
Downloaded F
Brian P. Mann1

Department of Mechanical and Aerospace
Engineering,

University of Missouri,
Columbia, MO 65203

e-mail: mannbr@missouri.edu

Keith A. Young
Advanced Manufacturing R&D,

The Boeing Company,
St. Louis, MO 62166

Tony L. Schmitz
Department of Mechanical and Aerospace

Engineering,
University of Florida,

Gainesville, FL 32611

David N. Dilley
D3 Vibrations, Inc.,
220 S. Main Street,

Royal Oak, MI 48067

Simultaneous Stability and
Surface Location Error
Predictions in Milling
Optimizing the milling process requires a priori knowledge of many process variables.
However, the ability to include both milling stability and accuracy information is limited
because current methods do not provide simultaneous milling stability and accuracy
predictions. The method described within this paper, called Temporal Finite Element
Analysis (TFEA), provides an approach for simultaneous prediction of milling stability
and surface location error. This paper details the application of this approach to a
multiple mode system in two orthogonal directions. The TFEA method forms an approxi-
mate analytical solution by dividing the time in the cut into a finite number of elements.
The approximate solution is then matched with the exact solution for free vibration to
obtain a discrete linear map. The formulated dynamic map is then used to determine
stability, steady-state surface location error, and to reconstruct the time series for a stable
cutting process. Solution convergence is evaluated by simply increasing the number of
elements and through comparisons with numerical integration. Analytical predictions are
compared to several different milling experiments. An interesting period two behavior,
which was originally believed to be a flip bifurcation, was observed during experiment.
However, evidence is presented to show this behavior can be attributed to runout in the
cutter teeth. �DOI: 10.1115/1.1948394�
1 Introduction
Increased industrial competition has driven the need for manu-

facturers to reduce costs and increase dimensional accuracy. The
optimization of manufacturing processes offers businesses sub-
stantial financial benefits and an opportunity to gain a competitive
edge. Predictive machining models can be applied to improve
process efficiencies, dimensional accuracy, and part quality. Dy-
namic models provide the ability to predict surface accuracy and
regions of stable cutting for a large combination of process pa-
rameters. This allows businesses to use analysis and/or simulation
for process optimization rather than costly trial and error.

Relative vibrations between a cutting tool and workpiece can
result in a machining process with surface location errors and
time-varying chip loads. Since cutting forces are approximately
proportional to the uncut chip area �1–4�, chip load variations
cause dynamic cutting forces which may excite the structural
modes of a machine-tool system resulting in unstable vibrations
known as chatter. Unless avoided, chatter vibrations may cause
large dynamic loads on the machine spindle and table structure,
damage to the cutting tool, and a poor surface finish �1,5�. There-
fore, it is desirable to avoid chatter vibrations. Even in the absence
of chatter, the accurate placement of a machined surface can be
complicated by dynamic motions which cause the machined sur-
face not to lie exactly at the commanded location �6�.

The research of Tlusty, Tobias, and Merrit provided mathemati-
cal process models to explain chatter, including the development
of stability lobe diagrams that are used to compactly represent
stability information as a function of spindle speed and depth of
cut �7–9�. A number of related efforts are listed in Refs. �7–27�,
which also include studies of nonlinear system behavior. The
equations describing the machining dynamics are in the form of
delay-differential equations, where the delay represents the time
between tool passages.
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Stability predictions from earlier analyses are only approximate
for the case of milling, since they rely on the fundamental as-
sumption of continuous cutting. In milling, the cutting forces
change direction with tool rotation and cutting is interrupted as
each tooth enters and leaves the workpiece. This leads to cutting
force coefficients which change from zero �when the tool is free�
to large numbers �when the tool is cutting�. While numerical
simulation can be used to capture the interrupted nature of the
milling process �1,19,28�, the exploration of parameter space by
time domain simulation is clearly inefficient. The focus of many
recent investigations has been the occurrence of new bifurcation
phenomena in interrupted cutting processes. In addition to Hopf
bifurcations, period-doubling bifurcations have been analytically
predicted in Refs. �3,29–31� and confirmed experimentally in
Refs. �3,31–33�.

