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Abstract 

Under the concept of "Industry 4.0", production processes will be pushed to be increasingly interconnected, 
information based on a real time basis and, necessarily, much more efficient. In this context, capacity optimization 
goes beyond the traditional aim of capacity maximization, contributing also for organization’s profitability and value. 
Indeed, lean management and continuous improvement approaches suggest capacity optimization instead of 
maximization. The study of capacity optimization and costing models is an important research topic that deserves 
contributions from both the practical and theoretical perspectives. This paper presents and discusses a mathematical 
model for capacity management based on different costing models (ABC and TDABC). A generic model has been 
developed and it was used to analyze idle capacity and to design strategies towards the maximization of organization’s 
value. The trade-off capacity maximization vs operational efficiency is highlighted and it is shown that capacity 
optimization might hide operational inefficiency.  
© 2017 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the Manufacturing Engineering Society International Conference 
2017. 
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1. Introduction 

The cost of idle capacity is a fundamental information for companies and their management of extreme importance 
in modern production systems. In general, it is defined as unused capacity or production potential and can be measured 
in several ways: tons of production, available hours of manufacturing, etc. The management of the idle capacity 
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Abstract 

Machining processes, including turning, are a critical capability for discrete part production. One limitation to high material removal rates and 
reduced cost in these processes is chatter, or unstable spindle speed-chip width combinations that exhibit self-excited vibration. In this paper, an 
artificial neural network (ANN) is applied to model turning stability. The analytical stability limit is used to generate a data set that trains the 
ANN. It is observed that the number and distribution of training points influences the ability of the ANN model to capture the smaller, more 
closely spaced lobes that occur at lower spindle speeds. Overall, the ANN is successful (>90% accuracy) at predicting the stability behavior after 
appropriate training. 
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1. Introduction 

Material removal processes, including turning and milling, 
are widely applied in industry. While significant advances have 
been achieved in the last decades, one limitation to high 
material removal rates is chatter, or unstable cutting conditions. 
The result is poor surface quality and potential damage to the 
tool, workpiece, and machine. 

The control of stability in turning operations is crucial in 
industry and ongoing research efforts address chatter 
avoidance. Siddhpura and Paurobally [1] completed a literature 
review of chatter prediction in turning. They classified the 
techniques for chatter stability prediction as stability lobe 
diagrams, Nyquist plots, and finite element analyses. Their 
study also discussed the experimental techniques for chatter 
stability prediction and detection and separated them into three 
main groups: signal acquisition and processing techniques; chip 
analysis; and artificial intelligence techniques, including neural 
networks, hidden Markov models, and fuzzy logic. The authors 
noted that the number of publications featuring artificial 
intelligence techniques was low at the time of publication (only 

11 from 1978 to 2012), although additional work has been done 
since then. 

Chanda and Dwivedy [2] developed the governing nonlinear 
equations of motion for turning, considering both the workpiece 
and the tool to be flexible. The regenerative effect due to 
inherent time delay was considered. Copenhaver et al. [3] 
described a periodic sampling-based method for identifying the 
stability of modulated tool path turning (MTP). They compared 
a periodic sampling metric with the traditional frequency-
domain approach, where the frequency spectrum is analyzed to 
identify the turning stability.  

Filippov et al. [4] studied the transition from the stable 
turning to chatter using acoustic emission signals. High-
frequency peaks appeared in transition to the chatter mode. A 
mathematical model of turning was presented by Gerasimenko 
et al. [5]. The stability limit for turning a thin-walled cylindrical 
part was defined. Gouskova et al. [6] determined the stability 
of a continuous cutting process for an arbitrary arrangement of 
two cutters. Gyebroszki et al. [7] combined the surface 
regeneration model of the turning process with the 
mathematical modeling of chip formation. It was shown that the 
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time scale of chip formation was much smaller than the time 
scale of turning vibrations. 

