other words, one cycle of phase shift was obtained for a �/2 target motion
�= 633 nm).
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. Digital algorithm

.1. Periodic error measurement

In measurement (but not in compensation), the periodic error
an be modeled as two pure sine/cosine pairs since the fundamen-
al magnitudes of the periodic errors are relatively insensitive to
he presence of their second harmonics. However, the instanta-
eous periodic error amplitudes (i.e., the projection of the sinusoids
n the real axis in the complex plane) are materially affected by
he harmonics and this must be addressed in compensation. For

easurement, the sum of a parabola and two sinusoid pairs are
est fitted to a sequence of 320 position values, �j, expressed in
nit Intervals (UI) or cycles, where 1 UI = 2� radians. Macroscopic
otion up to constant acceleration is removed by the parabola.

herefore, excessive jerk (or the time derivative of acceleration)
educes the effectiveness of this approach. A mathematical model
or approximating both first and second order error is shown in Eq.
1):

0 + x1 · j + x2 · k + xc · cos(2��j) + xs · sin(2��j) + x2c · cos(4��j)

+ x2s · sin(4��j) ≈ �j, (1)

here x0, x1, x2, xc, xs, x2c and x2s are seven parameters to be deter-
ined by curve fit. The model implies that the (uncompensated)

hase data, �j, are collected uniformly in time using the index j.
niform motion is not required, however, due to the quadratic vari-
tion, k, which accommodates acceleration. Here, j (velocity term
or the motion profile) and k (acceleration term) can be elements of
ny convenient linear and quadratic index, respectively. For exam-
le, j may be integers from 1 to 320 and k may be j2. However, a
ustom index set with symmetries will be presented to simplify
rocessing.

Eq. (1) includes both the quadratic phase variation (x0 + x1j + x2k)
s well as two sine/cosine pairs, which are spatially coherent to
he displacement fringes. The first pair, xc·cos(2��j)+xs·sin(2��j),
epresents one cycle per �j fringe (UI) and the magnitude is a
easonable representation of first order periodic error magnitude.
owever, the higher frequency pair, x2c·cos(4��j) + x2s·(2��j),
hich represents two cycles per �j fringe, consists of both the sec-

nd harmonic of first order error and the fundamental of second
rder error. They are identical in frequency and inseparable in the
requency domain. Frequency confounding aside, error measure-

ent using Eq. (1) form requires a time consuming algorithm to
est fit seven unknown parameters simultaneously. Fortunately,
he presence of second order error does not significantly affect
he measurement and compensation of first order error (though
ot vice versa). The first order error can therefore be measured
eparately using the abbreviated curve fit model shown in Eq. (2).2

0 + x1 · j + x2 · k + xc · cos(2��j) + xs · sin(2��j) ≈ �j (2)

Eq. (2) enables first order periodic error measurement and com-
ensation using the Chu and Ray algorithm [1], which removes both
he fundamental and the second harmonic (of first order error). The
esulting first order-compensated phase data is labeled as �̄j . A sec-
nd order curve fit model for �̄j is provided in Eq. (3), which includes
0 + x1 · j + x2 · k + x2c · cos(4��̄j) + x2s · sin(4��̄j) ≈ �̄j (3)

2 In measurement, the periodic error can be modeled as a pure sinusoid without
ncurring significant error in the magnitude/phase results. However, in compensa-
ion the actual shape of the periodic error waveform must be accurate, so the second
armonic is considered. See Section 3.3.
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interferometer), the rank of the 2 × 2 matrix may be less than 2 and
matrix inversion is problematic. We define this condition to be real-
ized when the input �j dwells within the same quadrant for more
ig. 1. Signal process flow block diagram for first and second order periodic error
eal-time measurement and compensation. The measurement and compensation
locks are identical.

The form of Eq. (3) is not readily solvable by the Chu and Ray
lgorithm. However, by the change of variables: j ≡ 2�̄j , y0 ≡ 2x0,
1 ≡ 2x1, y2 ≡ 2x2, y2c ≡ 2x2c, and y2s ≡ 2x2s, Eq. (3) becomes Eq. (4).

