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ABSTRACT 
This paper describes the application of the random walk method for Bayesian inference to the identification of the process 
damping coefficient in milling. An analytical process damping algorithm is used to model the prior distribution of the 
stability boundary and it is updated using experimental results via Bayesian inference. The updated distribution of the 
stability boundary is used to determine the posterior process damping coefficient value. The method is validated by 
comparing the process damping posterior values to residual sum of squares results. A value of information approach for 
experimental test point selection is demonstrated which minimizes the number of experiments required for process damping 
coefficient identification. 
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INTRODUCTION 
 

The analytical stability lobe diagram offers an 
effective predictive capability for selecting stable chip 
width-spindle speed combinations in machining 
operations [1-4]. However, the increase in allowable chip 
width provided at spindle speeds near integer fractions of 
the system’s dominant natural frequency is diminished 
substantially at low spindle speeds where the stability 
lobes are closely spaced. However, the process damping 
effect can serve to increase the chatter-free chip widths at 
these low speeds. This increased stability at low spindle 
speeds is particularly important for hard-to-machine 
materials that cannot take advantage of the higher speed 
stability zones due to prohibitive tool wear at high cutting 
speeds. 

Many researchers have investigated process damping 
in turning and milling operations. Seminal studies were 
carried out by Wallace and Andrew [5], Sisson and Kegg 
[6], Peters et al. [7], and Tlusty [8]. It was demonstrated 
by this early work that interference contact between the 
flank of the cutting tool and wavy cutting surface 
contributes to the process damping phenomenon. 

The increased use of exotic, hard-to-machine alloys 
has driven recent efforts to accurately predict process 
damping behavior. Wu [9] developed a model in which 
plowing forces present during the tool-workpiece contact 
are assumed to be proportional to the volume of 

interference between the cutter flank face and undulations 
on the workpiece surface in turning. 
 Elbestawi and Ismail [10], Lee et al. [11], Huang and 
Wang [12], and Ahmadi and Ismail [13] extended Wu’s 
force model to milling operations. Budak and Tunc [14] 
and Altintas et al. [15] experimentally identified different 
dynamic cutting force models to include process 
nonlinearities and incorporate process damping. Tyler and 
Schmitz [16] described an analytical approach to establish 
the stability boundary that includes process damping 
effects in turning and milling operations using a single 
process damping coefficient.  

These studies described process damping as energy 
dissipation due to interference between the cutting tool 
clearance face and machined surface during relative 
vibrations between the tool and workpiece. It was shown 
that, given fixed system dynamics, the influence of 
process damping increases at low spindle speeds because 
the number of undulations on the machined surface 
between revolutions/teeth increases, which also increases 
the local slope of the wavy surface. This, in turn, leads to 
increased interference and additional energy dissipation. 

This paper extends the work performed by Tyler and 
Schmitz [16] and demonstrates a Bayesian updating 
method to efficiently identify the process damping model 
parameters. In the first section, process damping is 
described and the results presented in [16] are 
summarized. Next, the Bayesian updating method used to 
determine the process damping coefficient is described 
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and validated by comparing the results to those obtained 
using the residual sum of squares (RSS) method described 
in [16]. A value of information approach is then presented 
for experimental test point selection; this is followed by 
conclusions. 

 
PROCESS DAMPING DESCRIPTION 

 
To describe the physical mechanism for process 

damping, consider a tool moving on a sine wave while 
shearing away the chip [16]; see Fig. 1. Four locations are 
identified: 1) the clearance angle, γ, between the flank 
face of the tool and the work surface tangent is equal to 
the nominal relief angle for the tool; 2) γ is significantly 
decreased and can become negative (which leads to 
interference between the tool’s relief face and surface); 3) 
γ is again equal to the nominal relief angle; and 4) γ is 
significantly larger than the nominal value. 
 
 

 
 

Figure 1. Physical description of process damping. The 
clearance angle varies with the instantaneous surface 
tangent as the tool removes material on the sinusoidal 
surface. 
 