In this paper, an approach for simultaneous predictions of mill-
ing stability and surface location error is generalized to account
for multiple modes along two orthogonal directions. The solution
technique, called Temporal Finite Element Analysis or �TFEA�,
forms an approximate solution by dividing the time in the cut into
a finite number of elements. To solve the interrupted cutting prob-
lem, the approximate solution during cutting is matched with the
exact solution for free vibration to obtain a discrete linear map.
Eigenvalues of the map are used to determine stability; fixed
points of the map are used for predicting the steady-state surface
location error and time series reconstruction. The analysis pre-
sented here avoids the need for time marching or iteration to de-
termine the important dynamic behavior of the milling process.

Results from three different experimental cutting tests are com-
pared to analytical predictions. Stability predictions for a flexible
tool and rigid workpiece are compared to a milling system with
two degrees of freedom. Surface location error predictions are
compared for the following experiments: �1� a flexible workpiece
and rigid tool; and �2� a rigid workpiece and flexible tool. In all
cases, the results from experimental cutting tests show strong

agreement with theoretical predictions.

005 by ASME Transactions of the ASME

9/2016 Terms of Use: http://www.asme.org/about-asme/terms-of-use



Downloaded F
2 Model Development

2.1 Modal Equations of Motion. In this section we seek to
generalize the TFEA method by analyzing a typical machine tool
structure with 2�r degrees of freedom �see Fig. 1�. The displace-
ment at discrete points along the structure is defined by vectors
x�t�= �x1�t�x2�t�¯xr�t��T and y�t�= �y1�t�y2�t�¯yr�t��T. A sum-
mation of forces produces the following equation of motion:

�Mxx Mxy

Myx Myy
��ẍ�t�

ÿ�t�
� + �Cxx Cxy

Cyx Cyy
��ẋ�t�

ẏ�t�
� + �Kxx Kxy

Kyx Kyy
��x�t�

y�t� �
= �Fx�t�

Fy�t�
� , �1�

where the cutting force vectors are written as Fx,y and the terms
Mx,y, Cx,y, and Kx,y represent the discrete system mass, damping,
and stiffness matrices. The spatial equation of motion can be writ-
ten as a modal matrix equation using the following linear coordi-
nate transformation:

x�t� = Uxqx�t�, y�t� = Uyqy�t� , �2�

where Ux and Uy are the structural mode shapes in the x- and
y-directions, respectively, which relate the spatial displacements
along the structure to the modal displacement vectors qx�t� and
qy�t�. Assuming uncoupled motions in the x- and y-directions
�Mxy =Myx=Cxy =Cyx=Kxy =Kyx=0�, the modal matrix equation
of motion becomes

�Ux
TMxxUx 0

0 Uy
TMyyUy

��q̈x�t�
q̈y�t�

� + �Ux
TCxxUx 0

0 Uy
TCyyUy

�
��q̇x�t�

q̇y�t�
� + �Ux

TKxxUx 0

0 Uy
TKyyUy

��qx�t�
qy�t�

� = �Ux
TFx�t�

Uy
TFy�t�

� .

�3�
Equation �3� can be written more compactly as

Mqq̈�t� + Cqq̇�t� + Kqq�t� = �Ux
TFx�t�

Uy
TFy�t�

� , �4�

where q�t�= �qx�t�Tqy�t�T�T is the 2r�1 modal displacement vec-
tor. For the peripheral end milling operations under consideration,
the cutting forces Fx1�t� and Fy1�t� can be assumed to act only at
the tool tip,

Fx�t� = �Fx1�t�0 ¯ 0�T, Fy�t� = �Fy1�t�0 ¯ 0�T. �5�
Assuming the structural modes have been unit normalized at the
tool tip, the right-hand side of Eq. �4� becomes

Fq�t� = �Ux
TFx�t�

Uy
TFy�t�

�
2r�1

= �Fx1�t� ¯ Fx1�t�Fy1�t� ¯ Fy1�t��T,

�6�

Fig. 1 Multiple degree of freedom schematic of the milling
process: „a… Spatial representation of machine tool structure at
discrete locations along the tool; and „b… Up-milling schematic
diagram of tool tip in-plane motion
and the modal equation of motion becomes
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Mqq̈�t� + Cqq̇�t� + Kqq�t� = Fq�t� . �7�

The formulation of Eq. �7� is significant in the sense that system
identification need only be performed at the tool tip to obtain an
adequate system model.

