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This paper describes the application of Bayesian inference to the identification of force
coefficients in milling. Mechanistic cutting force coefficients have been traditionally deter-
mined by performing a linear regression to the mean force values measured over a range
of feed per tooth values. This linear regression method, however, yields a deterministic
result for each coefficient and requires testing at several feed per tooth values to obtain a
high level of confidence in the regression analysis. Bayesian inference, on the other hand,
provides a systematic and formal way of updating beliefs when new information is avail-
able while incorporating uncertainty. In this work, mean force data is used to update the
prior probability distributions (initial beliefs) of force coefficients using the Metropolis-
Hastings (MH) algorithm Markov chain Monte Carlo (MCMC) approach. Experiments are
performed at different radial depths of cut to determine the corresponding force coefficients
using both methods and the results are compared. [DOI: 10.1115/1.4026365]
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1 Introduction

In metal cutting operations, the cutting force can be modeled
using the chip area and empirical constants that depend on the
tool-workpiece combination. The mechanistic cutting force coeffi-
cients are determined using a linear regression to the mean force
values measured over a range of feed per tooth values [1]. How-
ever, the least squares method has two limitations. First, the
method required testing at several feed per tooth values to achieve
a high level of confidence in the regression. Second, for micromil-
ling applications or machining parameters (radial and axial depth)
resulting in a mean force value close to zero, the signal to noise
ratio is very small which can result in a poor least squares fit. To
address these limitations, the paper demonstrates milling force
modeling using the MCMC method for Bayesian inference. The
advantage of using Bayesian inference is that experiments over
multiple feed per tooth values, which can be time consuming and
costly, are not necessary for determining the cutting force coeffi-
cient values. In addition, the uncertainty in the force coefficients
can be evaluated by combining prior knowledge and experimental
data. The main contribution of the paper is to propose Bayesian
inference for milling force modeling and compare the results with
the well-known linear regression approach. The remainder of the
paper is organized as follows. First, generalized expressions for
mechanistic cutting force coefficients are developed. Section 2
then introduces Bayes’ rule. Section 3 demonstrates the MCMC
algorithm for Bayesian inference using a simple example followed
by the application to milling force modeling in Sec. 4. Section 5
describes the experimental results and a comparison to the linear
regression approach. Section 6 discusses the benefits of Bayesian
inference followed by conclusions in Sec. 7.

In milling, the tangential, F,, and normal, F,, direction force
components can be described using Egs. (1) and (2), where b is
the chip width (axial depth of cut), 4 is the instantaneous chip
thickness, K, is the tangential cutting force coefficient, K,, is the
tangential edge coefficient, K, is the normal cutting force coeffi-
cient, and K,,, is the normal edge coefficient [1].
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F, = K,bh + K,.b (D
F, = K,bh + K,.b 2)

The chip thickness is time-dependent in milling and can be
approximated using the feed per tooth, f,, and time-dependent cut-
ter angle, ¢, provided the ratio of the feed per tooth to cutter
diameter is small [2]. See below equation

h = fisin(¢) 3)

The forces in the x (feed) and y directions’, F, and F \» are deter-
mined by projecting the tangential and normal force components
in the x and y directions using the cutter angle as shown in Fig. 1.
See below equations

F, = Kbf; sin(¢) cos(¢) + Kiobcos(¢) + K, bf; sin*(¢)

+ Kb sin(¢h) “4)
Fy = K,bf; sin®(¢) + K,.bsin(¢) — K,,bf; sin(¢) cos(¢)
— Kb cos(o) 5)

Expressions for the mean forces in the x and y directions, F, and
F y, are provided in Egs. (6) and (7), where N, is the number of
teeth on the cutter and ¢, and ¢, are the cut start and exit angles,
which are defined by the radial depth of cut [1].

Fu= g (Kcos(20) + K,(26 —sin24))
¢,
+ Z—tb (K sin(¢) — Kpe cos(qb))} 6)
m ¢,
Fy = {Ngf—iﬁ (Ki(2¢p —sin(2¢)) + K, cos(2¢))
9.
Vb g cos(@) + Koe sin(qb))} %)
2n o,

"The z direction is oriented along the tool axis.
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Fig. 1
with two teeth is depicted)

In the Egs. (6) and (7) average force expressions, the first
term, which is a function of the feed per tooth, gives the slope
of the linear regression to the average force values that corre-
spond to the selected feed per tooth values. The second term,
which does not include the feed per tooth, is the intercept of

o 877{“1,}'(2(]59 - 2¢v + Sin(2¢x) - Sln(2¢e)) + al.~l‘(cos(2¢.v) B COS(2¢8))
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Milling force geometry (a 50% radial immersion up milling cut using a cutter

the linear regression. By rearranging Eqs. (6) and (7), the four
force coefficients are determined using Egs. (8)—(11), where
ay, and a;, are the slopes of the linear regressions to the x
and y direction average force data and ap, and ap, are the
intercepts.