At points 1 and 3 in Figure 1, the clearance angle is 
equal to the nominal value so there is no effect due to 
cutting on the sinusoidal path. However, at point 2 the 
clearance angle is small (or negative) and the thrust force 
in the surface normal direction is increased. At point 4, on 
the other hand, the clearance angle is larger than the 
nominal and the thrust force is decreased. Because the 
change in force caused by the sinusoidal path is 90 deg 
out of phase with the displacement and has the opposite 
sign from velocity, it is considered to be a viscous 
damping force (i.e., a force that is proportional to 
velocity).Given the preceding description, the process 
damping force, Fd, in the y direction can be expressed as a 
function of velocity, y , chip width, b, cutting speed, V, 
and a process damping constant C [15]. See Eq. 1. 

 
bF C yd V

=−        (1) 

 
Because the new damping value is a function of both 

the spindle speed-dependent limiting chip width and the 
cutting speed, the b and Ω vectors must be known in order 

to implement the new damping value. This leads to a 
stability analysis that incorporates process damping. The 
following steps are completed for each lobe in the 
stability lobe diagram: 

1. the analytical stability boundary is calculated 
with no process damping (C = 0) to identify 
initial b and Ω vectors 

2. these vectors are used to determine the 
corresponding new damping coefficient vector 
(which includes both the structural damping and 
process damping, C ≠ 0) 

3. the stability analysis is repeated with the new 
damping coefficient vector to determine the 
updated b and Ω vectors 

4. the process is repeated until the stability 
boundary converges. 

The automated algorithm description and validation 
are described in [16]. Figure 2 illustrates a comparison 
between stability lobes diagram developed with and 
without process damping for a selected C value. 

 
 

 
 
Figure 2. Comparison between process damping stability 
lobes and traditional stability lobes. 
 
 
EXPERIMENTAL IDENTIFICATION OF 
PROCESS DAMPING COEFFICIENT 
 

In order to provide convenient control of the system 
dynamics, a single degree-of-freedom, parallelogram leaf-
type flexure was constructed to provide a flexible 
foundation for individual AISI 1018 steel workpieces; see 
Figure 3. Because the flexure compliance was much 
higher than the tool-holder-spindle-machine, the stability 
analysis was completed using only the flexure’s dynamic 
properties. A radial immersion of 50% and a feed per 
tooth of 0.05 mm/tooth was used for all conventional (up) 
milling tests. 

γ 
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An accelerometer (PCB Piezotronics model 352B10) 
was used to measure the flexure’s vibration during 
cutting. The frequency content of the accelerometer signal 
was used in combination with the machined surface finish 
to establish stable/unstable performance, i.e., cuts that 
exhibited significant frequency content at the flexure’s 
compliant direction natural frequency, rather than the 
tooth passing frequency and its harmonics, were 
considered to be unstable. 
 
 

 
 
Figure 3. Setup for milling stability tests. An 
accelerometer was used to measure the vibration signal 
during cutting. 
 
Process Damping Coefficient Identification 
 

A grid of test points at low spindle speeds was selected 
to investigate the process damping behavior. Based on the 
stable/unstable cutting test results, a single variable 
residual sum of squares (RSS) estimation was applied to 
identify the process damping coefficient that best 
represented the experimental limiting axial depth of cut, 
blim. This method is described in detail in [16].  

The results of the coefficient identification method are 
depicted in Figure4 for an18.54mm diameter, single-tooth 
inserted endmill with a 15deg relief angle. For the same 
milling conditions and system dynamics, the process was 
repeated for a 19.05 mm diameter, single-tooth inserted 
endmill with an 11deg relief angle. The stability boundary 
for this experiment is provided in Figure5. The 
corresponding process damping coefficients and cutting 
force coefficients in the tangential, t, and normal, n, 
directions (as defined in [18]) are provided in Table 1. For 
these tests, the insert wear was monitored using in-
process optical flank wear measurements and the insert 
was replaced if the wear exceeded a predetermined value. 