Hajdu et al. [8] incorporated noise and uncertainties in 
chatter predictions. They described a frequency-domain 
method to the robust stability analysis of machining operations, 
which uses the measured frequency response functions (FRFs) 
without filtering or modal parameter identification. Application 
of the method to a single-degree-of-freedom model for 
orthogonal cutting showed that the robust stability boundaries 
can be significantly smaller than the stability boundaries 
corresponding to the averaged FRF. Huang et al. [9] also 
considered uncertainties in their analysis. They used a 
probabilistic method (Monte Carlo simulation) and found that, 
in comparison with the traditional cutting force prediction 
method, Monte Carlo simulation provided better results, taking 
into account the influence of random parameters. 

Mousavi et al. [10] presented a numerical model to predict 
the dynamic behavior of a robotic manipulator in a machining 
operation. They established theoretical stability limits taking 
into account the variability of the robot dynamics within its 
workspace. This enabled the cutting parameters and the robot 
configurations to be adapted along a machining trajectory. A 
stability diagram based on regenerative chatter in milling 
operations as a function of the kinematic redundancy variable 
was established. The theory was validated with experimental 
robotic machining trials. Liu et al. [11] investigated the 
probability of stability for turning. The authors defined and 
represented a reliability lobe diagram to identify stable and 
unstable zoned, rather than the traditional stability lobe diagram 
(SLD). The reliability was calculated using the FOSM (first-
order second moment) and Monte Carlo methods and was 
compared to the traditional stability lobe diagram. 

Khasawneh and Munch [12] proposed a new approach for 
determining the stability of stochastic dynamical systems by 
examining their time series using topological data analysis. 
Two statistical approaches (three sigma edit rule analysis and 
principal component analysis) were used by Jiménez et al. [13] 
to predict chatter, obtaining accuracy rates over 75%. 

The receptance coupling method was used by Jasiewicz and 
Powalka [14] for determining the lathe-workpiece dynamics 
and inverse receptance coupling was proposed for the spindle. 
Lu et al. [15] proposed a predictive chatter model of a tailstock-
supported flexible rod in straight turning including the effect of 
the traveling tool position along the longitudinal direction of the 
workpiece. The difference between the predicted tool locations 
and the experimental results was within 9%. 

Tyler et al. [16] proposed an analytical stability model for 
turning which considered the process damping force that is 
dependent on the surface normal velocity, chip width, cutting 
speed, and a process damping coefficient. The analytical model 
was validated using time domain simulation and experiments. 

Chatter prediction using machine learning techniques has 
also been studied, including neural networks, support vector 
machines, and others. Ahmad et al. [17] developed two 
different models of extreme learning techniques using random 
weights and hidden nodes. Lamraoui et al. [18] applied a neural 
network (NN) and the input data based on signal analysis to 
predict milling stability. Gupta et al. [19] used artificial 
intelligence techniques including support vector regression 

(SVR) and artificial neural networks (ANN) integrated with 
genetic algorithms (GA). The model was trained using the 
turning parameters as the input and corresponding surface 
roughness, tool wear, and power required as the output. 

Jurkovic et al. [20] compared the performance of three 
machine learning methods for the prediction of operating 
parameters in high-speed turning. Observed parameters were 
the surface roughness (Ra), cutting force (Fc), and tool life (T). 
Polynomial (quadratic) regression, SVR, and ANN were used. 
Polynomial regression demonstrated the best performance in 
for Fc and Ra prediction, while the ANN showed the best 
performance for T prediction. 

Khasawneh et al. [21] combined several deterministic and 
stochastic models to create persistence diagrams of turning 
stability. The approach was intended for chatter classification 
using signals produced by complicated and noisy 
manufacturing systems. Yao et al. [22] constructed a two-
dimensional feature vector for chatter detection based on the 
standard deviation of the wavelet transform and the wavelet 
packet energy ratio in the emerging chatter frequency band. A 
support vector machine (SVM) was designed for pattern 
classification based on the feature vector. The machining states 
were classified into three categories: stable, transition, and 
chatter. Zagorski et al. [23] employed two NNs for chatter 
detection in milling: RBF (radial basis function) and MLP 
(multi-layered perceptron). Kumar and Singh [24] used an 
ANN based on feed forward backpropagation for predicting the 
stable cutting zone and metal removal rate in turning. The 
tangent sigmoid activation function was applied. 

