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Monte Carlo evaluation of periodic error uncertainty
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bstract

This paper presents a single analytical expression for the displacement recorded using a polarization-coded, heterodyne interferometer in terms of
he various uncertainty contributors, including periodic error and other phase nonlinearities, Abbe error, cosine error, deadpath error, environmental

rror, interferometer thermal effects, and wavelength stability. The displacement equation is based on the periodic error expression reported by
osijns et al. Monte Carlo simulation is applied to determine the first and second order periodic error uncertainty. The Monte Carlo simulation is

hen extended to include the other uncertainty contributors included in the analytical displacement equation.
2006 Elsevier Inc. All rights reserved.
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. Introduction

Periodic error, or nonlinearity, in displacement measuring
nterferometry is a well-known phenomenon. It has been shown
y multiple authors that cyclical, or non-cumulative, errors
re superimposed on the measurement signal due to non-ideal
erformance of the interferometer components and imperfect
lignment of the laser source and optics [1–31]. Errors of both
ne (first order) and two (second order) cycles per displacement
ringe have been observed.

Evaluation of the overall uncertainty in displacement measur-
ng interferometry has traditionally followed the “error budget”
echnique where the individual error contributors are individ-
ally determined (either through statistical or other analyses)
nd then combined, often using a root sum squares, or RSS,
pproach [32,33]. These contributors, which may include Abbe
rror, cosine error, deadpath error, environmental error, air (or
ther medium) turbulence, beam shear, thermal effects, electron-
cs linearity, laser wavelength stability, and periodic error, are
abulated so that primary offenders may be identified and com-
ensated or corrected [34]. This is an effective and time-proven

ethod. However, to the authors’ knowledge, a single analytical

xpression that describes displacement, l, in terms of the multi-
le inputs that determine its value has not been presented. This
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recludes the use of a Taylor series expansion of the measurand
35,36] and/or Monte Carlo simulation to evaluate the combined
tandard uncertainty, uc(l), for the measurement result.

In this work we augment the analytical periodic error expres-
ion presented by Cosijns et al. [37] with terms that describe
he other error sources listed previously to arrive at a single
xpression for displacement. We then propagate uncertainty
ontributors through this equation to determine the combined
tandard uncertainty, uc, in the measurement result. The paper
s organized as follows: first, the Cosijns et al. expression is pre-
ented (Section 2) and example error distributions are shown
or various periodic error conditions; second, a single pass, het-
rodyne interferometer setup, designed to isolate periodic error
s the primary uncertainty source, is detailed (Section 3) and
easurement results are provided; finally, the additional uncer-

ainty contributors are appended to the displacement equation
nd the uncertainty evaluation is demonstrated using Monte
arlo simulation (Section 4).

. Periodic error formulation

In this paper we focus on Michelson-type interferometers
ith a two frequency laser source (i.e., heterodyne interfer-

metry). In these systems, imperfect separation of the two
ight frequencies into the measurement (moving) and reference
fixed) paths produce the first and second order periodic errors.
he two frequencies are typically carried on collinear, mutually

mailto:tschmitz@ufl.edu
dx.doi.org/10.1016/j.precisioneng.2006.10.001
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rthogonal, linear polarizations in a method referred to as polar-
zation coding. Unwanted leakage of the reference frequency
nto the measurement path, and vice versa, may occur due to

number of influences, including non-orthogonality between
he ideally linear beam polarizations, elliptical polarization of
he individual beams, non-ideal performance of the optical
omponents, and/or mechanical misalignment between the inter-
erometer elements (laser, polarizing optics, and targets). In a
erfect system, a single frequency would travel to a fixed target,
hile a second, single frequency traveled to a moving target.