2.2 Cutting Force Model. The total cutting force in each
direction can be written as a summation over the total number of
cutting teeth N,

Fx1�t� = − �
p=1

N

gp�t��Ftp�t�cos �p�t� + Fnp�t�sin �p�t�� , �8�

Fy1�t� = �
p=1

N

gp�t��Ftp�t�sin �p�t� − Fnp�t�cos �p�t�� , �9�

where gp�t� acts as a switching function, it is equal to one if the
pth tooth is active and zero if it is not cutting �18,20�. The tan-
gential and normal cutting force components, Ftp�t� and Fnp�t�
respectively, are considered to be a function of cutting pressures
Kt and Kn, edge coefficients Kte and Kne �5�, the axial depth of cut
b, and the instantaneous chip thickness wp�t�,

Ftp�t� = Ktbwp�t� + Kteb , �10�

Fnp�t� = Knbwp�t� + Kneb , �11�

where wp�t� depends upon the feed per tooth, h, the cutter rotation
angle �p�t�, and regeneration in the compliant tool directions:

wp�t� = h sin �p�t� + �x1�t� − x1�t − ���sin �p�t�

+ �y1�t� − y1�t − ���cos �p�t� . �12�

Here �=60/N��s� is the tooth passing period, � is the spindle
speed given in �rpm�, and N is the total number of cutting teeth.

Substitution of Eqs. �10�–�12� into Eqs. �8� and �9� gives an
expanded expression for the cutting forces,

�Fx1�t�
Fy1�t� � = �

p=1

N

gp�t�b�h�− Ktsc − Kns2

Kts
2 − Knsc

� + �− Ktec − Knes

Ktes − Knec
�

+ �− Ktsc − Kns2 − Ktc
2 − Knsc

Kts
2 − Knsc Ktsc − Knc2 �

��x1�t� − x1�t − ��
y1�t� − y1�t − �� �	 , �13�

where s=sin �p�t� and c=cos �p�t�. Equation �13� can be written
more compactly by defining

Kc
*�t� = �

p=1

N

gp�t��− Ktsc − Kns2 − Ktc
2 − Knsc

Kts
2 − Knsc Ktsc − Knc2 � , �14�

fo
*�t� = �

p=1

N

gp�t��h�− Ktsc − Kns2

Kts
2 − Knsc

� + �− Ktec − Knes

Ktes − Knec
�	 .

�15�

Substituting these terms along with the normalized modes shapes
from Eq. �2� into Eq. �13� gives the cutting force in terms of the
modal displacements:

�Fx1�t�
Fy1�t� � = bKc

*�t��1 . . . 1,0 . . . 0

0 . . . 0,1 . . . 1
��qx�t� − qx�t − ��

qy�t� − qy�t − �� � + bfo
*�t� ,

�16�

Inserting Eq. �16� into Eq. �6� and reassembling the modal matrix

equation of motion gives
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Mqq̈�t� + Cqq̇�t� + Kqq�t� = bKc�t��q�t� − q�t − ��� + bfo�t� ,

�17�

where Kc�t� is a 2r�2r matrix and fo�t� is a 2r�1 vector.

3 Analysis Approach
The dynamic behavior of the milling process is described by a

time-delay differential equation which does not have a closed
form solution. Therefore, an approximate solution is sought to
understand the behavior of the system. The analysis approach
shown in this section formulates a discrete linear map by match-
ing an approximate solution for the cutting motion, obtained by
dividing the time in the cut into a finite number of elements, to the
exact solution for free vibration. As shown in previous Refs.
�31–36�, a convergence to the exact solution is obtained by simply
increasing the number of elements during the cutting time.

