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INTRODUCTION 
Machining science, like many other 
technological fields, enjoyed tremendous gains 
in the 20th century. It was transformed from 
predominantly an empirical, trial and error 
discipline into one that now implements 
deterministic models for nearly every aspect of 
machining processes. In milling, for example, 
models are available to relate stability, part 
accuracy (from forced vibrations during stable 
machining), surface finish, and residual stresses 
to the selected operating parameters, material 
and tool properties, tool geometry, and part-tool-
holder-spindle-machine dynamics. While the 21st 
century state-of-the-art continues to progress, 
obstacles remain. For example, all models 
include uncertainties in their inputs, as well as in 
the models themselves (due to the underlying 
assumptions and lack of knowledge). Also, the 
global marketplace has placed a premium on 
reduced production time and cost without 
sacrificing quality. Finally, implementation at the 
shop floor level can differ substantially from the 
research laboratory environment due to the 
availability of pre-process information. 
 
To address these pressing issues, the authors 
are attempting to formulate milling, which is a 
critical value-added process in manufacturing, 
as a decision problem under uncertainty. As part 
of this work, efforts to implement Bayesian 
inference to determine the coefficients of a 
common force model used in end milling 
performance prediction are described. 
 
MILLING FORCE MODEL 
Milling forces can be described using the model 
provided in Eq. 1. In this equation, Ft is the 
tangential force component, Kt is the tangential 
cutting force coefficient, b is the axial depth of 
cut, h is the instantaneous chip thickness (which 
depends on the feed per tooth), Kte is the 

tangential edge (plowing) coefficient, Fn is the 
normal force component, Kn is the normal cutting 
force coefficient, and Kne is the normal edge 
coefficient [1]. 
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The four coefficients in Eq. 1 are typically 
obtained by measuring the cutting forces with a 
dynamometer while machining at known axial 
depth and feed per tooth values. Measurements 
are performed over a range of feed per tooth 
values and a linear regression to the mean x 
(feed) and y direction forces is performed. 
 
BAYESIAN INFERENCE 
Bayesian inference models form a normative 
and rational method for updating beliefs when 
new information is available. Let the prior 
distribution about an uncertain event, A, at a 
state of information, &, be {A|&}, the likelihood of 
obtaining an experimental result B given that 
event A occurred be {B|A,&}, and the probability 
of receiving experimental result B (without 
knowing A has occurred) be {B|&}. Bayes’ rule 
determines the posterior belief about event A 
after observing the experiment result B, {A|B,&} 
as show in Eq. 2.  
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The product of the prior and likelihood functions 
is used to determine the posterior distribution. In 
the case of multiple measurements, the 
posterior distribution after the first measurement 
or update becomes the prior for the second and 
so on. 
 



BAYESIAN UPDATING OF MILLING FORCE 
COEFFICIENTS 
In this paper, Bayesian updating using the 
Markov Chain Monte Carlo (MCMC) method to 
determine the force model coefficients in end 
milling is presented. As noted, Bayesian 
inference provides a systematic and formal way 
of updating beliefs when new information is 
available taking into account the uncertainty in 
variables. For the case of updating force 
coefficients using experimental force data, 
Bayes’ rule is written as: 
 

( ) ( )netentmymxKKKKmymxnetentKKKK KKKKFFlfFFKKKKf
netentnetent

,,,,,,,, ,,,,,,,,,, ∝  (3) 

 
where ( )mymxnetentKKKK FFKKKKf

netent ,,,,, ,,,,  is 
the posterior distribution of the force coefficients 
given measured values of the mean forces in the 
x and y directions, mxF ,  and myF , , 

netent KKKKf ,,, is the prior distributions of the force 

coefficients, and ( )netentmymx KKKKFFl ,,,, ,,  is 

the likelihood of obtaining the measured mean 
force values given specified values of the force 
coefficients. In this notation, the subscript m 
denotes measured values from cutting 
experiments. The measured values were 
assumed to be statistically independent. 
 