From Figures 4and 5 it can be observed that numerous 
cutting tests were used to identify the process damping 
coefficient for a particular cutting operation. This can be 
costly if there are multiple cutter geometries/workpiece 

materials for which stability boundaries need to be 
constructed. The following section details a Bayesian 
updating method for optimizing the experimental test 
selection and determining the process damping coefficient 
more efficiently. 
 
Table 1. Comparison of process damping and cutting 
force coefficients for different relief angle cutters. 
 

Relief 
angle (deg) C (N/m) Kt (N/mm2) Kn (N/mm2) 

15 2.5×105 2111.2 1052.6 
11  3.3 ×105 2234.9 1188.2 

 
 

 
 
Figure 4. Up milling stability boundary for 50% radial 
immersion, 18.54 mm diameter, 15deg relief angle, low 
wear milling tests using the 228 Hz flexure setup (C = 
2.5×105 N/m). 
 
 

 
 

Figure 5. Up milling stability boundary for 50% radial 
immersion, 19.05 mm diameter, 11deg relief angle, low 
wear milling tests using the 228 Hz flexure setup (C = 
3.3×105 N/m). 
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BAYESIAN UPDATING OF THE PROCESS 
DAMPING COEFFICIENT 
 

This section describes the Bayesian updating method 
for process damping coefficient identification. The 
updating was performed using the experimental results 
shown in Figures 4 and 5. In these figures, uncertainty 
exists in the true location of the stability boundary due to 
the uncertainties/assumptions in the process damping 
model and its parameters as well as factors that are not 
known. Therefore, the stability boundary may be modeled 
as a cumulative probability distribution rather than a 
deterministic boundary. From a Bayesian standpoint, an 
uncertain variable is treated as random and is 
characterized by a probability distribution. Bayesian 
inference is a normative and formal method of belief 
updating when new information (e.g., experimental 
stability results) is made available.  

The stability boundary prediction proceeds by 
generating n sample paths, each of which may represent 
the actual stability boundary with some probability. For 
the prior (or initial belief), each path is assumed to be 
equally likely to be the true stability limit. Therefore, the 
probability that each sample path is the true stability limit 
is 1/n. These sample paths are used as the prior in 
applying Bayesian inference.  

Bayesian updating was used to update the prior 
probability of sample paths given experimental result, and 
therefore, the process damping coefficient distribution. 
The entire methodology is defined as Bayesian updating 
using a random walk approach. Bayes’ rule is given by 
Eq. 2.  
 
P(path = true stability limit | test result) ∝  

P(test result | path = true stability limit) P(path = true 
stability limit)   (2) 

 
Here, P(path = true stability limit) is the prior 

probability that a selected path is the true stability limit; 
before any testing; it is equal to 1/n for any sample path. 
Also, P(test result | path = true stability limit) is the 
likelihood of obtaining the test result given the true 
stability limit. Their products yields the posterior 
probability that a selected path is the true path given the 
test result, P(path = true stability limit | test result). In 
practice, the probability of the test result, P(test result), 
may be used to normalize the posterior probability (by 
dividing the right hand side of Eq. 2 by this value). The 
sample paths are generated by randomly sampling from 
the prior distributions of the Kt, Kn, and C values and 
calculating a stability boundary for each set.  
 
Establishing the prior 
 

The random sample stability limits are generated by 
sampling from the prior distributions of Kt, Kn, and C. To 