The formulated dynamic map is then used in three different
ways: �1� stability prediction from the magnitude of map charac-
teristic multipliers; �2� prediction of steady-state surface location
error from map fixed points; and �3� reconstruction of the stable
cutting motion time series. The analysis presented in this article
extends the previous stability and surface location error work
from Refs. �32,33,36� to account for the contribution of multiple
modes in two orthogonal directions.

3.1 Free Vibration. When the tool is not in contact with the
workpiece, the system is governed by the equation for free vibra-
tion,

Mqq̈�t� + Cqq̇�t� + Kqq�t� = 0. �18�
This equation can be rearranged into state-space form,

�q̇�t�
q̈�t�

� = � 0 I

− Mq
−1Kq − Mq

−1Cq
��q�t�

q̇�t� � �19�

where the 4r�4r state matrix in Eq. �19� will be denoted by G. If
we let tc be the time the tool leaves the material and tf be the
duration of free vibration, a state transition matrix ��=eGtf� can
be obtained that relates the state of the tool at the beginning of
free vibration to the state of the tool at the end of free vibration.

Fig. 2 Comparison of predicted stability boundaries with Eu-
ler Integration „dotted line… and TFEA „solid line…. Aluminum
cutting coeficients, listed in Section 4, were applied along with
the modal parameters for the 12.75 „mm… tool, listed in Table 1,
to create this diagram.
This equation is true for every period, such that for all n:
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�q�n��
q̇�n�� � = ��q��n − 1�� + tc�

q̇��n − 1�� + tc�
� . �20�

3.2 Vibration During Cutting. When the tool is in the cut,
its motion is governed by a time-delayed differential equation.
Since this equation does not have a closed form solution, an ap-
proximate solution for the modal displacement of the tool is as-
sumed for the jth element of the nth tooth passage as a linear
combination of polynomials �see Peters et al. �37��:

q�t� = �
i=1

4

a ji
n �i�� j�t�� . �21�

Here, � j�t�= t−n�−�k=1
j−1 tk is the “local” time within the jth ele-

ment of the nth period, the length of the kth element is tk, and the
trial functions �i�� j�t�� are cubic Hermite polynomials �35�.

Substitution of the assumed solution �Eq. �21�� into the equa-
tion of motion �Eq. �17�� leads to a nonzero error. The error from
the assumed solution is “weighted” by multiplying by a set of test
functions and setting the integral of the weighted error to zero to
obtain two equations per element �31,34,37–39�. The test func-
tions are chosen to be: �1�� j�=1 �constant� and �2�� j�=� j / tj

−1/2 �linear�. The integral is taken over the time for each ele-
ment, tj = tc /E, thereby dividing the time in the cut tc into E ele-
ments. The resulting two equations are



0

tj �Mq��
i=1

4

a ji
n �̈i�� j��p�� j�	 + Cq��

i=1

4

a ji
n �̇i�� j��p�� j�	

+ �Kq − bKc�� j����
i=1

4

a ji
n �i�� j��p�� j�	 + bKc�� j�

���
i=1

4

a ji
n−1�i�� j��p�� j�	 − bfo�� j��p�� j��d� j = 0, p

= 1,2, �22�

where Kc�� j� and fo�� j� have been used in place of the previously
defined Kc�t� and fo�t� to explicitly show their dependence on the
local time.

The modal displacement and modal velocity at tool entry into
the cut are specified by the coefficients of the first two basis func-
tions on the first element: a11

n and a12
n . The relationship between

the initial and final conditions during free vibration can be rewrit-
ten in terms of the coefficients as

�a11

a12
	n

= ��aE3

aE4
	n−1

, �23�

where E is the total number of elements in the cut. For the re-
mainder of the elements, a continuity constraint is imposed to set
the position and velocity at the end of one element equal to the
position and velocity at the beginning of the next element.