TN (24, — 2, + sin(2y)  sin(24h,))+ (cos(2,) — cos(2,)) ®
_ ﬁaLY(cos(que) — COS(Z([’)X)) + al,x(2¢e B 2¢v + Sin(2¢.v) - Sln(2¢e)) (9)
"UNb o (2¢, —2¢, +sin(2,) — sin(29,))’+(cos(2¢,) — cos(2¢,))*
@ apu(sin(¢,) — sin(¢,)) — ao,(cos(¢,) — cos(4,))
Ke =N I cos(g, - 4) 1o
Kne — __nao‘x(COS((;be) - COS(d)S)) + aO,y(Sin(d)e) - Sin((vbs)) (11)

2 Bayesian Inference

Bayesian inference, which forms a normative and rational
method for belief updating, is applied for force coefficient deter-
mination here. Bayesian inference models are used to update a
user’s belief about an uncertain variable when new information
becomes available (e.g., an experimental result). Bayes’ rule is
given by

(AR, &) = LAIEHBIA &}

12
(BI&} (12

where {A|&} is the prior distribution about an uncertain event,
A, at a state of information, &; {B|A,&} is the likelihood of
obtaining an experimental result B given that event A has
occurred; {B|&} is the probability of obtaining experimental
result B (without knowing that A has occurred); and {A | B,&} is
the posterior belief about event A after observing the result, B.
According to Bayes’ rule, the product of the prior and likelihood
functions is used to determine the posterior belief. This is the
process of learning, i.e., updating the prior belief given the new
data B to obtain the posterior belief. Note that {B| &} acts as a
normalizing constant when updating probability density functions

(pdf).
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b - COS(([)(, - ¢v)

For the case of updating the four force coefficients in Egs.
(8)—(11) using experimental force data, Bayes’ rule is written as

fK,,K,,7K,e4K,,‘, (Kr: Km Ktm Kne ‘Fx,my Fy,m)

OCfK/,K,,,K,ﬂ,K,,(,“Fx,m7 Fy,m |Kta Km Ktea KHF) (13)
where fx, k, k. .k (Kt Ky Kie, Kne|F i, Fy ) is the posterior distri-
bution of the force coefficients given measured values® of the
mean forces in the x and y directions, Fy,; and Fy . fx, k, Ku Ky 1S
the prior distributions of the force coefficients, and
1 (Fx_,m,F Y }K,, Ky, K, K,w) is the likelihood of obtaining the
measured mean force values given specified values of the force
coefficients. The posterior (i.e., the new belief after updating) is
proportional to the prior multiplied by the likelihood. For multiple
measurements, Bayes’ rule can incorporate all data in a single cal-
culation. The likelihood functions for each measurement are mul-
tiplied together to obtain a total likelihood function. The posterior
pdf is calculated by multiplying the prior and the total likelihood
function. Note that the posterior distributions must be normalized
so that a unit volume under the pdf is obtained; this is the purpose
of the denominator in Eq. (12).

>The subscript m denotes measured values from cutting experiments. The
measured values were assumed to be statistically independent in this study.
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3 Markov Chain Monte Carlo (MCMC) method

The MCMC method is a strategy used to draw samples, ", from
a random (known) distribution, x, where i is the sample (or itera-
tion) number. The distribution of interest is referred to as a target
distribution and is denoted as p(x). Using the MCMC method,
samples are generated from the state space, X, using a Markov
chain mechanism [3]. The MH algorithm is the most widely used
MCMC method [4,5]. In the MH algorithm, a candidate sample,
x" is drawn from a proposal dlstrlbutlon q(x). It is selected given
the current value of x according to g(x" | x'). The candidate sample
is either accepted or rejected depending on an acceptance ratio, A.
At each iteration, the Markov chain moves to x~ if the sample is
accepted. Otherwise, the chain remains at the current value of x.
The MH algorithm is completed over N—1 iterations as follows.

(1) Initialize the starting point x°.

(2) For i=0 to i=N—1 iterations, complete the following
four steps: o

(a) randomly sample x" from the proposal pdf g(x" | x')

(b) randomly sample u from a uniform distribution of values
between O and 1, U(0, 1)

(c) compute the acceptance ratio, A = min Ql "(‘37[“2
p(x)g(x* | x)
(d) if u <A then set the new value equal o the new ample
x"' =x"; otherwise, the value remains unchanged x' ' = x".
Table 1 Time-domain simulation parameters
Parameter Value
Tool diameter (mm) 19.05
Radial depth (mm) 4.76
Axial depth (mm) 3.0
Spindle speed (rpm) 5000
Feed per tooth (mm/tooth) 0.03, 0.04, 0.05, 0.06, 0.07
Number of teeth 1
Helix angle (deg) 0
Tangential coefficient (N/mm?) 2200
Normal coefficient (N/mm?) 1200
Tangential edge coefficient (N/mm) 50
Normal edge coefficient (N/mm) 50

Table 2 Mean force values obtained from the time-domain
simulation

J+ (mm/tooth) Fom (N) Fym (N)
0.03 —15.40 49.01
0.04 —17.58 54.40
0.05 —19.76 59.80
0.06 —21.94 65.19
0.07 —24.12 70.59
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3.1 Algorithm Demonstration. To illustrate the algorithm,
consider a target pdf described by the bimodal pdf in Eq. (14) [3].
Note that the normalization constant of the target pdf does not
need to be known.