nterference of the combined signals would yield a perfectly
inusoidal trace with phase that varied, relative to a reference

hase signal, in response to motion of the moving target. How-
ver, the inherent frequency leakage in actual implementations
roduces an interference signal which is not purely sinusoidal
nd leads to periodic error in the measured displacement.
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The Cosijns et al. analysis propagates: ellipticity of the two
nominally linear) polarizations; non-orthogonality between the
wo polarizations; rotation of the polarization axes relative to the
olarizing beam splitter (which ideally separates the collinear
requencies into the measurement and reference paths); trans-
ission coefficient variations for the polarizing beam splitter;

otation of the measurement polarizer, which causes interference
f the measurement and reference beams, relative to its nominal
5◦ orientation (for vertical and horizontal source polarizations),
hrough the interference equations to arrive an expression for the
eriodic phase error,�φpe. See Eq. (1), where θ is the deviation
f the polarizer angle from 45◦ and the variables A–F are defined
n Eqs. (2)–(7).
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Fig. 1. (Top) periodic error as a function of nominal displacement for
dε1 = dε2 = 0,α= −β = 2◦, ξ =χ= 1, θ = 20◦,λ= 633 nm, and n = 1; (middle) spa-
tial Fourier transform of periodic error with the frequency axis normalized to
error order (i.e., 1 represents first order error); (bottom) distribution of periodic
error.
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and standard uncertainties, u(x), for each input x were calcu-
lated; see Table 1. The individual contributors were isolated
T.L. Schmitz, H.S. Kim / Precis

n these equations, dε1 and dε2 are the ellipticities of the two
ollinear beams (ideally zero), α and β are the orientation of
he two polarizations relative to the polarizing beam splitter
xes (together the two ideally zero angles determine both non-
rthogonality between the two polarizations and rotation of the
olarization axes relative to the polarizing beam splitter), ξ andχ
re the transmission coefficients for the polarizing beam splitter
ideally equal to one), and�� = 4�n ×�l/� is the phase change
ntroduced by a given displacement, �l (λ is the source wave-
ength and n is the refractive index for the propagating medium)
or a single pass configuration of the interferometer. The dis-
lacement error, �lpe, due to the periodic phase error (Eq. (1))
s given in Eq. (8).

lpe = �φpeλ

4πn
(8)

n example of the variation in periodic error with nominal dis-
lacement is provided in the top panel of Fig. 1. The conditions
re: dε1 = dε2 = 0, α= −β = 2◦, ξ =χ= 1, θ = 20◦, λ= 633 nm,
nd n = 1. It is seen that first order error dominates. This is high-
ighted by computing the spatial discrete Fourier transform and
ormalizing the frequency axis to error order. See the middle
anel, where the first and second order error amplitudes are
.95 nm and 0.15 nm, respectively, for the given conditions. The
istribution in error values (lower panel) was determined by
onte Carlo simulation. Because it is equally likely that dis-

lacement is recorded at any location along the measurement
ath in a typical measurement scenario, we described�l using a
niform distribution with a range from zero to λ and, in each iter-
tion of the Monte Carlo simulation (100,000 total), randomly
ampled�l to determine the nominal phase�φ. This value was
hen used to compute the periodic error for that iteration using
qs. (1)–(8). The strongly non-normal distribution seen in the

ower panel of Fig. 1 is obtained due to the high slopes around
ero values in the nearly sinusoidal error. The standard deviation
s 2.09 nm.

A second example is provided in Fig. 2. In this case, both
rst and second order error are significant for the conditions:
ε1 = dε2 = 0, α= −β = 20◦, ξ =χ= 1, θ = 2◦, λ= 633 nm, and
= 1. Their amplitudes are 2.56 nm and 6.74 nm, respectively.
he distribution is again non-normal, but now contains four
eaks rather than two due to the second order error contribution.
he standard deviation is 5.12 nm. Many other distributions are
ossible depending on the frequency mixing conditions.

To determine the periodic error uncertainty, we used Monte
arlo simulation. We selected this approach, rather than the first
rder Taylor series expansion method described in Refs. [35,36],
ecause the periodic error phase in Eq. (1) is identically zero
or ideal values of the input variables. Selection of ideal mean
alues presumes that all misalignments/imperfections have been
orrected to within the uncertainty limits (i.e., all known biases
ave been removed to within the applicable limits).