Equations �22� and �23� can be arranged into a global matrix
relating the coefficients in the current tooth passage to the coeffi-
cients in the previous tooth passage. The following expression is

for the case when the number of elements is E=3:
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�
I 0 0 0

N1
1 N2

1 0 0

0 N1
2 N2

2 0

0 0 N1
3 N2

3
��

a11

a12

a21

a22

a31

a32

a33

a34

�
n

= �
0 0 0 �

P1
1 P2

1 0 0

0 P1
2 P2

2 0

0 0 P1
3 P2

3
��

a11

a12

a21

a22

a31

a32

a33

a34

�
n−1

+ �
0

0

C1
1

C2
1

C1
2

C2
2

C1
3

C2
3

� , �24�

where the submatrices and elements of the submatrices for the jth
element are

N1
j = �N11

j N12
j

N21
j N22

j �, N2
j = �N13

j N14
j

N23
j N24

j � , �25�

P1
j = �P11

j P12
j

Pj Pj �, P2
j = �P13

j P14
j

Pj Pj � , �26�

Fig. 3 A comparison of steady-state displa
„solid line… and TFEA „dotted line…. Each row
a 1/tooth mark shown by a �, for the follow
=14300 „rpm…, b=0.3 „mm…‡; and „d… corresp
num cutting coefficients, listed in Sec. 4, we
the 12.75 „mm… tool, listed in Table 1, to crea
21 22 23 24
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Npi
j =


0

tj

�Mq�̈i�� j� + Cq�̇i�� j� + �Kq

− bKc�� j���i�� j���p�� j�d� j , �27�

Ppi
j =


0

tj

− bKc�� j��i�� j��p�� j�d� j , �28�

Cp
j =


0

tj

bfo�� j��pd� j . �29�

The dimensions for the global matrix equations are �4r+4rE
�4r+4rE�, which illustrates the size of the matrices will quickly
increase as the number of structural modes �r� becomes larger.

Equation �24� describes a discrete dynamical system, or map,
that can be written as

Aan = Ban−1 + C , �30�

or

an = Qan−1 + D . �31�

3.3 Stability Prediction. The stability of the dynamic map
equation and the system it describes is determined from the eigen-
values of the transition matrix Q=A−1B �31–33,36,40,41�. If the
magnitude of any eigenvalue is greater than one for a given
spindle speed ��� and depth of cut �b�, the milling process is
considered unstable. Two distinct types of instability are illus-

ment predictions between Euler Integration
ntains the x- and y-tool displacements, with
cutting parameters: „c… corresponds to †�
s to †�=10,700 „rpm…, b=3.0 „mm…‡. Alumi-
pplied along with the modal parameters for
this diagram.
ce
co
ing
ond
re a
te
trated by eigenvalue trajectories in the complex plane: �1� a flip
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bifurcation or period-doubling phenomenon occurs when a nega-
tive real eigenvalue passes through the unit circle; and �2� a Hopf
bifurcation occurs when a complex eigenvalue obtains a magni-
tude greater than one �31–33,36,41�. The stability predictions
from a simple time marching scheme, as described in Ref. �1�,
have been compared to TFEA stability predictions in Fig. 2. Since
the transition from stable to unstable cutting is not directly given
with time marching, the variance of the 1/tooth passage displace-
ments was applied �42�. Both numerical and analytical predictions
show strong agreement.

3.4 Surface Location Error. The accurate placement of a
surface is affected by imperfect spindle motions, thermal errors,
controller errors, friction in the machine drives, machine geomet-
ric errors, and relative dynamic motions between the tool and
workpiece �1,4,43�. This section presents a predictive method for
the steady-state error due to tool or workpiece vibrations. In pre-
vious literature �4,6,28,33,43–45�, this phenomena has been de-
scribed as the “surface location error” from process dynamics.