p(x) o 0.3 702 4 0.7(-020-10) (14)
For this example, a normal proposal distribution, ¢(x), was chosen
with a mean of x' and a standard deviation of 10, i.e.,
q(x) = N(x', 10). The starting point of the chain, x°, was selected
to be zero. At each iteration, i, the following steps were com-
pleted. First, a candidate sample, X", was randomly drawn from
N(', 10). The candidate sample was drawn given the current value
of the chain, g(x" | x"). In other words, the proposal distribution is
conditioned on the current value of the chain. To illustrate, con-
sider the first iteration. The chain starting point is x°=0. There-
fore, x is a random sample drawn from N(O, 10). Assume the
randomly selected value is x* =2 and it is accepted as x'. In the
second iteration, the random sample is drawn from N(2, 10). If the
sample is 12 and it is rejected, then the current value of x* remains
at 2. In the third iteration, the random sample will again be drawn
from N(2, 10).>

In the second step, p(x ") and p(x) were calculated usmg Eq.
(14) for the target dlstrlbutlon Third, q(v |x) and g(x' lx ) were
calculated, where g(x" |x) was the pdf value of the normal pro-
posal distribution at x given a mean equal to x' and a standard
deviation of 10. Similarly, q()t |x ) was the pdf Value of the nor-
mal proposal distribution at x’ given a mean of x* with a standard
deviation of 10. Fourth, the acceptance ratio, A, was calculated.
Because normal distributions were used, the equality
g(x" | x') = g(x"| x*) holds and the acceptance ratio simplified to

A= min<l,p(k.)>

')
Fifth, A was compared to a random sample, u, drawn from a uni-
form distribution with a range from O to 1. Finally, if u was less
than A, then the candidate sample was accepted so that x'*! = x*.
Otherwise, it was rejected and x'*! =x/. These steps were

repeated for N — 1 iterations to obtain N samples of x from the tar-
get pdf described by Eq. (14).

15)

3If the proposal distribution was chosen to be uniform, then it is not dependent on
the current value of x. In that case, x* will be drawn from U(Xin, Xmax)> Where X is
the minimum value and X, is the maximum value of x for the uniform proposal
distribution. A uniform proposal distribution is therefore less efficient because the
random samples are independent of the current state of the chain. The random
samples have an equal probability of taking any value between x.,;, and x,,,,, Which
leads to many rejections. Using a normal proposal distribution, where X is
dependent on x' is referred to as rdndom walk Metropolls sampling, while the
uniform proposal approach where X s independent of x' is called independent
Metropolis Hastings sampling.
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Fig. 3 Traces of K;and K|, (left) and K;, and K. (right)

The MH algorithm was carried out for 1 x 10* iterations. Figure
2 shows the histogram of the 10,000 samples and target distribu-
tion from Eq. 14 (left) and x values for each iteration (right). It is
observed that the samples approximate the target pdf quite well.
Note that the histogram and target distribution were normalized to
obtain a unit area.

Although the MH algorithm is effective for sampling from any
target distribution, there are a number of considerations in its
application. The success of the algorithm depends on the choice
of proposal distribution. In theory, the chain should converge to
the stationary target distribution for any proposal distribution [6].
However, the proposal distribution may affect the convergence
and mixing of the chain. In general, the proposal distribution may
be selected so that the sampling is convenient. For a normal pro-
posal distribution (that was chosen in this example), the choice of
the standard deviation can also affect the results. A larger standard
deviation causes greater jumps around the current value. Thus, the

3x1o‘3
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0.08
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Kte (N/mm)

candidate sample has a higher probability of being rejected, which
yields x' "' =x'. On the other hand, while a smaller variance will
tend to accept a higher number of random samples, it results in
slower convergence of the chain.

In practice, the initial iterations are typically discarded and the
chain subsequently settles to a stationary distribution. This is
referred to as the burn-in time of the chain. A practical way to eval-
uate convergence to the chain’s stationary distribution is by observ-
ing the traces and histograms of the variables (e.g., see Fig. 2). The
number of iterations should be large enough to ensure convergence
to the statistical moments of the target distribution. The starting
value of the chain has no effect for a large number of iterations
[6-8]. The convergence to the true statistical moments can be
observed by repeating the algorithm using different starting values
and varying the number of iterations. Despite these potential limita-
tions, the MH algorithm (for MCMC) works well and can effec-
tively be used to draw samples from multivariate distributions.

3 x10
[ IPosterior
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2
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Fig. 4 Posterior and prior distributions of K; (top left), K|, (top right), K;. (bottom left), and K,
(bottom right) using a uniform prior. Note that the area under the histogram was normalized to

unity in each case.
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Table 3 Comparison of the force coefficient distributions from
MCMC to the true values using a uniform prior

True value " % error g
K, (N/mm?) 2200 2201.2 0.05 136.9
K, (N/mm?) 1200 1207.2 0.6 139.6
K,, (N/mm) 50 50.7 1.2 3.51
K,. (N/mm) 50 49.8 —0.6 343

Table 4 Correlation coefficients between the force coefficients

Kf K}I Kf(’ K’I(’
K, 1.00 —0.11 —0.95 ~0.05
K, —0.11 1.00 0.26 ~0.95
K. —0.95 0.26 1.00 —0.11
Ky ~0.05 ~0.95 —0.11 1.00

Table 5 Posterior force coefficient distributions with varying
uncertainty in the force data. The standard deviations are
emphasized using a bold font.