For demonstration purposes, we chose standard uncertainties

f u(dε1) = 0.1◦, u(dε2) = 0.1◦, u(α) = 2◦, and u(θ) = 2◦. Normal
istributions were assumed in all cases. The corresponding mean
alues were dε1 = dε2 = 0◦, α=β = 0◦, and θ = 0◦. The transmis-
ion coefficients, ξ and χ, are bounded by a maximum value of

b

ig. 2. (Top) periodic error for dε1 = dε2 = 0, α= −β = 20◦, ξ =χ= 1, θ = 2◦,
= 633 nm, and n = 1; (middle) spatial Fourier transform of periodic error;

bottom) distribution of periodic error.

. Therefore, we selected a uniform distribution with a range
f ±0.05 about a mean value of 0.95 for each.1 Uncertainties
n λ and n were not considered at this stage; they are treated in
ection 4 where the remaining displacement uncertainty contrib-
tors are added. Finally, we used λ= 633 nm and n = 1 and again
pplied a uniform distribution for �l with a range from zero to
. Results are provided in Fig. 3, which shows the distribution of
lpe values for the selected input uncertainties. The mean value

s zero and the standard deviation is 1.77 nm (100,000 itera-
ions). The reader may note that the distribution is non-normal,
ith a higher likelihood of obtaining zero error than a normal
istribution would suggest.

As an exercise, the products of the sensitivities, ∂�lpe/∂x,
y setting all uncertainties except the term in question equal

1 The standard deviation for this case is 0.05/
√

3 [36].
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Fig. 3. Histogram of �lpe values for normal distributions of dε1, dε2, α, β, and
θ
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with u(dε1) = u(dε2) = 0.1◦, u(α) = u(β) = u(θ) = 2◦ and zero mean values; and
niform distributions of ξ and χ with ranges of ±0.05 and mean values of 0.95.

o zero. Presumably, this would enable the individual contribu-
ors to be compared, similar to the error budget and analytical
rst order Taylor series approaches. However, as seen in the

able, the apparent individual contributions for ξ, χ, and θ

re zero. This is clearly not the case. Rather, these terms
re only zero for ideal mean values and no variation in all
ther inputs. For any other case, their contributions are non-
ero. This emphasizes the utility of using the Monte Carlo
echnique to simultaneously consider all uncertainties for this
valuation.

. Periodic error measurements

A photograph and schematic of the experimental setup are
rovided in Fig. 4. The orthogonal, linearly polarized beams
ith a split frequency of 3.65 MHz (Helium-Neon laser source)
rst pass through a half-wave plate. Rotation of the half-wave
late enables variation in the apparent angular alignment (about
he beam axis) between the polarization axes and polarizing
eam splitter. The light is then incident on a non-polarizing
eam splitter (80% transmission) that directs a portion of the

eam to a fiber optic pickup after passing through a fixed angle
heet polarizer (oriented at 45◦). The pickup is mounted on a
wo rotational degree-of-freedom flexure which enables effi-
ient coupling of the light into the multi-mode fiber optic.

able 1
pparent individual uncertainty contributors for �lpe

x̄ u(x) (∂�lpe/∂x)u(x) (nm)

ε1 0 0.1◦ 0.03
ε2 0 0.1◦ 0.03

0 2◦ 1.25
0 2◦ 1.25
0.95a 0.05/

√
3 0

0.95a 0.05/
√

3 0
0 2◦ 0

a The mean value was set equal to 1 when evaluating other inputs.
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his signal is used as the phase reference in the measurement
lectronics.

The remainder of the light continues to the polarizing beam
plitter where it is separated into its two frequency components
hat travel separately to the moving and fixed retroreflectors.

otion of the moving retroreflector is achieved using an air
earing stage. After the beams are recombined in the polarizing
eam splitter, they are directed by a 90◦ prism through a polarizer
ith a variable rotation angle. Finally, the light is launched into
fiber optic pickup. This serves as the measurement signal in

he measurement electronics (0.3 nm resolution for the single
ass configuration used in this study).

The intent of the setup design was to minimize other error
ontributors and enable variation in the periodic error nature (i.e.,
rst or second order) and amplitude. To isolate periodic error,

he setup was designed with zero dead path difference (i.e., the
istance between the polarization beam splitter and the moving
etroreflector was equal to the distance between the polarization
eam splitter and the fixed retroreflector at initialization) and
mall Abbe offset (25 mm). The measurement time (∼100 ms)
nd motion amplitude were kept small to minimize the contri-
ution of air refractive index variations due to the environmental
hanges [17]. Additionally, careful alignment of the air bearing
tage axis with the optical axis resulted in small cosine error and
eam shear.