0 + y1 · j + y2 · k + y2c · cos(2� j) + y2s · sin(2� j) =  j (4)

Eq. (4) is identical in form to Eq. (2) and can therefore be solved
sing the Chu and Ray approach. The solutions, y2c and y2s, are
hen used to compensate  j, without modification, to form  ̄j , the
rst order error-compensated version of  j. Since  j is at the sec-
nd order spatial frequency,  ̄j is therefore equivalent to a second
rder compensation of �̄j . Finally, the desired first and second order
rror-compensated position phase �̄j is simply half the value of  ̄j ,

r �̂j =  ̄j/2. A block diagram illustrating the process flow is shown
n Fig. 1. Even though the measurement-compensation algorithm
s performed in two stages for first and second order error, compen-
ation is still completed nearly instantaneously; only the latency is
oubled.

.2. Measurement algorithm for finding periodic error by Eq. (2)

The periodic error measurement algorithm has the same form
or both �j and  j (Eqs. (2) and (4)). Therefore, only �j (Eq. (2)) is
escribed. The actual algorithm is a curve fit to 320 repetitions of Eq.
2) resulting in the best fit five parameters x0, x1, x2, xc, and xs. The
arameters xc and xs are the complex plane (Cartesian) coordinates
f periodic error magnitude and phase. Once identified, they are
sed to compensate periodic error in the next group (320 points)
f data. The other three parameters, x0, x1, x2, are local dummy
ariables necessary to remove the macroscopic travel trajectory
o better reveal the small periodic error. They are not explicitly
sed in the measurement-compensation algorithm and, therefore,
eed not be computed. However, for convenience, we use them to
emove an underlying parabola to enhance the display of periodic
rrors (see Figs. 15 and 16).

Eq. (2) can be expressed in matrix notation as MX = P. The
20 × 5 matrix M consists of five columns I, J, K, C, S. Column I
onsists of 320 ‘1’s. By design, column J is a linear vector with
dd symmetry, which increases from −159.5 to +159.5 in unit
teps. Since J is incremented in unit steps, its current value,
, is conveniently used as the index for K, i.e., KT = [k(−159.5),
(−158.5), . . ., k(+159.5)], where k(j) is the current K value indexed
y the non-integer j. Column K is a U-shaped quadratic func-
ion starting at k(−159.5) = 16,395. The next value, k(−158.5), is
efined by the previous value k(−159.5) incremented by 2j − 1.
pecifically, k(−158.5) = 16,395 + 2(−158.5) − 1 = 16,077. Proceed-
ng similarly, the final value k(+159.5) returns to the original value
f 16,395. Since j begins negative, k decreases initially, then lev-
ls off as j approaches zero and increases as j becomes positive;

his establishes the U shape. Column P is the uncompensated input
ector of 320 data points �j expressed in UI. Columns C and S are
able lookup values of cos(2��j) and sin(2��j), respectively. The
ve unknown parameters x0, x1, x2, xc, xs are elements of the 5 × 1
ector X.

t

t
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The solution for vector X is traditionally computed using the
in-squared error regression X = (MTM)−1 MTP. This implies that

he most effective regression operator is MT. Computation is sim-
lified, however, if a new operator OT with a restricted alphabet (1,
, −1, and −2) is chosen to mimic MT. The simpler O matrix also has
ve columns: U, L, Q, E, and D, imitating, respectively, columns I, J,
, C, and S of M. Substitution of O for M gives the best fit solution
hown in Eq. (5). The 5 × 5 equation set (OTM)X = OTP is shown in
q. (6).

= (OTM)
−1

OTP (5)

UT I UT J UTK UTC UTS
LT I LT J LTK LTC LTS
QT I QT J QTK QTC QTS
ET I ET J ETK ETC ETS
DT I DT J DTK DTC DTS

⎤
⎥⎥⎥⎦ ·

⎡
⎢⎢⎣
x0
x1
x2
xc
xs

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎣

UTP
LTP
QTP
ETP
DTP

⎤
⎥⎥⎥⎦ (6)

A judicious design of the five column vectors U, L, Q, E, and D of O
urther simplifies the OTM matrix product. The selected design for
he columns of O, arranged in ten blocks of 32 identical elements, is:
T = (1, 1, 0, 1, 1, 1, 1, 0, 1, 1), LT = (−1, −1, 0, 0, 0, 0, 0, 0, 1, 1), QT = (1, 1, 0,
, −2, −2, 0, 0, 1, 1), ET = (e, e, e, e, e, e, e, e, e, e), and DT = (d, d, d, d, d, d,
, d, d, d). For example, the first element, 1, in UT is repeated 32 times,
he second element, 1, is repeated 32 times and so on to give a total
ector length of 320. The elements e and d in ET and DT, respectively,
re quantized versions of the cosine and sine functions, equaling 1
henever the function exceeds