Force uncertainty, 1o

05N IN 2N
K, N(2192.2,75.7) N(2201.2,136.9) N(2211.2, 254.0)
K, N(1201.2, 67.5) N(1207.2,139.9) N(1197.2,252.0)
K. N(50.8,1.9) N(50.7, 3.5) N(49.7, 6.4)
K. N(49.8, 1.7) N(49.8, 3.4) N(50.5, 6.3)

3.2 Application to Bayesian Inference. This section
describes the application of MCMC to Bayesian inference. As
stated in Sec. 2, Bayesian inference provides a formal way to
update beliefs about the posterior distribution (the normalized
product of the prior and the likelihood functions) using experi-
mental results. In the case of updating force coefficients (Eq.
(13)), the prior is a joint pdf of the force coefficients, K;, K,,, K.,
and K,,.. As a result, the posterior is also a joint pdf of the force
coefficients. In Bayesian inference, the MCMC technique can be
used to sample from multivariate posterior distributions. The
single-component MH algorithm facilitates sampling from multi-
variate distributions without sensitivity to the number of variables
[7]. The joint posterior pdf is the target pdf for MCMC. The poste-
rior, or target, pdf is the product of the prior and likelihood density
functions. Note that the normalizing constant of the posterior pdf
is not required for sampling.

The MH algorithm was detailed for a single variable in Sec. 3.
To sample from a joint pdf, the algorithm samples one variable at
a time and then proceeds sequentially to sample the remaining
variables. The sequence of variable sampling does not influence

3000
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4 6 8 10
# of iterations 4

the convergence of the algorithm. To illustrate, consider a joint
target pdf of n variables: x, x», x3, ..., x,. To begin, the starting
value for all the variables is initialized, [x7, x3, x3, ..., x0]. Let the
algorithm proceed in the order, x; — x, — x3 — ... x,,. The sam-
pling for each variable is carried out using a univariate proposal
distribution for that variable. The proposal distribution for each
variable can be different or the same. Since the algorithm pro-
ceeds one variable at a time, the target and the proposal pdf for
each variable is conditioned on the current values of the other var-
iables. For example, consider a candidate sample, x;, drawn from
the univariate proposal distribution for X The candidate sample
from the joint pdf is then [x1, x5, 23, ..., x°]. The candidate sam-
ple, x1, is either accepted or rejected given the current values of
X2, X3, ..., X,. Thus, the target pdf values of xl and x(l) are condi-
tional on the current values of the other variables, xg, x?, ey xﬁ,’
and are denoted as p(x] [x), x9, ..., x,%) and p(x{ | Y, A9,..., xD).
The proposal univariate pdfs are also conditional on the current val-
ues of the chain and are denoted as q(xl | X1, X2, X3, ..., X) and
q(x; \)tl s X1y X3, -y Xy) Tor x;" and xj, respectlvelgf To summarize,
the chain either stays at the current pomt [xl, .Xz, X3, . )tn] or moves
to a neighboring point, [x1, 29, xS, ., x9), which differs only in one
component of the current state (x; in this case). The procedure is
repeated for all variables in each iteration. The acceptance ratio is

16)

A min(l,p(xT |2, x3...%, ) g (¢ |[xT,x2,x3...an)

p(xd |2, X320 ) q (X5 [[X 32, X3..] )

where the value of each of the four joint pdfs must each be calcu-
lated. The value of A is compared to a random sample u, from a
uniform distribution with a range from 0 to 1 and x; is either
accepted or rejected to obtain x,' "', The algorithm is repeated
using the updated Values of each varlable contmually for the next
variable. Thus, x,' ! is determined usmg R TR FUNNSUNE TR Sl
is determined using x; 1T x,! and so on for n variables.
The algorithm therefore moves by a small step in the joint pdf by
sampling a single variable at a time. A single iteration updates all
the variables. The algorithm is then carried out for N iterations to
obtain samples from the joint target pdf. An alternative method is
to sample from a joint proposal pdf and accept or reject it using
the MH algorithm. However, it is much simpler to sample from
univariate proposal distributions for each variable and is computa-
tionally less expensive.

4 Bayesian Updating Using the Markov Chain Monte
Carlo method

In this section, the MCMC method for Bayesian updating of
force coefficients is demonstrated using a numerical example. The
effects of the prior and likelihood uncertainties are also evaluated.
A milling time-domain simulation [1] was used to obtain the x
and y directions mean force values. The tool-material combination
was assumed to be a coated carbide tool and 1018 steel. The
objective of the simulation was to validate the MCMC method by

0 2 4 6 8 10
# of iterations

Fig.5 Traces of K;, and K,, with 0.5 N force measurement uncertainty (left) and 2N (right)

Journal of Manufacturing Science and Engineering

APRIL 2014, Vol. 136 / 021017-5

Downloaded From: http://manufacturingscience.asmedigital collection.asme.or g/ on 02/19/2016 Terms of Use: http://www.asme.or g/about-asme/ter ms-of-use



-3

6 x10
[—JPosterior

5L | —Prior M

4 L
<3
= -

2 L

4l L

d
0 L L 1.
0 500 1000 1500 2000 2500 3000

K, (Nfmm?)

x10°

[JPosterior 8
14r | —prior

1.2F

16

1+

< 0.8 M

0.6} J
04} I
T ,ﬁrﬁ
0 L I
0 500 1000 1500
K, (N/mm?)