The TFEA method discretizes the continuous system equations
to form the dynamic map shown in Eq. �31�. The coefficient vec-
tor an identifies the x- and y-displacements at the beginning and
end of each element. Surface location error is given by the dis-
placement coefficient that corresponds to when the cutting teeth
produce the final surface. For a zero helix tool, this occurs at
cutter entry for up-milling and cutter exit for down-milling.

Stable milling processes have periodic cutting forces and peri-
odic solutions. The steady-state coefficients are found from the

*

Fig. 4 Schematic diagram of surface location error experi-
ments: „e… workpieces were mounted on a single degree of
freedom flexure and up-milled in the compliant workpiece and
rigid tool tests; and „f… down-milling was used in the compliant
tool and rigid workpiece tests.
fixed points �an� of the dynamic map:

450 / Vol. 127, AUGUST 2005
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an = an−1 = an
*. �32�

Substitution of Eq. �32� into Eq. �31� gives the fixed point map
solution or steady-state coefficient vector:

an
* = �I − Q�−1D . �33�

Since Q and D can be computed exactly for each spindle speed
and depth of cut, the fixed point displacement solution can be
found and used to specify surface location error as a function of
machining process parameters.

3.5 Time Series Reconstruction. The fixed point coefficient
vector �an

*� describes the tool-axis displacement and velocity at the
beginning and end of each element. In some instances, such as in
predicting the surface quality of a cutting process, it is desirable to

Fig. 5 Comparisons of TFEA fixed point predictions and mea-
sured surface location error „Œ indicates a measurement value…:
„g… Up-milling surface location error measurements for a single
degree of freedom flexure obtained with an eddy current dis-
placement transducer; and „h… Down-milling surface location
error experimental results for the 19.05 „mm… tool of Table 1.

Fig. 6 Down-milling experimental results vs TFEA stability
predictions for the 12.75 „mm… tool described in Table 1. The
symbols in the above diagram are as follows: „a… Œ is a clearly
stable case; „b… � is an unstable cutting test; and „c… � is a

borderline unstable case „i.e., not clearly stable or unstable….
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reconstruct the temporal field variables �i.e., displacement�. This
is performed by substituting the trial functions and fixed point
displacement coefficients into Eq. �21�. Two examples that com-
pare a simulated time series to the TFEA reconstructed time series
are shown in Fig. 3.

4 Experimental Verification
This section describes the results for three different experiments

performed to verify analytical models. Stability predictions, for a
compliant tool and rigid workpiece, are compared to experimental
cutting test. Surface location error predictions are compared to the
following experiments: �1� a flexible workpiece and rigid tool;
and �2� a rigid workpiece and flexible tool. Cutting coefficients in
the tangential and normal directions were determined during sepa-
rate cutting tests on a Kistler Model 9255B rigid dynamometer
�32,34�. The estimated cutting coefficient values for the aluminum
�7050-T7451� material were Kt=5.36�108 �N/m2�, Kn=1.87
�108 �N/m2�, Kte=2.9�103 �N/m�, and Kne=1.4�103 �N/m�.

4.1 Surface Location Error Experiments. The first series of
surface location error tests, developed to provide results for a
compliant workpiece and rigid tool, were performed on Cincinatti
Sabre 750 �commercial equipment is identified for completeness
and does not imply endorsement by the authors� machining center
using a single degree of freedom flexure �see Fig. 4�. The compli-
ant direction of the structure was oriented perpendicular to the
tool feed. A single flute, 19.05 �mm� diameter, carbide end mill
was used to up-mill both sides of aluminum �7050-T7451� test
specimens at a radial immersion of 14%. Each test specimen, of
length 100 �mm� and width 12.7 �mm�, was machined at a differ-

Fig. 7 Experimental down-milling measurement data for cases
A and B of Fig. 6. Each row contains a 1/tooth passage dis-
placement plot, a Poincaré section shown in delayed coordi-
nates, and a Power Spectral Density „PSD… plot where Œ marks
the tooth passage frequency. Case A †�=14625 „rpm…, b
=1.0„mm…‡ is an example of an unstable period-doubling phe-
nomenon or a flip bifurcation. Case B †�=12675 „rpm…, b
=1.5 „mm…‡ is an unstable Hopf bifurcation.