√
2/2, −1 when less than −

√
2/2,

nd 0 otherwise. With this design, the boundaries for e and d are
t octant boundaries of the unit circle. Therefore, when phase �j
s expressed in UI (cycles), the most significant three bits of the
ractional part of �j logically determine the octant and therefore
he ternary values of e or d, without table lookup.

With this design, nine elements of the OTM matrix become
TI = 28, LTJ = 214, QTK = 221, and UTJ = UTK = LTI = LTK = QTI = QTJ = 0.
he 5 × 5 equation set (OTM)X = OTP is shown in Eq. (7).

28 0 0 UTC UTS
0 214 0 LTC LTS
0 0 221 QTC QTS

ET I ET J ETK ETC ETS
DT I DT J DTK DTC DTS

⎤
⎥⎥⎥⎦ ·

⎡
⎢⎢⎣
x0
x1
x2
xc
xs

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎣

UTP
LTP
QTP
ETP
DTP

⎤
⎥⎥⎥⎦ (7)

A time consuming full 5 × 5 matrix inversion (OTM)−1 to deter-
ine X from Eq. (7) can be avoided by the following steps. The

op row of Eq. (7) is used to eliminate the first column, taking
ull advantage of a convenient power-of-two (28) divisor. Like-
ise, the second and third rows eliminate the second and third

olumns. All three columns can be eliminated simultaneously,
nd only a 2 × 2 equation set remains for determining xc and xs,
hich are the required solutions. The periodic error magnitude,
, and phase, �, are the polar version of xc and xs. Therefore,
=

√
x2
c + x2

s and � = (1/2�)tan−1(xc/ − xs), where the quadrant
ependence of the arctangent function must be observed in imple-
entation.
When travel during the sample time for 320 points (1.024 ms for

he 312.5 kHz sampling frequency applied here) is much less than
ne fringe (�/2, where � is the source wavelength for a single pass
han 64 consecutive points.3 If true, the new measurement result

3 The motion must traverse at least one fringe in 320 points for the algorithm
o be effective. For constant velocity, this yields 80 samples in each quadrant. We
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Fig. 2. Vector diagram illustrating the SSB modulation. The ideal signal is repre-
sented by the horizontal unity vector. First order periodic error �� is produced as
a function of the object position s̄ = (�/2)(�̄ − �) when a smaller signal of fractional
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agnitude, r, is added vectorially to the ideal signal. Angle (�̄ − �) is expressed in UI
or cycle) and is cumulative (not modulo 2�). Periodic error is only approximately
inusoidal with position. It is rich in second harmonic, confounding any potential
econd order perturbation, which has exactly the same frequency.

s rejected. The existing magnitude and phase V and � are retained
or further compensation. This criterion to reject measurement also
revents inappropriate measurements at certain narrow velocity
ands where aliasing causes the 2 × 2 matrix to be singular. For
xample, at a velocity where phase sampling at 3.2 �s (312.5 kHz)
oincides with near one fringe (�/2) of travel, measurement is also
utomatically rejected.

.3. Periodic error compensation

The two parameters V and � are used to compensate the next
20 points of raw data �j to produce the “ideal” data estimate �̄j as
hown in Eq. (8). This simple one term compensation removes both
he first and second harmonics of first order error. The derivation
or Eq. (8) is provided in the following paragraphs.