In this paper, an ANN is used to model stability behavior in 
turning, where the physics-based analytical stability limit is 
applied to generate a data set that trains the ANN.  The 
motivation for this effort is that the ANN model inputs are the 
spindle speed and depth of cut, while the analytical stability 
limit model inputs are the structural dynamics and force model. 
When experimental stability data is collected at a selected 
spindle speed-depth of cut pair, it is preferred to have a model 
which can accept this data directly. The ANN enables this 
convenient model updating. 

2. Background 

During turning, a sharp cutting edge is used to remove 
material in the form of a chip. Figure 1 shows an orthogonal 
cutting operation, where only the normal, Fn, and tangential, Ft, 
components of the resultant force, F, are considered. In general, 
the cutting force vector includes the third component along the 
workpiece rotation axis, but the orthogonal (planar) treatment 
is sufficient to describe the process dynamics. The figure also 
identifies: 1) the mean chip thickness, hm, or commanded feed 
per revolution for the facing operation pictured; and 2) the force 
angle, β, between F and Fn. The side view of this operation 
(inset in Fig. 1) identifies the chip width, b. Together, the chip 
thickness and chip width define the area of material to be 
removed, A = bhm. 

The cutting force can be approximated as the product of the 
chip area and the process dependent specific force coefficient, 
Ks [25]. It depends on the workpiece material, tool geometry, 
and, to a lesser extent, the cutting speed (peripheral velocity of 
the rotating workpiece) and chip thickness. 
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𝐹𝐹 = 𝐾𝐾𝑠𝑠𝐴𝐴 = 𝐾𝐾𝑠𝑠𝑏𝑏ℎ𝑚𝑚    (1) 

 
The normal and tangential components, Fn and Ft, can be 

expressed using F and the force angle: 
 

𝐹𝐹𝑛𝑛 = cos𝛽𝛽 𝐹𝐹 = cos𝛽𝛽 𝐾𝐾𝑠𝑠𝑏𝑏ℎ𝑚𝑚 = 𝑘𝑘𝑛𝑛𝑏𝑏ℎ𝑚𝑚 and (2) 
 

𝐹𝐹𝑡𝑡 = sin 𝛽𝛽 𝐹𝐹 = sin 𝛽𝛽 𝐾𝐾𝑠𝑠𝑏𝑏ℎ𝑚𝑚 = 𝑘𝑘𝑡𝑡𝑏𝑏ℎ𝑚𝑚,  (3) 
 
where the cutting force coefficients, kn and kt, are introduced 
which incorporate both Ks and β. A common approach used to 
characterize these process dependent values is to prescribe 
known cutting conditions and measure the force components 
directly. 
 

Fig. 1. Orthogonal cutting operation showing the cutting force with its normal 
and tangential components. 

 

Fig. 2. Description of regenerative chatter in turning. Initial tool deflections 
are copied onto the workpiece surface and are encountered in subsequent 

revolutions. This varies the chip thickness and cutting force which, in turn, 
affects the resulting tool deflections. 

The cutting force causes deflections of the cutting tool. 
Because the tool has stiffness and mass, it can vibrate. If the 
tool is vibrating as it removes material, these vibrations are 
imprinted on the workpiece surface as a wavy profile. Figure 2 
shows an exaggerated view, where the initial impact with the 
workpiece surface causes the tool to begin vibrating and the 

oscillations in the normal direction to be copied onto the 
workpiece. When the workpiece begins its second revolution, 
the vibrating tool encounters the wavy surface produced during 
the first revolution. Therefore, the chip thickness at any instant 
depends both on the tool deflection at that time and the 
workpiece surface from the previous revolution(s). Vibration 
of the tool therefore leads to a variable chip thickness which, 
according to Eq. 1, yields a variable cutting force since the 
force is proportional to the chip thickness. The cutting force 
governs the current tool deflection and, subsequently, the 
system exhibits feedback. 