demonstrate the approach, the 18.54 mm diameter, 11 deg 
relief angle tool is considered. The distribution of C is not 
known and has to be determined. The prior marginal 
distribution of C was selected to be the uniform 
distribution U(0.5×105, 10×105), where the values in the 
parenthesis specify the lower and upper limits on C, 
respectively. A uniform distribution denotes that it is 
equally likely for the value of C to be between 0.5×105 
N/m and 10×105 N/m and represents a non-informative 
case where little prior knowledge of the variable is 
available. Recall that the value of C for the 18.54 mm 
diameter, 15 deg relief angle tool was found to be 2.5×105 
N/m using the RSS method (see Figure 4). The values of 
Kt and Kn were calculated using a linear least squares fit 
to the mean forces in the x (feed) and y directions at 
different feed per tooth values. The mean and standard 
deviation of the force coefficients were calculated from 
three measurement sets. Based on this data, the marginal 
prior distributions of the force coefficients were Kt = 
N(2111.2, 78.3) N/mm2 and Kn = N(1052.6, 27.9) N/mm2, 
where N denotes a normal distribution and the terms in 
parenthesis specify the mean and standard deviation, 
respectively. The prior distributions of Kt, Kn, and C were 
assumed to be independent of each other. Random 
samples are drawn from the prior distributions and the 
stability limit was calculated for each sample. Figure 6 
shows the prior cumulative distribution function (cdf) for 
probability of stability. The maximum possible axial 
depth of cut possible was defined as 7.5 mm based on the 
tool’s cutting edge length. Figures7 and 8 show the 
probability of stability, p(stability), as a function of axial 
depth at 400 rpm and 1000 rpm, respectively. As 
expected, the probability of stability decreases at higher 
axial depths at a given spindle speed. For example, the 
probability of stability at 1 mm is 1 at both speeds, while 
the probability of stability for an axial depth of 4 mm is 
0.7 at 400 rpm and only 0.25 at 1000 rpm. 
 
Likelihood function 
 

The likelihood function describes how likely the test 
result is given that the sample path is the true stability 
limit. The likelihood function incorporates the uncertainty 
in the process damping model and, therefore, the stability 
boundary. To illustrate, consider an experiment completed 
at a spindle speed of 1000 rpm and an axial depth of 3 
mm. A stable result indicates that the test result is equally 
likely for all paths that have an axial depth greater than 3 
mm at 1000 rpm; they are assigned a likelihood of unity. 
On the other hand, a stable result at 3 mm is unlikely for 
all paths with an axial depth less than 3 mm at 1000 rpm. 
Note that the stable result is unlikely but not impossible 
for such paths, giving a nonzero likelihood. As shown in 
Figures 4 and 5, stable points may lie above the boundary 
and unstable points may lie below the boundary since 
there is uncertainty in the stability boundary location. 
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Note that the test result is increasingly unlikely for values 
less than 3 mm at 1000 rpm. For example, the test result is 
more unlikely for a path that has a value of 1 mm at 1000 
rpm relative to a path that has a value of 2.5 mm at 1000 
rpm. Therefore, the likelihood is a one-sided function. 
The likelihood function for a stable result is described by 
Eq. 3. 

 
   𝑙 = 𝑒

−(𝑏−𝑏𝑡𝑒𝑠𝑡)2

𝑘           𝑏 < 𝑏𝑡𝑒𝑠𝑡   (3) 
                            = 1                            𝑏 ≥ 𝑏𝑡𝑒𝑠𝑡 

 
The likelihood function is expressed as a non-

normalized normal distribution, where the parameter k = 
2σ2 and σ is the standard deviation in the axial depth due 
to the model uncertainty. The value of σ was taken to be 
0.5 mm. Similarly, an unstable cut indicates that test 
result is likely for all paths that have an axial depth value 
less than 3 mm at 1000 rpm, while it is unlikely for all 
paths that have a value greater than 3 mm. Although a 
Gaussian kernel is used in this study, it can be any 
function defined by the user based on his/her beliefs. 
 
 

 
 
Figure 6. Prior cdf of stability. The gray color scale 
represents the probability of stability for any spindle 
speed, axial depth combination (1/white is likely to be 
stable, while 0/black is unlikely to be stable). 
 

 
 
Figure 7. Probability of stability at 400 rpm. 
 
 

The likelihood function for an unstable result is 
provided in Eq. 4. Figure 9 displays the likelihood 
function for a stable result at 3 mm and Figure 10 shows 
the likelihood for an unstable result. 

 
𝑙 = 1                        𝑏 < 𝑏𝑡𝑒𝑠𝑡    (4) 

        = 𝑒
−(𝑏−𝑏𝑡𝑒𝑠𝑡)2

𝑘        𝑏 ≥ 𝑏𝑡𝑒𝑠𝑡 

 
 
Figure 8. Probability of stability at 1000 rpm. 
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Figure 9. Likelihood given a stable result at 3 mm. 