¯
j = �j + V sin(2�(�j − �)) (8)

The SSB nature of the perturbation is taken into consideration
uring compensation. Fig. 2 graphically illustrates the relationship
etween the first order periodic error,�s = (�/2)��, and the ideal
osition of the object, s̄ = (�/2)(�̄ − �). It is more convenient to han-
le periodic error and displacement in the angular forms �� and

¯ . These angle parameters are expressed in UI (cycle), not radians,
nd are cumulative, i.e., not modulo 2�. Fig. 2 shows a periodic
rror �� is produced when a perturbing vector of fractional size
is vectorially added to the unity signal vector. The angle (�̄ − �)
f the perturbing vector is the ideal position of the moving target
xpressed in cumulative UI. Simple trigonometry shows that the
elationship is:

�(�̄) =
(

1
2�

)
tan−1

[
r sin(−2�(�̄ − �))

1 + r cos(−2�(�̄ − �))

]
. (9)

For small and moderate��, some approximations can be made.
q. (9) becomes:

�(�̄) ≈ r/2� sin(−2�(�̄ − �))

1 + 2�(r/2�) cos(−2�(�̄ − �))
= V sin(−2�(�̄ − �))

1 + 2V� cos(−2�(�̄ − �))

r

�(�̄) ≈ −V sin(−2�(�̄ − �)) + V2� sin(−4�(�̄ − �)), (10)

here V = r/2� and � are the magnitude and phase offset of the
eriodic error, both expressed in UI. Eq. (10) shows a potentially

pply a safety margin by reducing this value to 64 (1.25 fringes). The minimum
easurement velocity for these tests is 1.25 fringes, or 1.25(633)/2 nm, per 1.024 ms

0.39 mm/s).
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ignificant second harmonic component to the periodic error. It is
ndependent of the presence of any second order periodic error,

hich has the same frequency. The second harmonic is included in
ompensation.

For compensation convenience, the periodic error �� should
e expressed as a function of the readily available uncompensated
hase �j, rather than the ideal phase �̄ (recall that the phase is
etermined from position by dividing by �/2). From calculus, we
ave the relationship:

�(x −�x) ≈��(x) −�′�(x) ·�x. (11)

ubstituting �j for x and (�j − �̄) for �x, the calculus equation
ecomes (�j − �̄) ≡��(�̄) ≈��(�j) −�′�(�j) · (�j − �̄). Solving
or (�j − �̄) =��(�j)/1 +�′�(�j), the compensation (�j − �̄)
ecomes a function of the uncompensated position �j and not
he ideal position �̄, as desired. If only one dominant term
V sin(2�(�j − �)) is differentiated, and all harmonics higher

han two are ignored, the compensation simplifies to (�j − �̄) =
V sin(2�(�j − �)). The compensation has only one sine term with
spatial period of �/2 for first order error. Its argument, however,

s perturbed by periodic error in such a way that it almost exactly
ompensates for the SSB perturbation of the first order periodic
rror, including its second harmonic.

.4. Hardware implementation

In hardware, the vectors I, J, K, U, L, Q are most conveniently
mplemented with six shift registers with lengths of 320 to appear
equentially for 320 clock cycles. Because they are well formulated,
hey may also be synthesized more elegantly with sequential logic,
sing less hardware. Vectors C and S are created by addressing
osine and sine tables, respectively, with the most significant 12
its of the fractional part of input �j. In vectors E and D, the bound-
ries of elements e and d occur at exact octant values of�j. Therefore
he most significant 3 bits of the fractional part of �j determine the
ternary) values of e or d. The logic design is straightforward and is
mitted here.

With all the vectors in place, the 21 dot products shown in Eq.
7) can be “computed” simultaneously using 21 accumulators. In
eneral, the O matrix vectors (U, L, Q, E, D) control the Clock-Enable
nd Polarity terminals while the M matrix elements appear at the
ata terminals of the accumulators. For example, the dot product
TC is constructed as follows. The 12 most significant bits of the

nput phase �j address a cosine table and the result appears on
he Data terminal of an initially empty accumulator (labeled EC,
or example). The most significant 3 bits of the fractional part of �j
etermine the value of e. If e = 0, the accumulator clock is disabled. If
= 1, then the Polarity is set to “add”, and if e = −1, the Polarity is set

o “subtract”. After 320 clocks, the content of EC contains the dot-
roduct ETC. The other 20 dot products are similarly synthesized.
fter 320 clock cycles, all elements of OTM and OTP are obtained
ithout any computation. For the “−2” value in the Q operator, a

ne bit left shift of the data is required.
In compensation, the term V sin 2�(�j − �) is produced by sub-

racting � from 320 incoming �j values. The differences address a
ine table and multiply each result by V. These compensation terms
re added to the raw �j to produce the compensated sequence