From a modeling standpoint, this “regeneration of 
waviness” appears as a time-delayed term in the chip thickness 
equation. Figure 3 shows an unwrapped view of the turning 
operation, where the surface on the left was produced in the 
previous revolution and the surface to the right of the tool 
(offset by the mean feed per revolution) was just cut away by 
the oscillating tool. Only the vibrations in the normal direction, 
y (positive direction out of the cut), are considered here because 
they have the most direct influence on the chip thickness. 
 

Fig. 3. Depiction of turning where the surface from the previous revolution, 
shown to the left of the tool, is removed by the vibrating cutter to produce a 

new wavy surface to the right of the tool. 

 

Fig. 4. The figure demonstrates the instantaneous chip thickness calculation. 
It depends on the mean feed per revolution, the current deflection, and the 
vibration during the previous revolution of the workpiece (to the left of the 

tool). 

The time dependent, instantaneous chip thickness, h(t), is 
determined using Eq. 4. It is seen that larger positive vibration 
during the previous revolution, y(t – ), where  is the time for 
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one rotation, gives an increased chip thickness (i.e., less 
material was removed so the current chip is thicker). Larger 
positive current vibration, y(t),  on the other hand, yields a 
thinner chip; see Fig. 4. 
 

ℎ(𝑡𝑡) = ℎ𝑚𝑚 + 𝑦𝑦(𝑡𝑡 − 𝜏𝜏) − 𝑦𝑦(𝑡𝑡)   (4) 
 

 

 Fig. 5. The surface waviness between revolutions is in phase. Negligible chip 
thickness variation is obtained. 

 

Fig. 6. Less favorable phase relationship between revolutions yields 
significant chip thickness variation. 

The relative phasing between the surface waviness from one 
pass to the next determines the level of force variation and 
whether the operation is stable or unstable (chatter occurs). 
Figures 5 and 6 show two possibilities. In Fig. 5, the wavy 
surfaces between two revolutions are in phase. Therefore, even 
though vibration is present during material removal, the chip 
thickness variation (vertical distance between the two curves) 
is negligible and there is no appreciable force variation. This 
enables stable cutting at larger chip widths. Considering that 
the tool tends to vibrate at its natural frequency, it is intuitive 
that matching the workpiece rotating frequency (spindle speed) 
to the tool’s natural frequency will lead to this preferred “in 
phase” situation. However, this is counter-intuitive based on a 
traditional understanding of resonance, where driving the 

system at its natural frequency is typically avoided. Figure 6 
shows a less favorable phase relationship where there is 
significant variation in the chip thickness. This leads to 
unstable cutting at smaller chip widths than the previous case 
due to the force variations and subsequent tool deflections. 

Depending on the feedback system “gain”, or chip width b, 
and spindle speed, , the turning operation will either be stable 
or exhibit chatter, which causes large vibrations and forces and 
leads to poor surface finish and, potentially, tool/workpiece 
damage. In stable machining, the vibrations diminish from 
revolution to revolution. In unstable machining, the vibrations 
grow from revolution to revolution until limited in some way. 
Surprisingly, the vibrations may become large enough that the 
tool jumps out of the cut, losing contact with the workpiece. 
The vibrations in unstable cutting may be at least as large as the 
chip thickness and it is not surprising that these large vibrations 
may result in damage to the machine, tool, and workpiece. The 
governing relationships for this behavior are provided in Eqs. 
5 through 7 [26]. In these equations, blim is the limiting chip 
width to avoid chatter, fc is the chatter frequency (should it 
occur), FRF is the frequency response function that describes 
the tool’s dynamic response, N is the integer number of waves 
of vibration imprinted on the workpiece surface in one 
revolution, and 𝜀𝜀2𝜋𝜋 is any additional fraction of a wave, where  
is the phase (in rad) between current and previous tool 
vibrations. 
 