Table 1 Compliant

Diameter �mm� M �kg�

19.05 0.061
0

0
0.056

12.75 0.0436
0

0
0.0478
Journal of Manufacturing Science and Engineering
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ent spindle speed while holding the feed and depth of cut at con-
stant values of h=0.203 �mm/rev� and b=1.50 �mm� for all cut-
ting tests. Flexure displacements were measured with an eddy
current displacement transducer and a timing pulse from a laser
tachometer. Surface location error was inferred from the flexure
measurements and verified with measurements of the part surface
�46�. Experimental results have been overlaid onto fixed point
TFEA surface location error predictions in Fig. 5. The following
are the flexure modal parameters estimated from impact testing
�my�=0.692 �kg�, �cy�=7.216 �N s/m�, �ky�=3.01�106 �N/m�.
Additionally, it is important to note the stiffness of the cutting tool
was more than 20 times that of the flexure.

A second series of experiments, developed to provide results for
a compliant tool and rigid workpiece, were performed on a 5-axis
linear motor Ingersol machining center with a Fischer
40,000 �rpm�, 40 �kW� spindle. The cutting tool was a two flute,
19.05 �mm� diameter, 106 �mm� overhang, carbide end mill. The
test piece was first prepared by machining slots in an aluminum
�7050-T7451� block �see Fig. 4�. Finishing passes, performed at a
cutting speed with minimal predicted error ��=18,500 �rpm�, 5%
immersion�, were then used to size the island-shaped features to a
final reference dimension of d=19.05 �mm�.

Each side of the 250 �mm� long island was down-milled at a
5% radial immersion while keeping the feed and depth of cut
constant �h=0.191 �mm/tooth�, b=2.03 �mm��. Every island was
machined at a different spindle speed to illustrate the effect of
changing process parameters on the final surface accuracy. The
modal mass, damping, and stiffness parameters, shown in Table 1,
were determined using the structural testing methods outlined in
Refs. �47,48�.

4.2 Stability Tests. Stability cutting tests were performed on
a 5-axis linear motor Ingersol machining center with a Fischer
40,000 �rpm�, 40 �kW� spindle. A 12.75 �mm� diameter,
106 �mm� overhang, carbide end mill was used during all stability
tests �see modal parameters in Table 1�. An aluminum �7050-
T7451� block was down-milled at a 5% radial immersion and a
feedrate of h=0.127 �mm/tooth�; the spindle speed ��� and depth
of cut �b� were changed for each cutting test to determine the
onset of unstable vibrations. Since multiple cuts were performed
on the same workpiece, a clean- up pass was performed prior to
every recorded cut to create a reference surface.

Experimental stability results have been overlaid onto TFEA
stability predictions �see Fig. 6�. Tests were declared stable if the
1/tooth-sampled position approached a steady constant value
�31,32,34,36,38�. Raw displacement measurements, measured
19 �mm� from the tool tip, were periodically sampled at the tooth
passing frequency to create 1/tooth displacement samples and
Poincaré sections shown in displacement vs delayed displacement
coordinates; these plots are shown with the Power Spectral Den-
sity �PSD� of the continuously sampled displacement in Figs. 7
and 8 Unstable behavior, described as a flip bifurcation
�3,32,33,38�, is predicted when the dominant eigenvalue of the
TFEA model is negative and real with a magnitude greater than
one. Experimental evidence confirms this prediction where chatter
is a subharmonic of order 2 for both the x- and y-axes �see case A
of Fig. 7�. Unstable behavior predicted by complex eigenvalues
with a magnitude greater than one in the TFEA method corre-

l modal parameters

C �N s/m� K �N/m�

6 0
3.94

1.67�106

0
0

1.52�106

68 0
4.355

9.14�105

0
0

1.00�106
too

3.8
0

4.2
0

AUGUST 2005, Vol. 127 / 451

9/2016 Terms of Use: http://www.asme.org/about-asme/terms-of-use



tool oscillations at the cutter exit.
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sponds to a Hopf bifurcation �25,31,32,40�. In such cases �49�,
chatter vibrations are unsynchronized with tooth passage as shown
in case B of Fig. 7.