¯ .
. Experimental setup

A photograph and schematic of the setup are provided in Fig. 3.
he orthogonal, linearly polarized beams with a frequency differ-
nce of approximately 3.65 MHz (helium–neon laser source with a
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Fig. 3. (a) Photograph of single pass, heterodyne in

eeman split) first pass through a half wave plate (HWP). Rotation
f the half wave plate enables variation in the apparent angular
lignment (about the beam axis) between the polarization axes
nd polarizing beam splitter; deviations in this alignment lead
o frequency mixing in the interferometer. The light is then inci-
ent on a non-polarizing beam splitter (80% transmission) that
irects a portion of the beam to a fiber optic pickup after pass-

ng through a fixed angle sheet polarizer (oriented at 45◦ to the
ominal laser orthogonal polarizations). The pickup is mounted
n a two rotational degree-of-freedom flexure, which enables effi-
ient coupling of the light into the multi-mode fiber optic. This
ignal is used as the phase reference in the measurement electron-
cs.

The remainder of the light continues to the polarizing beam
plitter where it is (ideally) separated into its two frequency compo-

ents that travel separately to the moving and fixed retroreflectors.

n this design, motion of the moving retroreflector is achieved using
n air bearing stage and linear (direct) drive.4 After the beams are
ecombined in the polarizing beam splitter, they are directed by a

4 It was verified that the drive did not contribute frequency content to the stage
otion in the same range as the periodic errors. However, if it did, then the
easurement-compensation algorithm would attempt to remove any content that
atched the expected periodic error form, independent of its source.
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meter experimental setup. (b) Schematic of setup.

0◦ prism through a polarizer with a variable rotation angle. Finally,
he light is launched into a fiber optic pickup. This serves as the mea-
urement signal in the measurement electronics (0.3 nm resolution
or the single pass configuration).

The intent of the setup design was to minimize other well-
nown error contributors [22–25] and set various periodic error
agnitudes for each order. To isolate periodic error, the setup
as constructed with zero dead path difference (i.e., the distance
etween the polarization beam splitter and the moving retroreflec-
or was equal to the distance between the polarization beam splitter
nd the fixed retroreflector at initialization) and small Abbe offset
25 mm). The measurement time (∼100 ms) and motion excursions
ere kept small to minimize the contribution of air refractive index

ariations due to the environmental changes [24]. Additionally,
areful alignment of the air bearing stage axis with the optical axis
esulted in small beam shear.

. Experimental results
In this section, the analysis procedures are described and exper-
mental results provided for two primary scenarios: (1) constant
elocity tests with variable half wave plate and polarizer orienta-
ions and (2) non-constant velocity tests with fixed polarizer and
alf wave plate angles.
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5.3. Constant velocity comparison

To aid in comparing the frequency and time domain analysis
results, the difference between the first and second order periodic
ig. 4. Error comparison for frequency (DFT) and TDR (modified Chu/Ray)
pproaches with variable polarizer angle.

.1. Variable polarizer angle

In these tests the half wave plate angle was held fixed at its
ominal orientation and the polarizer angle was systematically
aried about its nominal value (normalized to 0◦ in Fig. 4). The
elocity for the air bearing stage (and moving retroreflector) was
00 mm/min. The measurement and reference signal data from the
nterferometer were sampled at 312.5 kHz by the phase measuring
ardware (30 × 103 samples over 96 ms); displacement was then
etermined from these signals. For the single pass helium–neon

nterferometer setup used here, first order error repeats approx-
mately every 633/2 = 316.5 nm, while second order completes a
ull cycle in 633/4 = 158.3 nm. To identify the first and second order
rror amplitudes for the various polarizer angles under constant
elocity conditions, two methods were compared. First, the dis-
rete Fourier transform (DFT) of the error was computed [4–6]
fter performing a least squares linear regression to subtract the
est fit line from the displacement data. Second, the TDR algo-
ithm was applied. Note that the DFT approach provides one set
f periodic error values for each constant velocity displacement
ecord, while the TDR algorithm provides 92 sets for each record
i.e., the error is updated every 1.024 ms over the 96 ms record,
xcluding the first 1.024 ms latency period). Both the mean value
nd standard deviation for each test are reported for the TDR
pproach.