𝑏𝑏𝑙𝑙𝑙𝑙𝑙𝑙 = −1
2𝐾𝐾𝑠𝑠 cos𝛽𝛽𝑅𝑅𝑅𝑅[𝐹𝐹𝐹𝐹𝐹𝐹]

    (5) 
 

𝑓𝑓𝑐𝑐

= 𝑁𝑁 + 𝜀𝜀

2𝜋𝜋     (6) 
 

𝜀𝜀 = 2𝜋𝜋 − 2 tan−1 (𝑅𝑅𝑅𝑅[𝐹𝐹𝐹𝐹𝐹𝐹]𝐼𝐼𝐼𝐼[𝐹𝐹𝐹𝐹𝐹𝐹])   (7) 
 

3. Artificial neural networks 

The machine learning approach applied here for chatter 
prediction follows the supervised learning model, where the 
learning algorithm uses known input-output pairs for training. 
Once trained, the model can be used to predict outputs for new 
input data. When the output (typically discrete values) is used 
to create categories or classes, the problem is called a 
classification problem. When the output is a real, continuous 
value (or values), it is a regression problem. Since chatter 
prediction involves predicting whether a given set of input 
variables (spindle speed, , and limiting chip width, blim) leads 
to chatter or not, a binary classification problem is to be solved. 
It is also supervised since the prediction is based on pairs of 
values (, blim) for which the stability is known a priori.  
Furthermore, the model developed in this paper applies an 
ANN. An overview of ANNs is presented in the following 
paragraphs. 

ANNs consist of a collection of basic units called neurons 
arranged in layers (Fig.7). The first (left) layer is the input layer 
and the last (right) layer is the output layer. The layers in 
between are hidden layers.  A neural network can consist of no 
hidden layers or one or more hidden layers. In a feedforward 
neural network, the neurons in one layer are connected to the 
neurons in the next layer and the information flows forward 
from the input to the output through the hidden layers. When 
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there are many hidden layers, the network is called a deep 
neural network (DNN). The connections between the neurons 
are called the synapses. A neuron, the basic building block of 
ANNs, consists of a set of input values , 1ix i n  , a set of 
weights , 1iw i n  , and a transfer (or activation) function, f 
(see Fig. 8). A linear transformation consisting of the weighted 
sum of all the inputs i iw x   and a bias, b, is calculated as: 

 

1

n

i i
i

z b w x


       (8) 

 
for each neuron. The output, h, is calculated from this neuron 
through the (usually) nonlinear transfer function, f(z). 
Typically, each neuron in a given layer has the same transfer 
function and for each neuron, i, in that layer, the output is 
calculated as hi = f(zi), where zi calculated using Eq. 8. The 
outputs serve as the inputs for each of the neurons in the next 
layer, which can use a different or the same transfer function. 
This process is continued until the output layer is reached 
where the neurons compute the output variables , 1iy i p  , 
(p is the number of outputs). For a binary classifier, there is 
usually only one neuron in the output layer and therefore p is 
taken to be unity. However, two neurons can also be used for 
binary classification.  
 

 
Fig. 7. An example of an artificial neural network (ANN). This ANN has four 

inputs (features), one hidden layer with three neurons, and two outputs. 
 

 

Fig. 8. A single neuron consists of the inputs xi, the weights wi, and the 
transfer function f(z), which produces the scalar value h. Note that z is defined 

with the bias b absorbed into the summation by setting x0 = 1 and w0 = b. 