2000 2500 3000

Fig. 6 Posterior and prior distributions of K; with a force uncertainty of s =0.5N (left) and

o =2N (right)

Table 6 Comparison of the force coefficient distributions from
MCMC to the true values using a normal prior

True value n % error a
K, (N/mm?) 2200 2240.2 1.8 224.6
K, (N/mm?) 1200 1059.6 -8.8 243.7
K,. (N/mm) 50 50.2 0.4 5.58
K, (N/mm) 50 55.6 11.2 7.17

comparing its solution to the known force coefficients used to
define the “measured” data via the simulation. The parameters
used in the down milling simulation are listed in Table 1. The sim-
ulation was exercised at different feed per tooth values and the
mean forces were recorded; see Table 2. The mean values listed
in Table 2 were treated as experimental results and used to update
the force coefficients’ prior distributions using the MCMC method
for Bayesian inference.

As described in Sec. 3.2, a single-component MH algorithm
was used to sample from the joint posterior pdf of the force coeffi-
cients, K;, K,,, K;., and K,,.. The posterior joint pdf was the target
pdf for the MH algorithm. For this analysis, the prior distribution
of force coefficients was assumed to be a joint uniform distribu-
tion, i.e., it was equally likely to obtain any value within the speci-
fied range. The force coefficients were assumed to be independent
for the prior. The marginal ]zarior pdfs* of the force coefficients
were specified as: K, (N/mm~) = U(0, 3000), K, (N/mm?) = U(0,
3000), K,, (N/mm)=U(0, 100), and K,, (N/mm)=U(0, 100),
where U represents a uniform distribution and the parenthetical
terms indicated the lower and upper values of the range. As noted
in Sec 3.1, this distribution represents a less informative prior than
a normal distribution with a mean and standard deviation. The
effect of different types of priors on the posterior distributions is
discussed in Sec. 4.3.

The single-component MH algorithm proceeds as follows. First,
the starting point for the Markov chain, xX* = [K? KO KO K9],
was selected to be the midpoints of the uniform K, K,,, K., and K,
distributions, x* = [1500 1500 25 25]. The sampling was com-
pleted one coefficient at a time in the order K, — K,, — K, — K. A
candidate sample, K,, was drawn from the proposal distribution of
K,. The proposal distribution for each coefficient was selected to
be normal. The posterior, or target, pdf values, of each force coef-
ficient were conditional on the values of the other coefficients.
The posterior pdf for K,, denoted as p(K?\K,? K2 K°), was the
product of the prior and likelihood functions. The prior value for
any coefficient was determined from the marginal prior distribu-
tions of each coefficient, which were selected to be uniform. The

*A marginal pdf for any variable in a joint distribution is obtained by integrating
the remaining variables over all values.

021017-6 / Vol. 136, APRIL 2014

mean force values were calculated using the current state of the
chain, [K? K? K0 K2, together with Egs. (6) and (7) for the speci-
fied cut geometry. Because there is inherent uncertainty in milling
forces, the mean force values calculated using the current state of
chain and Egs. (6) and (7) were assumed to be normally distrib-
uted with a standard deviation of 1 N, which was based on the
user’s belief regarding experimental uncertainty in measured force
values (this value could also be specified as a percent of the nomi-
nal value, for example). The effect of the standard deviation on
the posterior pdf is discussed in Sec. 4.2. This gave a pdf for both
the x and y directions mean forces calculated using the current
state of the chain. The likelihood for the x and y directions was
the value of each pdf for the experimental mean forces (from the
time-domain simulation). Therefore, the likelihood described how
likely it was to obtain the experimental mean forces given the cur-
rent state of the chain. For multiple measurement results, the total
likelihood pdf was the product of the likelihood pdfs for all meas-
urements. The same procedure was followed to determine the pos-
terior pdf value for K, p(K; | K} K/, K.,). Since the proposal
distribution was normal, the acceptance ratio was calculated using
below equation.

KK, K. K
A:min(l P |Kn, Kie, Kie) ”“)) (17

7 p(K”KYHKtL” Kne)

The acceptance ratio was compared with a random sample, u,
from a uniform distribution (with a range from O to 1) to assign
the value of K to be either K; or K2. To update the four force coef-
ficients, K,, K,,, K., and K,,,, the algorithm considered one coeffi-
cient at a time and then proceeded to sequentially update the
remaining coefficients. The updated values for each coefficient
were used continually for updating the next coefficient. For the
order K, — K,, — K,, — K,,,, K], was used to update KS Next, Kl,
and K! were used for K,°. Finally, K., K}, and K. were used for
KJ. A single iteration provided samples for all the force coeffi-
cients. This sequence was repeated for N — 1 iterations giving N
samples from the joint posterior pdf of the coefficients. Note that
the standard deviations of the proposal distributions affect the
convergence of the chain. The standard deviations of the force
coefficients, K, K, K, and K,, were 600 N/mm?, 600 N/mm?>,
33 N/mm, and 33 N/mm, respectively. As a rule of thumb, the
standard deviation should be large enough to draw adequate sam-
ples to explore the domain. However, a very large standard devia-
tion leads to a higher probability of candidate samples being
rejected.

4.1 Results. The MH algorithm was exercised for 1 x 10°
iterations. Figure 3 shows the sample traces of the force coeffi-
cients for all iterations. It is seen that there is a rapid convergence
to the true values for all coefficients. The initial burn-in time was
selected as 1 x 10° iterations. Figure 4 shows a comparison
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Table 7 Experimental mean forces in x and y directions and
force coefficients obtained using linear regression at 25% radial
immersion

fi Mean F, Mean F, K, K, K. K,.