An interesting effect, not previously described in the literature
�31–34,36,38�, is shown by cases C–F of Fig. 8. While viewing
the frequency content of the PSD would lead to the determination
of stable behavior, a misleading stability assessment could be
made from viewing the 1/tooth passage displacements plots and
Poincaré sections �i.e., the displacement samples at each tooth
passage do not approach the same equilibria solution�. However,
the Poincaré sections and 1/tooth displacement plots do show the
tool oscillations exhibit periodicity as each of the individual cut-
ting teeth make the surface. Cases C–F also show the error be-
tween consecutive tooth passages is scaled by the depth of cut.
This behavior is a type of period-doubling, or subharmonic mo-
tion, that should not be mistaken for a predicted flip bifurcation
because the PSD shows the dominant spectral content comes from
the tooth passage frequency. The explanation for this phenomena
is that synchronous error motions from runout will cause tool
oscillation amplitudes to contain a 1/tooth perturbation. The re-
sults from Euler integration, which was used to verify the above
hypothesis for cases C–F, are shown in Fig. 9.

5 Summary and Conclusions
Time finite element analysis is capable of providing simulta-

neous stability and surface location error predictions for milling.
The TFEA method forms an approximate solution by dividing the
time in the cut into a finite number of elements. The approximate
solution is then matched with the exact solution for free vibration
to obtain a discrete linear map. The formulated dynamic map is

Fig. 8 Experimental down-milling measurem
contains a y-axis 1/tooth displacement plot,
nates, and a Power Spectral Density „PSD… p
Graphics show growth in the dynamic error
tool runout, for a fixed spindle speed and a
b=0.5 „mm…‡, D †�=10725 „rpm…, b=0.75 „m
=10725 „rpm…, b=1.5 „mm…‡.
ent data for cases „C,D,E,F… of Fig. 6. Each row
a Poincaré section shown in delayed coordi-

lot where Œ marks the tooth passage frequency.
between each tooth passage, associated with
n increasing depth of cut C †�=10725 „rpm…,
m…‡, E †�=10725 „rpm…, b=1.0 „mm…‡, F †�
then used in three different ways: �1� stability prediction from the
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Fig. 9 Euler integration results for down-milling cases
„C,D,E,F… of Fig. 6. The top graph shows two consecutive tooth
passages, marked with Œ, and a continuous time trace with the
following legend: „C, dotted line; D, dashed line; E, solid line; F,
dashed-dotted line…. The four bottom graphs are 1/tooth pas-
sage displacement samples showing the effect of runout on
Transactions of the ASME
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magnitude of map characteristic multipliers; �2� prediction of
steady-state surface location error from map fixed points; and �3�
reconstruction of the stable cutting motion time series. This paper
generalizes the TFEA solution procedure presented in previous
work to model multiple modes in two orthogonal directions.

In this work, stability and surface location error predictions are
compared to three different experimental cutting tests. Although
relatively good agreement is obtained between predictions and
experiment, the differences are considered to be related to: �1� the
accuracy of system identification methods in identifying modal
parameters; �2� the assumption that cutting forces linearly scale as
a function of the uncut chip area; and �3� the assumption that
measured cutting coefficients are unaffected by changes in spindle
speed. In addition, the differences between predictions and the
experiments for the rigid tool and compliant workpiece suffer
from the assumption of an infinitely rigid tool. Stability tests show
an interesting subharmonic motion, or period-doubling behavior,
that was observed during experiments. This behavior, examined
with a linear cutting force model, is not shown to destabilize tool
oscillations. However, it does add a 1/tooth passage perturbation
to the tool motions that may destabilize the system in the presence
of structural or cutting force nonlinearities. The physical explana-
tion for the observed behavior is shown to be the presence of
runout in the cutter teeth.
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