In supervised learning, the training data (input data and the 
corresponding output data) is used to train the ANN model. The 
training starts with an initial assumption on the weights wi. The 
input data is processed by the ANN and output is predicted. The 
error between the predicted outputs and the known outputs is 
calculated using a cost (or error) function which can be the sum 
of the squares of the errors between predicted and observed 

outputs, for example. Since the predicted values depend on the 
weights and biases, it is clear that the error function, E, is also 
a function of the weights and biases for a given set of training 
data, i.e., ( , )iE E w b . By absorbing the bias b into the 
weights as an additional parameter, E can be assumed to be a 
function of only the weights wi. If the error is not acceptable, 
the weights are updated through various methods. One 
approach is the gradient descent method, where the weight 
updates are computed using the derivatives of the error function 
with respect to the weights: 

 

i i
i

Ew w
w

 
 


.     (9) 

 
In Eq. 9,  is the learning rate that is used to control the 
magnitudes of the corrections applied to wi. Too large a value 
of  will lead to convergence issues and too small a value 
increases the computational time and cost. The updated weights 
are again used for predictions and calculating the error in 
predictions. This process is repeated until the error is less than 
a preselected value or a maximum number of iterations has 
been reached. Although Eq. 9 captures the essence of weight 
updates, in a typical ANN with multiple hidden layers, the 
gradient calculation is quite complicated and involved. The 
backpropagation algorithm may be used to compute these 
gradients. In the standard backpropagation algorithm, the 
learning rate is kept constant. A modification of this algorithm, 
called the resilient backpropagation algorithm, uses separate 
learning rates for each weight and, in addition, these rates can 
be altered during the training process to accelerate the 
convergence. Furthermore, the adjustments to weights do not 
include the partial derivatives of the error function with respect 
to weights. Instead, only the signs of the derivatives are used in 
place of the derivatives [27]. In the present work, the resilient 
backpropagation algorithm was used for updating the weights. 

When the training is complete, the performance of the 
model is evaluated using test data with known outputs. 
Additional cross-validation methods are also used to further 
evaluate the model performance. If the predictions from the test 
data and cross-validations are satisfactory, the ANN model is 
used for predictive purposes on new sets of input data. 

4. ANN model for chatter prediction 

In this work the R neural net package, neuralnet [27], was 
used to build the ANN model. The input parameters for the 
neural network were the spindle speed and limiting chip width; 
see Fig. 9. The data set for training and testing was obtained 
from the stability algorithm described in section 2. The data set 
was generated by considering random values for the pairs (, 
blim) in the range of 1000 rpm to 4000 rpm and 0 mm to 2.5 
mm. For each set of values, the cut was labeled as stable or 
unstable (chatter) using the stability limit. A total of 201 points 
were generated this way. The distribution of these points is 
shown in Fig. 10. For training the ANN model, the data was 
first rescaled using the min-max method. The values, x, for 
each of the inputs was mapped to the range [0, 1] through the 
transformation ( ) / ( )min max minx x x x  . Since there were no 
outliers in the input data, this rescaling method was acceptable. 
The normalized data was separated (randomly) into training 
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and test data sets using an 80:20 ratio. This was determined to 
be the most reasonable split after attempting different 
proportions of training and test data. Thus, the training set 
consisted of 160 points, while the test set contained 41 points. 
 

 

Fig. 9. The artificial neural network architecture proposed for the chatter 
stability problem. 

 

 

Fig. 10. The data used for training (top) and testing (bottom) the neural 
network model. 

The ANN consisted of one hidden layer with four neurons 
(nodes); see Fig. 9. The input layer consisted of two input 
neurons while the output layer consisted of one output neuron. 
The output was the probability of stability, p(x), defined by p(x) 
= {Y = 1|X}, where X = {, blim} and Y = 1 corresponded to a 
stable cut. If p was less than 0.5, the cut was considered 
unstable and, when p  0.5, the cut was considered stable. The 
activation function for both the hidden layer and output layer 
was the logistic function. The error function was the sum of 
squared errors, E, given by: 

 
2

1
( )

n

i i
i

E y y


  ,    (10) 

 
where iy  are the target outputs, yi are the predictions, and n is 
the total number of inputs. The other option available in the 
neuralnet package for the error function is the cross-entropy 
function. Here, the synapse weights are updated using the 
default resilient backpropagation algorithm. As mentioned 
previously, this algorithm uses a separate learning rate for each 
of the weights and the rates are automatically adjusted by the 
algorithm depending on the behavior of the error function. 
Since the weights are initially randomly assigned, the ANN 
model can be trained repetitively in order to minimize E. In the 
present work, the model was trained five times and the model 
parameters with the least error were selected. The training 
process was assumed complete when the absolute partial 
derivatives of the function with respect to the weights were less 
than 0.05 (threshold value). The training and test data is 
displayed in Fig. 10; the ANN model with the least error is 
shown in Fig. 11. The figure also displays the synapse weights. 
The weights range from approximately -15 to 67.  
 