 
 

 
 
Figure 10. Likelihood given an unstable result at 3 mm. 
 
 
Bayesian updating 
 

The posterior probability of each path is obtained by 
multiplying the prior and likelihood and normalizing such 
that the sum of all probabilities is equal to unity. The 
posterior probabilities of sample paths are used to 
calculate the posterior distribution of the process damping 
and cutting force coefficients. The experimental results 
shown in Figure 4 were used to update the prior cdf of 
stability. For each experiment, the likelihood function was 
calculated using Eqs. 3 and 4 for a stable and unstable 
result, respectively. For multiple updates, the prior after 
the first update becomes the posterior after the second 
update and so on. Figure 11 shows the posterior cdf given 
the experimental results. Stable results are denoted as ‘o’ 
and unstable results as ‘x’. Figure 12 and Figure 13 shows 
the prior and posterior probability of stability at 400 rpm 
and 1000 rpm, respectively.  

 
 
Figure 11. Posterior cdf of stability. Stable results are 
denoted as ‘o’ and unstable results as ‘x’. 
 
 

 
 
Figure 12. Prior and posterior probability of stability at 
400 rpm. 
 
 
After each update, the posterior mean and standard 
deviation of C was calculated using Eqs. 5 and 6. 
 

𝜇𝐶 = ∑𝐶P(𝐶)      (5) 
 

𝜎𝐶 = ∑(𝐶 − 𝜇𝐶)2P(𝐶)    (6) 
 

In these equations, 𝜇𝐶 and 𝜎𝐶 are the mean and 
standard deviation of C, respectively, and P(C) is the 
probability of the sample stability limit. Recall that each 
sample stability limit is generated from a sample of {Kt, 
Kn, C}. The probability of a sample stability limit is equal 
to the probability that the sample is the true limit.  
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Figure 13. Prior and posterior probability of stability at 
1000 rpm. 
 
 

 
 
Figure 14. 𝜇𝐶 as a function of the number of tests. 
 

 

 
 
Figure 15. 𝜎𝐶 as a function of the number of tests. 
 
 

For the prior, each sample stability limit was assumed 
to be equally likely to be the true limit; this implies that 
each {Kt, Kn, C} sample was equally likely to be the true 
combination. The updated probability of each sample 
stability limit gives the updated probability of the 
underlying {Kt, Kn, C} sample to be the true combination. 
The updated posterior probabilities of sample paths were 
used to calculate the posterior mean and standard 
deviation of C using Eqs. 5 and 6, respectively. Figures 
14 and 15 show the progression of 𝜇𝐶 and 𝜎𝐶 as a function 
of the number of tests.  

The 𝜇𝐶 and 𝜎𝐶values after 48 tests were 2.49×105 N/m 
and 0.30×105 N/m, respectively. The value of C from the 
RSS method was 2.5×105 N/m. Figures14and 15show a 
convergence in 𝜇𝐶 and 𝜎𝐶 to the final values after the 18th 
test. The 𝜇𝐶 and 𝜎𝐶values after the 18th test were 2.41×105 
N/m and 0.34×105 N/m, respectively. This is due to the 
first unstable result at {400 rpm, 3 mm axial depth} 
preceded by a stable result at {400 rpm, 2.5 mm axial 
depth}. A stable result at a 2.5 mm axial depth and an 
unstable result at a 3 mm axial depth imply that there is a 
high probability that the true stability limit is between the 
two values. Also, note that the values remain 
approximately constant after subsequent updates.  