In the case of updating force coefficients as 
described by Eq. 3, the prior is a joint pdf of the 
force coefficients, Kt, Kn, Kte, and Kne. As a 
result, the posterior is also a joint pdf of the force 
coefficients. In Bayesian inference, the MCMC 
technique can be used to sample from 
multivariate posterior distributions. The single-
component Metropolis Hastings (MH) algorithm 
facilitates sampling from multivariate 
distributions without sensitivity to the number of 
variables [2-7]. To sample from a joint pdf, the 
algorithm samples one variable at a time and 
then proceeds sequentially to sample the 
remaining variables. The joint posterior pdf is the 
target pdf for MCMC. As noted, the posterior 
(target) pdf is the product of the prior and 
likelihood density functions. 
 
EXPERIMENTAL RESULTS 
This section describes the experimental setup 
used to perform force coefficient measurements. 
Experiments were performed using a 19 mm 
diameter inserted endmill (one square uncoated 
Kennametal 107888126 C9 JC carbide insert; 
zero rake and helix angles, 15 deg relief angle, 

9.53 mm square x 3.18 mm). The workpiece 
material was 1018 steel. The cutting force was 
measured using a table mounted dynamometer 
(Kistler 9257B). The first test was completed at a 
spindle speed, Ω, of 2500 rpm with a 3 mm axial 
depth of cut and 4.7 mm radial depth of cut 
(25% radial immersion, RI). The force 
coefficients were evaluated by performing a 
linear regression to the mean x (feed) and y 
direction forces obtained over a range of feed 
per tooth values: ft = {0.03, 0.04, 0.05, 0.06, and 
0.07} mm/tooth. Figures 1 and 2 show the linear 
least squares best fit to the experimental mean 
forces in the x and y directions, respectively. 
The mean forces show a linear increase for both 
the x and y directions and the quality of fit is 
good (R2 = 0.99). The force coefficients were 
determined using the slopes and intercepts from 
the data regression. The values of the 
experimental mean forces values are provided in 
Table 1. The force coefficient values calculated 
using the linear regression were: Kt = 2149 
N/mm2, Kn = 1290.1 N/mm2, Kte = 37.1 N/mm 
and Kne = 37.1 N/mm. 
 
TABLE 1. Experimental mean forces in x and y 
directions for 25% radial immersion. 
 

ft 
(mm/tooth) 

Mean Fx 
(N) 

Mean Fy 
(N) 

0.03 −11.50 40.13 
0.04 −13.31 46.10 
0.05 −14.83 50.03 
0.06 −17.64 56.63 
0.07 −19.10 62.06 

 
 

 

FIGURE 1: Linear regression to the mean forces 
in the x direction at 25% radial immersion. 



 

FIGURE 2: Linear regression to the mean forces 
in the y direction at 25% radial immersion. 

The experimental force data listed in Table 1 
was used to perform Bayesian updating on the 
force coefficients using the single component 
MH MCMC algorithm. The sampling was 
completed one coefficient at a time in the order 
Kt → Kn → Kte → Kne. The single-component MH 
algorithm facilitates sampling from the joint 
posterior pdf of the force coefficients, Kt, Kn, Kte, 
and Kne. The posterior joint pdf was the target 
pdf for the MH algorithm. Table 2 lists the force 
coefficients obtained using the linear regression 
and Bayesian updating, where N(µ,σ) identifies 
the mean, µ, and standard deviation, σ, for the 
normal distributions.  
 
TABLE 2. Force coefficient values obtained from 
linear regression and Bayesian updating using 
mean force values at 25% radial immersion. 
 