Example comparisons between measurement results and the
osijns et al. model for constant velocity motions are provided

n Figs. 5 and 6. In both instances the periodic error content was
solated (for viewing purposes) by performing a least squares
inear regression and subtracting the best fit line. For Fig. 5, the
olarizer was rotated 39◦ from its nominal 45◦ orientation in
rder to provide a scenario with significant first order error. The
ther model parameters were: n = 1, λ= 633 nm, dε1 = dε2 = 0◦,
= −β = 1.5◦, and ξ =χ= 1. In Fig. 6, the half-wave plate was

djusted 10◦ from its nominal orientation (fast axis vertical).
n this case, both first and second order errors were present.
he model parameters were: n = 1, λ= 633 nm, dε1 = dε2 = 0◦,
= −β = 20◦,2 θ = 2◦, and ξ =χ= 1. Good agreement is seen.

n both cases, the phase measuring electronics used a sampling
requency of 312.5 kHz.

To evaluate the Monte Carlo approach to periodic error uncer-
ainty evaluation, two sets of measurements were performed.
irst, the polarizer angle was varied from −41◦ to +37◦ about

he nominal value and the first and second order errors identi-
ed using the Fourier transform approach described in Section
. Second, the half-wave plate angle was varied from −16◦
o +14◦ about its nominal value and the periodic error deter-

ined. These measurement results were compared to model
redictions using nominal input values: (1) Fig. 7 shows results
or the polarizer tests with n = 1, λ= 633 nm, dε1 = dε2 = 0◦,

= −β = 1.5◦, θ = −41◦ to +37◦, and ξ =χ= 1; (2) Fig. 8 displays

he half-wave plate results with n = 1, λ= 633 nm, dε1 = dε2 = 0◦,
= −β = −32◦ to +28◦, θ = 2◦, and ξ =χ= 1. These figures also

2 A 1◦ rotation of the half wave plate gives a 2◦ change in the linear polarization
ngle.
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Fig. 4. (Top) photograph of single pass, heterodyne inte

how mean values from Monte Carlo simulations, where the

onte Carlo results include one standard deviation (1σ) error

ars which reflect the input uncertainties identified in Table 2.
n the top panel of Fig. 7, good agreement is seen. Addition-
lly, for polarizer angles near the nominal value (axis value of

ig. 5. Measurement/model comparison for 39◦ polarizer misalignment—first
rder error dominates. Other model parameters were: n = 1, λ= 633 nm,
ε1 = dε2 = 0◦, α= −β = 1.5◦, and ξ =χ= 1.

a
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eter experimental setup; (bottom) schematic of setup.
re larger than the model values (squares). This trend matches
he experimental results (circles). In the bottom panel, reason-
ble agreement is observed, but the measured errors lie outside

ig. 6. Measurement/model comparison for 10◦ half-wave plate
isalignment—first and second order errors are present. Model param-

ters were: n = 1, λ= 633 nm, dε1 = dε2 = 0◦, α= −β = 20◦, θ = 2◦, and
=χ= 1.
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he 1σ error bars for small angles. These error levels approach
he resolution limit (0.3 nm), which was not considered as an
ncertainty contributor at this stage. In the top panel of Fig. 8,
he larger Monte Carlo mean errors near the nominal half-wave
late angle again more closely agree with experiment that the
odel values determined from mean inputs. In the bottom panel,

lthough the general trends agree, the experimental errors gen-

rally fall outside the Monte Carlo error bars. This could be the
esult of incorrect estimates of the mean input values or limita-
ions of the Fourier-based identification of error levels. In both
gures, it can be seen that the first order errors are generally

able 2
onte Carlo simulation input values for first and second order error uncertainty

valuation (all distributions were normal except for ξ andχwhich were uniform)

olarizer tests Half-wave plate tests

x̄ u(x) x̄ u(x)

ε1 0 0.1◦ 0 0.1◦
ε2 0 0.1◦ 0 0.1◦

1.5 1◦ −32 to +28◦ 1◦
−1.5 1◦ +32 to −28◦ 1◦

0.95 0.05/
√

3 0.95 0.05/
√

3
0.95 0.05/

√
3 0.95 0.05/

√
3

−41 to +37◦ 1◦ 2 1◦

e
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ig. 8. Comparisons between measurements (circles), model (squares), and
onte Carlo simulation (dotted line) for variable half-wave plate angle tests.

top) First order errors; (bottom) second order errors.

ore sensitive to input variations than the second order errors
from the relative sizes of the error bars).