The first and second order periodic errors for the two methods
ith polarizer angle variation are displayed in Fig. 4. The top panel

hows the first order error comparison, while the bottom panel
isplays the second order error. The dramatic increase in first order
rror with polarizer angle misalignment agrees with the behavior
odeled, for example, by Cosijns et al. [14]. The additional increase

n second order error indicates other imperfections in the system
lignment were also present (such as the nominal half wave plate
rientation). Fig. 5 shows the standard deviation, �, in the 92 first
nd second order periodic error values from the TDR algorithm for
ach polarization angle. It is observed that the standard deviations
or the dominant first order error are essentially independent of

he polarizer angle, while the second order error standard deviation
alues follow the trends in first and second order growth at extreme
isalignments. This is explored further in Fig. 11, where it is shown

hat second order measurement accuracy is improved if first order
rror is first compensated.

F
a

ig. 5. Standard deviation values for each polarizer angle from TDR (modified
hu/Ray) approach (92 periodic error data sets are available for each 96 ms mea-
urement period).

.2. Variable half wave plate angle

In this case the half wave plate angle was varied while the
olarizer angle was held fixed at its nominal orientation. The stage
elocity was again 100 mm/min. The first and second order peri-
dic errors identified by the two methods with half wave plate
ngle variation are displayed in Fig. 6. The reader may note that
� half wave plate angle change results in a 2� linear polarization

otation. Again, the sharp increase in second order error with half
ave plate misalignment agrees with the Cosijns et al. analysis [14]

nd the corresponding first order error growth suggests other setup
isalignments. Fig. 7 shows the standard deviation in the 92 TDR

eriodic error values for each half wave plate angle. In this domi-
ant second order error case, both standard deviation profiles track
he periodic error growth.
ig. 6. Error comparison for frequency (DFT) and TDR (modified Chu/Ray)
pproaches with variable HWP angle.
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ig. 7. Standard deviation values for each half wave plate angle from TDR (modified
hu/Ray) approach.

rrors for the variable polarizer and half wave plate angle tests
as calculated. The results are shown in Fig. 8. It is seen that

arger deviations occur for the extreme misalignment conditions.
o better represent actual setups (which would not generally
uffer from such large misalignments), Fig. 9 presents results for
olarizer misalignment within 10◦ of the nominal and half wave
late misalignment within 5◦ of nominal (±10◦ linear polarization
isalignment). It is observed that the agreement between the two
ethods is within the interferometer resolution (0.3 nm) and no

bvious bias exists (i.e., the first and second order error differences
re both positive and negative). Additionally, from Figs. 5 and 7,
t is seen that there is no trend in the � values, which are at the
.2 nm level or below, over these ranges.

.4. Non-constant velocity
Here, data was collected during non-constant velocity profiles.
n this case, the frequency domain approach cannot be applied
ecause the periodic error measurement step (Fourier transform
f time domain motion data) requires signals with constant time

ig. 8. Difference between Fourier and TDR (modified Chu/Ray) periodic error levels
or (top) variable polarizer angle and (bottom) HWP angle.

t
1
i
u
o

F
t

ig. 9. Difference between Fourier and TDR (modified Chu/Ray) periodic error levels
or realistic misalignment ranges.

eriods, which is not true for non-constant velocity motions (i.e.,
lthough the periodic error spatial period is constant, the time
eriod is not).

An example motion profile for non-constant velocity conditions
s provided in Fig. 10. The top panel shows the overall motion, x, for
he 30 × 103 samples, while the bottom panel shows the velocity, v
obtained from numerical differentiation and polynomial smooth-
ng). Note the direction reversal, which occurs near 41 ms. Fig. 11
hows the displacement (top panel) and periodic error (bottom
anel), which was visually isolated by subtracting a least squares fit
olynomial, xfit, for the 32–50 ms range about the motion reversal
the low frequency mean drift is due to an imperfect polynomial
t). The variation in the periodic error time period with velocity is
bserved.

Fig. 12 shows the first and second order periodic error levels
hich were measured using the time domain algorithm, again for

he 32–50 ms time span. As noted, a new value is available every

.024 ms, although updates cannot be calculated for very low veloc-
ties (as described previously). The value remains constant if no
pdate is available (38–41 ms). Fig. 12 shows traces for: (1) first
rder error measurement from the uncompensated signal (large

ig. 10. Displacement (top) and velocity (bottom) profiles for non-constant velocity
est.
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Fig. 13. Results of compensation using the measured periodic error shown in Fig. 12.