The updating procedure was repeated for the 19.05 
mm diameter, 11 deg relief angle tool. The prior marginal 
distribution of the force coefficients were Kt = N(2234.9, 
107.0) N/mm2and Kn = N(1188.2, 40.5) N/mm2.The prior 
marginal distribution of C was again selected to be 
uniform, U(0.5×105, 10×105) N/m, and the coefficients 
were assumed to be independent of each other. The 
updating procedure was performed using the experimental 
results shown in Figure 5. Figure 16 shows the posterior 
cdf given experimental results. Figures 17 and 18 show 
the progression of 𝜇𝐶 and 𝜎𝐶 as a function of the number 
of tests. The 𝜇𝐶 and 𝜎𝐶 values after 55 tests were 
3.63×105N/m and 0.38×105N/m, respectively. The C 
value from the RSS method was 3.3×105 N/m. 

These results show good agreement between the 
posterior mean C and the value obtained using the RSS 
method. The advantage of using Bayesian inference over 
RSS is that the uncertainty in C can also be calculated. As 
a result, the stability boundary is not deterministic, but 
characterized by a cumulative probability distribution. In 
addition, Bayesian inference enables the value to be 
gained from performing an experiment to be calculated; 
this is described in the next section. 
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Figure 16. Posterior cdf of stability. Stable results are 
denoted as ‘o’ and unstable results as ‘x’. 
 
 

 
 
Figure 17. 𝜇𝐶 as a function of the number of tests. 
 

 
 
Figure 18. 𝜎𝐶 as a function of the number of tests. 
 
 
 

EXPERIMENTAL PARAMETER SELECTION 
 

Bayesian updating of the probability of stability and 
the process damping coefficient was demonstrated. Using 
experimental results, the probability of each sample 
stability limit being the true limit was updated. These 
probabilities were, in turn, used to determine the posterior 
distribution of the process damping coefficient. The 
posterior mean agreed with the deterministic value 
calculated using the RSS method. Note that additional 
experimental results reduce the uncertainty (or the 
standard deviation) in the C value. 

This section describes a value of information approach 
for optimal experimental parameter selection. The 
objective of the experiments is to reduce the uncertainty 
in the C value. Note that no new information (or reduction 
in uncertainty) is achieved by obtaining a stable result at a 
{spindle speed, axial depth} combination which has a 
probability of stability equal to one. A probability of 
stability equal to one indicates that all sample paths have 
a value of axial depth greater than the test axial depth at 
the test spindle speed. A stable result assigns a likelihood 
of one to all the sample stability limits, which results in 
no reduction in the value of 𝜎𝐶. This is observed in 
Figures 15 and 18 for the first five tests. On the other 
hand, a test at a combination which has a non-zero 
probability of stability will cause a reduction in 𝜎𝐶 due to 
the small likelihood value assigned to some sample paths. 

The information from a test is characterized as an 
expected percent reduction in the value of 𝜎𝐶. The 
experimental parameters are selected where the expected 
percent reduction in 𝜎𝐶 is maximum. To illustrate, 
consider four possible experimental {spindle speed, axial 
depth} combinations: A= {400 rpm, 1.28 mm}, B = 
{1000 rpm, 2.68 mm}, C = {1500 rpm, 2.04 mm} and D 
= {2000 rpm, 1.36 mm}. The probability of stability for 
test points A, B, C and D are 0.9, 0.5, 0.1, and 0.52, 
respectively (see Figure 19).  

 
 
Figure 19. Four possible test points. 
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Consider test point A. Given a stable or unstable result 
at point A, the posterior probabilities of the sample 
stability limits is updated using the procedure described 
previously. The posterior probabilities are used to 
calculate the values of 𝜇𝐶 of and 𝜎𝐶 via Eqs. 3 and 4. If 
the result at point A is stable, the value of 𝜎𝐶 would be 
2.72×105 N/m. Note that the value of 𝜎𝐶 before any 
testing was 2.87×105 N/m. Therefore, the percent 
reduction in 𝜎𝐶 would be 5.60. On the other hand, if the 
result at point A was unstable, the value of 𝜎𝐶 would be 
3.47×104 N/m giving a percent reduction of 87.9. Recall 
that point A has a 0.9 probability of being stable. The 
expected percent reduction in 𝜎𝐶for point A is calculated 
as: 
 
(% reduction in 𝜎𝐶)A = 0.9×5.60 + 0.1×87.9 = 13.8. 
 