The Monte Carlo simulations for first and second order uncer-
ainty evaluation in Figs. 7 and 8 required the following steps:
1) sample the input values for dε1, dε2, α, β, θ, ξ, and χ from the
redefined distributions (see Table 2); (2) calculate the periodic
rror profile using the Cosijns et al. model; (3) identify the first
nd second order periodic error amplitudes using the Fourier
ransform approach; (4) record the results for each simulation
teration. The mean values and standard deviations from all iter-
tions (10,000) were then taken to represent the best estimates of
he first and second order error expectation values and standard
ncertainties, respectively.

. Displacement combined standard uncertainty

In this section, additional displacement uncertainty contrib-
tors are described and the analytical displacement equation is
rovided.
.1. Abbe error

The potential for Abbe error exists whenever the mea-
urement beam is not collinear with the motion axis. The
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identified in Sections 4.1–4.7. To demonstrate the application of
Eq. (10), we completed a Monte Carlo simulation to determine
uc(l) for a range of displacements from 1 mm to 1000 mm. The
inputs are provided in Table 3 and the simulation results are

Table 3
Monte Carlo simulation input values for uc(l) evaluation

X x̄ u(x) Distribution type

dε1 0 0.1◦ Normal
dε2 0 0.1◦ Normal
α 1◦ 1◦ Normal
β −2◦ 1◦ Normal
ξ 0.95 0.05/

√
3 Uniform

χ 0.95 0.05/
√

3 Uniform
θ 2 1◦ Normal
�φelect 0 0 –
�φshear 0 0 –
λ 633 nm 6 × 10−6 nm Normal
P 101323.2 Pa 50/

√
3 Pa Uniform

T 20◦C 0.2/
√

3 ◦C Uniform
RH 50% 2/

√
3% Uniform

CO2 355 0 –
AO 0 mm 1 mm Normal
DP 50 mm 1 mm Normal
PD 1–1000 mm 0.3

√
3 nma Uniform

◦ ◦
T.L. Schmitz, H.S. Kim / Precis

elationship between the true, l, and measured, lm, displacement
s l = lm − AO tan(ψ), where AO is the Abbe offset between the
easurement beam and motion axis and ψ is uncompensated

otation about a line normal to the plane containing both the
easurement beam and motion axis.

.2. Cosine error

Cosine error is inherent to displacement measurement inter-
erometry because the beam and motion axis cannot be perfectly
ligned (i.e., some uncertainty always remains). The correspond-
ng true/measured displacement relationship is l = lm sec(γ),
here γ is the (positive or negative) angular misalignment.
he reader may note that, for any non-zero value of γ , the
easured displacement is always smaller than the true displace-
ent (i.e., a bias is introduced). The reported value, lr, can

e corrected for the bias using lr = l̄m(1 + 0.5u2(γ)), where
m is the expectation value of lm and u2(γ) is the variance of

[35].

.3. Deadpath error

Deadpath error occurs when the path lengths from the
olarizing beam splitter to the reference and measurement
argets are unequal at initialization and there is an uncompen-
ated change in the refractive index, �n, of the propagating
edium (we consider air here) during the measurement. The

rue/measured displacement relationship is l = lm −�n × DP,
here DP is the deadpath, or difference between the path

engths. The value of the refractive index for air may be
xpressed as a function of absolute temperature, T (K), pres-
ure, P (Pa), percent relative humidity, RH, and carbon dioxide
ontent, CO2 (ppm) as shown in Eq. (9) [17]. An evalua-
ion of this equation at conditions of standard temperature
nd pressure (20◦C and 101323.2 Pa) with 50% RH and an
ssumed CO2 level of 355 ppm yields an air index value of
.0002713.