(mm/tooth)  (N) N)  (N/mm?) (N/mm?) (N/mm) (N/mm)
0.03 —11.50  40.13  2149.0 1290.1 347 37.1

0.04 —1331  46.10

0.05 —14.83  50.03

0.06 —17.64  56.63

0.07 —19.10  62.06

between the prior marginal pdfs and posterior sample histograms
of the force coefficients. The histograms represent the marginal
posterior pdfs of the force coefficients and were normalized to
obtain a unit area. The distributions in the force coefficients are
due to the uncertainty in the mean force values. MCMC gives
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Fig. 9 Linear regression to the mean forces in x (left) and y (right) direction to determine the

force coefficients at 25% radial immersion
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samples from the joint posterior pdf of the force coefficients, K,,
K,, K,., and K,,,. Since the prior was assumed to be a uniform dis-
tribution and the likelihood was normal, the posterior joint distri-
bution was also a joint normal distribution. The mean, u, and
standard deviation, o, values for the four force coefficient poste-
rior marginal pdfs are listed in Table 3; the coefficient mean val-
ues show good agreement with the true values. Note that the
coefficient distributions are not independent; the correlation coef-
ficients between the force coefficients are listed in Table 4.
Although the convergence to the true values as a function of num-
ber of iterations can be evaluated, 1 x 10° samples was found to
be adequate to ensure convergence for this study. Table 4 shows
that the cutting force coefficients, K, and K,,, as well as the edge
coefficients, K, and K., have a small correlation between them.
However, the cutting force coefficients have a strong negative cor-
relation with the respective edge coefficients (—0.95). The stand-
ard deviation of the posterior distributions of the force coefficients
is a function of the force uncertainty used to determine the likeli-
hood (1 N was assumed). The effect of the likelihood uncertainty
on the posterior distribution is discussed in Sec. 4.2.

Using Bayesian inference, uncertainty in the force data can be
propagated to determine uncertainty in the force coefficients. Fur-
thermore, because the Bayesian updating approach does not rely
on a least-squares curve fit, it eliminates data collection at several
feed per tooth values. MCMC is computationally inexpensive and

Table 8 Correlation coefficients between the force coefficients
at 25% radial immersion

K, K/z Kre Km'
K, 1.00 ~0.09 —0.95 —0.08
K, ~0.09 1.00 0.23 —0.94
K, ~0.95 0.23 1.00 —0.07
K. —0.08 ~0.94 —0.07 1.00

021017-8 / Vol. 136, APRIL 2014

facilitates updating of multiple variables. The posterior samples
also provide information regarding the correlation between the
coefficients. These samples can be used to propagate the force
coefficient uncertainty to quantify the uncertainty in the milling
stability boundary, for example Ref. [9].

4.2 Effect of Likelihood Uncertainty. The standard devia-
tions of the marginal force coefficient distributions listed in Table
5 are a function of the force uncertainty level used in the likeli-
hood calculations. To study this effect, the updating procedure
was repeated with mean force uncertainties of 0.5N and 2N.
Figure 5 shows the traces of K, and K|, with standard deviations of
0.5N (left) and 2 N (right). Figure 6 shows the posterior and prior
pdf comparisons of K, for the 0.5N (left) and 2 N (right) standard
deviations. It is observed in these figures that the standard devia-
tion of the posterior distribution reduces with the likelihood uncer-
tainty. Similar results were obtained for all the force coefficients.
The standard deviations of all coefficients at different force uncer-
tainty levels are listed in Table 5. Note that the mean converges to
the true values in all cases and is not affected by the likelihood
uncertainty. The likelihood uncertainty may be selected by the
user based on his/her level of confidence in the experimental data.

4.3 Effect of the Prior Selection. In this section, the effect of
the prior on the posterior distribution of force coefficients is stud-
ied. For the numerical results presented in Sec. 4.1, a uniform
prior was selected. A uniform prior represents a noninformative
case, where any coefficient value with the specified range is
equally likely to be correct. To evaluate the influence of the prior
distribution on the posterior pdf, the algorithm was repeated using
normal marginal pdfs as the prior for the force coefficients. The
marginal prior pdfs were selected as:

* K, (N/mm?) = N(2500, 300)

* K, (N/mm®) = N(1200, 300)

* K. (N/mm)=N(100, 33)

* K, (N/mm)=N(100, 33).
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Table 9 Experimental mean forces in the x and y directions
and force coefficients obtained using linear regression at 50%
radial immersion

fi Mean F, Mean F, K, K, K, K,.
(mm/tooth) (N) (N) (N/mm?) (N/mm?) (N/mm) (N/mm)
0.03 1.51 63.35 2504.6  1446.2 37.5 45.2
0.04 1.11 74.71

0.05 0.93 84.98

0.06 0.67 95.29

0.07 —0.54 105.51

Table 6 lists the mean and standard deviation for each of the four
force coefficient posterior marginal pdfs. Figure 7 provides a com-
parison between the prior marginal pdfs and posterior sample histo-
grams of the force coefficients. The percent errors in Table 6
(normal prior) are larger than those in Table 3 (uniform prior). The
posterior distribution is clearly sensitive to the choice of the prior.