Fig. 11. ANN model based on the training dataset. 

 

Fig. 12. Confusion matrix for the ANN model predictions on the test data. 

The performance of the ANN model was evaluated using 
the test data set. The confusion matrix for the predictions for 
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the test data set is shown in Fig. 12. The ANN model predicts 
38 (17 true positives and 21 true negatives) out of 41 
observations correctly with an accuracy rate of 92.6%. 

The ANN decision boundary and analytical stability limit 
obtained from the section 2 analysis are displayed in Fig. 13. 
The comparison demonstrates that the smaller lobes are not 
accurately modeled by the ANN decision boundary. However, 
the largest lobe is captured very well. This can be explained by 
noting that the complete data set used for the neural network 
model has more points distributed around the largest lobe and 
few points near the smallest lobes. In fact, as can be seen in Fig. 
13, there are almost no points near the first two lobes. In spite 
of this, the ANN decision boundary captures the smaller lobes 
in an average sense. A refined distribution of the data around 
the lobes would provide improved results. 

 
 

Fig. 13. (Top) ANN decision boundary. (Bottom) Stability limit from the 
section 2 analysis. The vertical axis in both the figures is the limiting chip 

width in mm and the horizontal axis is the spindle speed in RPM. 

To further evaluate the performance of the ANN model, a 
10-fold cross-validation analysis was performed on the 
complete data set. In this approach, the data was randomly 
divided into 10 subsets of approximately equal size. One of the 
10 subsets was taken to be the test set, while the remaining nine 
sets were used for training. The accuracy of the trained model 
was predicted using the test set. This process was repeated 10 
times by selecting a different subset as the test set and the 
remaining nine subsets as the training set each time. This 
ensured that each observation was part of at least one test set. 
As before, for each repetition, the training process was carried 
out five times with different initializations of the synapse 
weights and the model with the least error was chosen for 
predictions on the test set. The 10-fold validation test and the 

corresponding accuracy rates are shown in Figs. 14 and 15. It 
is observed that the accuracy rate is high for almost all the cases 
with the mean rate being 0.916 or 91.6%, which is comparable 
to the accuracy rate of the ANN model. 

The generalized weights (GW) are plotted against the 
normalized values of b and  in Fig. 16. These quantities, 
defined by [28]: 

 
( )

1 ( )i
i

p xw
x p x
 

    
,    (11) 

 
characterize the sensitivity of the log odds (the term in the 
square brackets) to the input variables. The figures show these 
weights for all the input values in the training set. The variance 
of the weights in each case is quite high indicating that the two 
input variables have a strong, nonlinear effect on the ANN 
model.  An interesting point to be made from these plots is that, 
overall, b has a negative effect on the model while  has a 
mostly positive effect. 
 

 

Fig. 14.  Schematic of the 10-fold cross validation method.  

5. Conclusions 

This paper provides an analysis of the application of the 
artificial neural network (ANN) to modeling stability behavior 
in turning. The analytical stability limit is used to generate a 
data set that trains the ANN. It is observed that the number and 
distribution of training points influences the ability of the ANN 
model to capture the smaller, more closely spaced lobes that 

Fig. 15. Accuracy rate for each fold as a test data set with the 10-fold 
cross-validation approach. 



892	 Harish Cherukuri  et al. / Procedia Manufacturing 34 (2019) 885–892
8 Schmitz / Procedia Manufacturing 00 (2019) 000–000 

occur at lower spindle speeds. Overall, the ANN is successful 
(>90% accuracy) at predicting the stability behavior after 
appropriate training. 
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