= 1 + 271.8 × 10−6 P

101325

293.15

T

×
(

1 + 0.54

(
CO2 − 300

1 × 106

))
− 1 × 10−8 RH (9)

he reader may note that Eq. (9) does not implicitly consider
ir turbulence, which affects index through localized time-
ependent fluctuations in temperature and pressure [5,39]. This
ould be incorporated, however, by adding noise (in addition
o the variations caused by uncertainties in the temperature,
ressure, and relative humidity transducers) to the index values
ithin the Monte Carlo simulation.

.4. Environmental error
This error occurs when there is an uncompensated change
n index during a measurement. The error relationship is
= lm −�n × PD, where PD is the physical displacement of the
oving retroreflector after initialization. Resolution limits in the

C
γ

ψ

d
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isplacement measurement system can be conveniently included
s perturbations in PD.

.5. Interferometer thermal effects

Changes in temperature, and the associated thermal deforma-
ions, can lead to errors associated with the interferometer optics.
he corresponding relationship is l = lm −�T × Cth, where �T

s the change in temperature and Cth is a constant typically
upplied by the interferometer manufacturer.

.6. Other phase errors

In addition to periodic error, nonlinearities can also be intro-
uced by the phase measuring electronics, �φelect [30,38].
lso, a change in overlap between the reference and mea-

urement beams, or beam shear, during a measurement can
ead to errors due to the imperfect, non-planar wavefronts,
φshear.

.7. Wavelength stability

Variation in the source wavelength during a measurement
aturally leads to errors. The level of variation is small and pro-
ided by the laser manufacturer (typically in the form of low to
igh measurement time intervals).

The final displacement relationship is provided is Eq. (10).
his expression considers periodic error as well as the terms
th 25 nm/ C 1 nm/ C Normal
0 0.03◦ Normal
100 �rad 10 �rad Normal

a This uncertainty represents the resolution of the interferometer, which
epends on the phase measuring electronics and optical configuration.
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ig. 9. Monte Carlo simulation results for Eq. (10) using the data in Table 3.
top) Difference between mean Eq. (10) values and nominal displacement with
σ error bars; (bottom) uncorrected (squares) and corrected (circles) difference.

hown in Fig. 9.

= (�φ +�φpe +�φelect +�φshear)λ

4πn
cos(γ) + AO tan(ψ)

+�nDP +�nPD +�T Cth (10)

The top panel in Fig. 9 shows both the difference between Eq.
10) mean value and nominal displacement, l0, and the 1σ error
ars (100,000 iterations). As expected, the uncertainty increases
ubstantially over the 1 mm to 1000 mm interval. It is also seen
hat the mean displacement from Eq. (10) is consistently smaller
han the nominal value. This is caused by the single-sided cosine
rror distribution (note that the bias is present even though the
ean value of γ is zero). The bottom panel highlights this bias

squares) and also shows the bias removal using lr = l̄m(1 +
.5u2(γ)) (circles).

. Conclusions

This paper presents a single analytical expression for the
isplacement recorded using a polarization-coded, heterodyne
nterferometer in terms of the various uncertainty contributors.
hese include: (1) phase nonlinearities from non-orthogonality
etween the ideally linear beam polarizations, elliptical
olarization of the individual beams, non-ideal performance
f the optical components, and/or mechanical misalignment
etween the interferometer elements (which combine to give
rst and second order periodic errors), the phase measuring
lectronics, and beam shear; (2) Abbe error; (3) cosine error;
4) deadpath error; (5) environmental error; (6) interferometer
hermal effects; (7) wavelength stability. The displacement
quation is based on the periodic error expression reported by
osijns et al. Comparisons between this model and experiment

or a variety of frequency mixing conditions is provided; good

greement is observed. Monte Carlo simulation is applied to
etermine the first and second order periodic error bars. The
onte Carlo simulation is then extended to include the other

ncertainty contributors included in the analytical displacement

[

[
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quation. A numerical example demonstrates the well-known
osine error bias, as well as the correction of this bias using the
ariance in the misalignment angle.
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