For a uniform prior, the posterior is the same as the likelihood
and, therefore, the posterior mean force coefficient values con-
verge to the true value. However, for a normal prior which
includes a mean and standard deviation, the true values lie within
the range of posterior distributions. Note that the posterior pdf
takes into account the prior mean and the likelihood function. The
prior represents the initial degree of belief about the force coeffi-
cients; if the initial belief is far from the true value, this affects the
final results. The selection of the prior may be based on previous
experience, values reported in the literature, or theoretical consid-
erations. In general, the prior should be chosen to be as informa-
tive as possible considering all the available information. If
enough data or prior knowledge is not available, a uniform prior
may be selected. In the numerical example, the prior was chosen

Journal of Manufacturing Science and Engineering

based on beliefs regarding the range of values the force coefficient
would most likely take for the selected tool-material combination.

S Experimental Results

This section describes the experimental setup used to perform
force coefficient measurements. Cutting tests were performed with
a 19 mm diameter inserted endmill (one square uncoated Kenname-
tal 107888126 C9 JC carbide insert; zero rake and helix angles,
15deg relief angle, 9.53 mm square x 3.18 mm). The workpiece
material was 1018 steel. The cutting force was measured using a ta-
ble mounted dynamometer (Kistler 9257B). Figure 8 shows the ex-
perimental setup. The first test was completed at a spindle speed,
Q, of 2500 rpm with a 3 mm axial depth of cut and 4.7 mm radial
depth of cut (25% radial immersion (RI)). The force coefficients
were evaluated by performing a linear regression to the mean x
(feed) and y direction forces obtained over a range of feed per tooth
values: f;={0.03, 0.04, 0.05, 0.06, and 0.07} mm/tooth. Figure 9
shows the linear least squares best fit to the experimental mean
forces in the x and y directions. The mean forces show a linear
increase for both the x and y directions and the quality of fit is good
(R*=0.99). The force coefficients were determined using slopes
and intercepts from the fit to the data. The values of the mean forces
and the force coefficients are provided in Table 7.

The experimental force data listed in Table 7 was used to per-
form Bayesian updating on the force coefficients using the
MCMC algorithm explained in Sec. 4. An uncertainty of 1N
standard deviation was assumed in the (measured) mean force
data. The prior marginal pdfs of the force coefficients were taken
as uniform. Figure 10 shows the prior and posterior distributions
of the force coefficients. The force coefficient values obtained by
the linear regression approach are identified by the “x”symbols.
Note that the histograms were normalized to obtain a unit area
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Table 10 Correlation coefficients between the force coeffi-
cients at 50% radial immersion

K, K,, Kle Kne
K, 1.00 0.08 —0.93 —0.28
K, 0.08 1.00 0.13 —0.94
K —0.93 0.13 1.00 0.06
K. —0.28 —0.94 0.06 1.00

Table 11 Comparison of the posterior force coefficient distri-
butions at 25% and 50% radial immersions

RI(%) K, (N/mm?) K, (N/mm*) K, (N/mm) K, (N/mm)

25 N(2116.7,137.3) N(1284.4,130.2)
50 N(2052.8,67.8)  N(1187.8, 68.9)

N(35.5,3.2) N(37.4,3.2)
N(30.4,23) N(36.7,2.6)
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——-Experimental
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under the curve. Figure 10 shows that the means of the posterior
distributions for the force coefficients agree with the values
obtained from the linear regression. Table 8 lists the correlation
coefficients between the force coefficients obtained from the
MCMC algorithm; they are similar to the values listed in Table 4.
The experimental force profile at 0.05 mm/tooth was compared
with the simulated force profile calculated using the posterior
mean values of the force coefficients obtained from MCMC and
the least squares values. Figure 11 shows the force profiles for F
(left) and F, (right). It is observed that the force coefficients from
both methods approximate the experimental force profile well.

A second test was completed at 50% RI with all other parame-
ters the same. Figure 12 shows the linear least squares fit to the
experimental mean forces in the x and y directions. The mean
force in x direction does not show a clear linear trend (because it
is approximately zero for a 50% RI and near the noise limit) and,
therefore, the quality of fit is not good (R*=0.70). The least
squares fit to the y direction mean forces is very good (R* = 0.99),
however. As shown in Egs. (8)—(11), the cutting force coefficients,
K, and K,, and the edge coefficients, K,, and K,,, are not
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Fig. 14 Comparison of the experimental and simulated force profiles for F, (left) and F, (right)
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Fig. 15 Posterior distributions of force coefficients at 25% RI (left) and 50% Rl (right)

decoupled, but depend on the slopes and intercepts of the least
squares fits in both the x and y directions. Therefore, a poor fit in
the x direction mean forces affects the values of all coefficients.
Table 9 shows the mean forces in x and y directions and the force
coefficients obtained using the linear regression approach.

The mean force data listed in Table 9 was used to update the
force coefficients distribution by the MCMC algorithm. Figure 13

Journal of Manufacturing Science and Engineering

shows the prior and posterior distribution of the coefficients. Table
10 lists the correlation coefficients between the force coefficients
from the MCMC analysis. As shown in Fig. 13, the force coeffi-
cient posterior distributions do not agree with the values obtained
using the linear regression. This is due to poor least square fit for
the mean x direction force. However, since the Bayesian updating
does not rely on a curve fit, the posterior distributions are not
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Table 12 Force coefficient values from the five tests at 25% RI

Test# K, (N/mm?) K, N/mm?) K, (N/mm) K, (N/mm)
Least squares results

2149.0 1290.1 347 37.1
2 2071.2 1159.3 27.1 30.7
3 1973.9 1210.0 34.4 34.7
4 2055.0 1337.5 333 323
5 2173.0 1370.6 35.1 35.8
6 1972.6 1265.5 33.5 32.0
m 2065.8 1271.1 33.0 338
o 84.5 78.6 3.0 2.5
MCMC results