 
 
Figure 20. Maximum expected percent reduction for each 
test.  
 

The procedure was repeated for points B, C and D. 
The results are summarized in Table 2. As noted, points A 
and C have a high prior probability of being stable and 
unstable, respectively. As a result, the expected percent 
reduction in 𝜎𝐶 for testing at these points is low. On the 
other hand, points B and D have maximum uncertainty 
regarding the result, p(stability) = 0.5. Also, the 
uncertainty in the probability of stability is higher at point 
B as compared to point D. Therefore, the expected 
percent reduction is greater for testing at point B than 
point D.  

The {spindle speed, axial depth} domain was divided 
into a grid with increments of 50 rpm and 0.15 mm. The 
expected percent reduction in 𝜎𝐶 was calculated at all grid 
points using the procedure described. The maximum 
expected percent reduction was 49.6 at {550 rpm, 7.5 
mm) with a probability of stability equal to 0.51. The test 
result was selected to be unstable based on the stability 
limit shown in Figure 4. The purpose of using the stability 
limit in Figure 4 to determine the test result was to 
validate the convergence of the posterior mean and 

standard deviation of C to the values determined using the 
original 48 tests.  The values of 𝜇𝐶 and 𝜎𝐶 after the first 
update were 2.53×105 N/m and 1.42×105 N/m, 
respectively. The posterior after the first update becomes 
the prior for the second update. The procedure was 
repeated for seven tests (all based on the stability limit 
shown in Figure 4). The test points were selected where 
the expected percent reduction in C was maximum. 
Figure 20 shows the maximum expected percent 
reduction in C for each test. As seen in the figure, the 
percent reduction in C reduces for each test and can be 
used as a stopping criterion. Figure 21 shows the posterior 
cdf after seven updates. Stable results are denoted as ‘o’ 
and unstable results as ‘x’. Figure 22 and Figure 23 show 
the progression of 𝜇𝐶 and 𝜎𝐶 as a function of the number 
of tests. Note that the mean converges to 2.5×105 N/m in 
seven tests. 
 
Table 2. Expected percent reduction at test points. 
 

Test p(stability) Expected percent 
reduction in 𝜎𝐶 

A 0.9 13.8 
B 0.51 45.6 
C 0.1 14.6 
D 0.52 24.9 

 
The experimental selection procedure was repeated for 

the 19.05 mm diameter, 11 deg relief angle tool. Seven 
tests were performed at points where the expected percent 
reduction in 𝜎𝐶 was maximum. Figure 24 shows the 
posterior cdf. Stable results are denoted as ‘o’ and 
unstable results as ‘x’. Figures 25 and 26 display the 
progression of 𝜇𝐶 and 𝜎𝐶 as a function of the number of 
tests. Note that the mean converges to 3.6×105 N/m in 
seven tests.  
 

 
 
Figure 21. Posterior cdf of stability. Stable results are 
denoted as ‘o’ and unstable results as ‘x’. 



Proceedings of NAMRI/SME, Vol. 41, 2013 

 

 
 
Figure 22. 𝜇𝐶 as a function of the number of tests. 
 
 
CONCLUSIONS 
 

A random walk method of Bayesian updating was 
demonstrated for process damping coefficient 
identification. The prior sample paths were generated 
using an analytical process damping algorithm. For the 
prior, each sample stability limit was assumed to be 
equally likely to be the true stability limit. The probability 
of the sample stability limit was then updated using 
experimental results. The updated probabilities of the 
sample paths were used to determine the posterior process 
damping coefficient distribution. A value of information 
was used to select experimental test points which 
maximized the expected reduction in the process damping 
coefficient uncertainty. 
 
 

 
 
Figure 23. 𝜎𝐶 as a function of the number of tests. 
 

 
 
Figure 24. Posterior cdf of stability. Stable results are 
denoted as ‘o’ and unstable results as ‘x’. 
 
 

 
 

Figure 25. 𝜇𝐶 as a function of the number of tests. 
 
 

 
 
Figure 26. 𝜎𝐶 as a function of the number of tests. 
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