Fig. 14. Measured periodic error magnitudes for signal with small first order error
(1.6 nm) and small second order error (0.9 nm). The second harmonic of the first
o
s
o
c

ig. 11. Displacement (top) and periodic error (bottom) near motion reversal.

lled diamond); (2) the compensation result after removing first
rder error only (unfilled diamond); (3) the second harmonic of the
rst order error (small filled diamond); (4) second order error mea-
urement using the uncompensated signal (filled circle); (5) second
rder error measurement using the first order-compensated signal
unfilled circle). It is seen that accurate second order measurement
equires that the first order error be removed by compensation
hen the second harmonic of the first order error is similar in mag-
itude to the second order error. Using the measured errors (second
rder error from first order-compensated data in this case), the peri-
dic error waveform can be generated. Given the error waveform,
he position can be compensated by subtracting the waveform
rom the position signal. Fig. 13 shows the uncompensated (dotted
ine) and first and second order-compensated (solid line) positions.
gain, a least squares polynomial fit was used to visually isolate

he uncompensated and compensated periodic errors and the low
requency drift is caused by the imperfect fitting for display. The
ource of the low frequency content could generically be vibration
r refractive index variation, for example. In any case, the algorithm
nly removes what it considers periodic error (in accordance with

he curve fit model). Other errors are not compensated and appear
s residuals. Additionally, for very large periodic errors, the removal
lgorithm is only approximate in that it ignores all harmonics above
wo (in each order).

ig. 12. Measured periodic error magnitudes for Fig. 11 signal with large first order
rror (7.5 nm) and small second order error (0.4 nm). The second harmonic of the
rst order error (0.6 nm) is larger than the second order error. An attempt to measure
he second order error without first removing the first order error results in erratic
nd inaccurate results (filled circles). Improved results are obtained if the first order
rror is first compensated (unfilled circles). During direction reversal (38–41 ms),
o parameters are updated.
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rder error is negligible and does not interfere with the second order error mea-
urement. The results for second order measurement without removing the first
rder error (filled circles) are identical to the second order measurement when
ompensating the first order error (unfilled circles).

.5. Compensation examples
Fig. 14 shows measurement results for a constant velocity signal
ith small first and second order error magnitudes (1.6 and 0.9 nm,

espectively). Fig. 15 displays the time domain compensation

ig. 15. The effect of periodic error compensation in the time domain is demon-
trated for the small first and second order error signal. Four segments of 1.024 ms
320 points each) are shown. Due to latency, the first segment is uncompensated. The
econd segment is only first order error-compensated. The subsequent segments are
ompensated in both orders.
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Fig. 16. Example of effect of compensation algorithm on a signal with large peri-
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dic error in both first and second orders (6.8 and 5.9 nm, respectively). In the
rst 1.024 ms segment (320 points) no compensation is applied. In the second seg-
ent, first order only is compensated. In the remaining segments both orders are

ompensated.

esult for Fig. 14 signal. The effectiveness is observed in spite of
oise present. Fig. 16 shows the effect of compensation in the time
omain for a constant velocity signal with large first and second
rder errors (6.8 and 5.9 nm, respectively). Significant error reduc-
ion is again seen.

Although the experimental results presented here were for a
ingle pass system, the approach can also be implemented on mul-
iple pass configurations. In fact, unwanted reflections in a two pass
ystem can lead to periodic error with half the spatial frequency of
rst order error. This “half order error” can be removed by an addi-
ional stage, which precedes the first order error compensation (as
hown in Fig. 1).

. Conclusions

The tests reported in this study validated the periodic error
evels computed using an extension of the digital, time domain
hu and Ray algorithm [1] (referred to here as the time domain
egression, or TDR, algorithm) by comparison with the well-known
requency domain approach [4–6]. Further, it was demonstrated
hat the TDR approach was capable of continuous estimates of
he first and second order periodic error for non-constant veloc-
ty motion. The ability to diagnose periodic error at non-constant
elocities and reconstruct the wave shape for error compensation,
ithout modifications to the optical setup, makes the algorithm
articularly well-suited to real-time implementation for existing
recision motion systems.
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