N(2116.7,137.3) N(1284.4,130.2) N(35.5,3.2) N(374,3.2)

Table 13 Force coefficient values from the five tests at 50% RI

Test# K, (N/mm?) K, N/'mm?» K, N/mm) K, (N/mm)
Least squares results
1 2504.6 1446.2 37.5 452
2 2496.4 1422.7 41.8 51.5
3 2396.6 1310.5 46.7 60.4
4 2025.7 1126.8 294 35.1
5 1987.8 1048.4 32.6 41.6
6 2052.5 1268.0 42.1 49.1
M 2243.9 1270.4 38.3 47.1
) 246.93 158.51 6.47 8.70
MCMC results
N(2052.8,67.8) N(1187.8,68.9) N(30.4,2.3) N(36.7,2.6)

affected by the quality of the fit. Table 11 compares the force coef-
ficient posterior distributions at 25% and 50% RI for the MCMC
analysis. The force coefficients are insensitive to the radial immer-
sion (as expected) for Bayesian updating and the posterior distribu-
tions obtained at 25% and 50% RI agree closely. Note that the
variance of the posterior distribution for the 50% RI result is
smaller than for the 25% RI result. The uncertainty in the mean
force was assumed to be 1 N in both cases and both the x and y
direction mean forces were used for updating. However, the mean y
direction force magnitude at 50% RI is greater than 25%, which
results in a lower signal to noise ratio for the 50% RI y direction
forces and a smaller variance for the corresponding posterior distri-
butions. Figure 14 shows the comparison between the experimental
force profile at 0.05 mm/tooth and the simulated force profile using
the posterior mean force coefficient values obtained from the
MCMC and the least squares methods. It is seen that the peak force
values in the x and y directions for the least squares force coeffi-
cient values is not in agreement with the experimental peak values,
while the mean posterior force coefficient values agree with the ex-
perimental profile. This is because the force coefficient values
obtained using the least squares method were higher than the values
determined using the MCMC method.

6 Discussion

Bayesian updating using the MCMC Bayesian inference technique
to determine force coefficients was presented. The advantage of
using a Bayesian approach is that it takes into account both initial
beliefs (prior knowledge) and experimental data to update beliefs.
The Bayesian inference approach also takes into account the inherent
uncertainty in force coefficients. As a result, force coefficients are
characterized by a probability density function as opposed to a deter-
ministic value. To validate the posterior force coefficient distribu-
tions, five additional tests were completed at radial immersions of
25% and 50%. Figure 15 shows the posterior distributions of the
force coefficients at 25% (left) and 50% (right). The figure shows
that the posterior distributions of force coefficients agree well with
the least squares values at 25% RI. However, the force coefficient

021017-12 / Vol. 136, APRIL 2014

values obtained by linear regression at 50% RI do not agree with the
posterior distributions. As shown in Fig. 12, this is due to a poor
quality of least squares fit to the mean forces in the x direction.

Bayesian updating was performed using the mean force data
from all the six tests (one experimental and five validation tests)
at 25% and 50% RI. The values of the force coefficients obtained
using the least squares method for the six tests at 25% and 50%
RI are listed in Tables 12 and 13, respectively. The posterior
mean and standard deviation value of the force coefficients at
25% and 50% using the MCMC approach are also listed. The
mean and standard deviation calculated from the linear regression
force coefficient values agree reasonably well with the posterior
mean and standard deviation of the force coefficients. However,
Bayesian inference reduces the need to perform experiments over
multiple feed per tooth values, which can be time consuming and
costly, by combining prior knowledge and experimental data.
Therefore, the uncertainty in the force coefficients can be eval-
uated using a single or a few experimental results.

7 Conclusions

Bayesian updating of the force coefficients using the Markov
chain Monte Carlo (MCMC) method was presented. The single
component Metropolis Hastings (MH) algorithm of MCMC was
used. Bayesian inference provides a formal way of belief updating
when new experimental data is available. It gives a posterior distri-
bution that incorporates the uncertainty in variables as compared to
traditional methods, such as the linear regression which yields a
deterministic value. By combining prior knowledge and experimen-
tal results, Bayesian inference reduces the number of experiments
required for uncertainty quantification. Using Bayesian updating, a
single test can provide distributions for force coefficients. The pos-
terior distribution samples provide the covariance of the joint distri-
bution as well. Experimental milling results showed that the linear
regression did not give consistent results at 50% RI due to a poor
quality of fit in the x direction mean forces, whereas Bayesian
updating yielded consistent results at both radial immersions tested.
Also, since Bayesian updating does not rely on a least squares fit,
mean force data at different feed per tooth values is not required.

Finally, the Metropolis Hastings algorithm is a powerful tool
for updating multiple variables. A grid-based method would
require N computations, where m is the number of variables and
N is the size of the grid. To illustrate, for a joint pdf of four varia-
bles with a grid size equal to 300, the grid-based method would
require at least 8.1 x 10° computations. The MH algorithm would
require only approximately 1 x 10* iterations for the value to con-
verge to the posterior pdf mean values. The single component MH
algorithm for MCMC facilitates updating of joint distributions
without significant computational expensive.
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