 Kt 
(N/mm2) 

Kn 
(N/mm2) 

Kte 
(N/mm) 

Kne 
(N/mm) 

Least 
squares 2149.0 1290.1 34.7 37.1 

Bayes 
updating 

N(2116,
137.3) 

N(1284,
130.2) 

N(35.5,
3.2) 

N(37.4,
3.2) 

 
For this analysis, the prior distribution of force 
coefficients was assumed to be a joint uniform 
distribution. Force coefficients were assumed to 
be independent for the prior. The marginal prior 
pdfs of the force coefficients were specified as: 
Kt (N/mm2) = U(0, 3000), Kn (N/mm2) = U(0, 
3000), Kte (N/mm) = U(0, 100), and Kne (N/mm) 
= U(0, 100), where U represents a uniform 
distribution and the parenthetical terms indicated 
the lower and upper values of the range. An 
uncertainty of 1 N standard deviation was 
assumed in the mean force data, which was 

based on the user’s belief regarding 
experimental uncertainty in measured force 
values. The mean force values were calculated 
using the current state of the chain for the 
specified cut geometry [1]. The likelihood for the 
x and y directions was the value of each pdf for 
the experimental mean forces.  
 
A second test was completed at 50% RI with all 
other parameters the same. Figures 3 and 4 
show the linear least squares best fit to the 
experimental mean forces in the x and y 
directions. The mean force in x direction does 
not show a clear linear trend (because it is 
approximately zero for a 50% RI and near the 
noise limit) and, therefore, the quality of fit is not 
good (R2 = 0.70). The least squares fit to the y 
direction mean forces is very good (R2 = 0.99), 
however. The cutting force coefficients, Kt and 
Kn, and the edge coefficients, Kte and Kne, are 
not decoupled at partial radial immersions but 
depend on the slopes and intercepts of the least 
squares fits in both the x and y directions. 
Therefore, a poor fit in the x direction mean 
forces affects the values of all coefficients. Table 
3 shows the mean forces.  
 
TABLE 3. Experimental mean forces in x and y 
directions for 50% radial immersion. 
 

ft 
(mm/tooth) 

Mean Fx 
(N) 

Mean Fy 
(N) 

0.03 1.51 63.35 
0.04 1.11 74.71 
0.05 0.93 84.98 
0.06 0.67 95.29 
0.07 -0.54 105.51 

 

 
FIGURE 3: Linear regression to the mean forces 
in the x direction at 50% radial immersion. 



 
FIGURE 4: Linear regression to the mean forces 
in the y direction at 50% radial immersion. 

The force coefficient values calculated using the 
linear regression were: Kt = 2504.6 N/mm2, Kn = 
1446.2 N/mm2, Kte = 37.5 N/mm and Kne = 45.2 
N/mm. The mean force data listed in Table 3 
was also used to update the force coefficients 
distribution by the MCMC algorithm. Table 4 lists 
the force coefficients obtained using the linear 
regression and Bayesian updating. It is seen 
that the force coefficient values obtained from 
the two methods do not agree. This is due to the 
poor least square fit for the mean x direction 
force. Because the Bayesian updating does not 
rely on a curve fit, the posterior distributions are 
not affected by the quality of the fit and are 
insensitive to the radial immersion (as 
expected); for Bayesian updating, the posterior 
distributions obtained at 25% and 50% RI agree 
closely (see Tables 2 and 4).  
 
TABLE 4. Force coefficient values obtained from 
linear regression and Bayesian updating using 
mean force values at 50% radial immersion. 
 

 Kt 
(N/mm2) 

Kn 
(N/mm2) 

Kte 
(N/mm) 

Kne 
(N/mm) 

Least 
squares 2504.6 1446.2 37.5 45.2 

Bayes 
updating 

N(2052,
67.8) 

N(1187,
68.9) 

N(30.4,
2.3) 

N(36.7,
2.6) 

 
CONCLUSIONS 
Bayesian updating of the force coefficients using 
the Markov Chain Monte Carlo (MCMC) method 
was presented. The single component 
Metropolis Hastings algorithm of MCMC was 
used. Bayesian inference provides a formal way 
of belief updating when new experimental data 
is available. Bayesian updating gives a posterior 

distribution that incorporates the uncertainty in 
variables as compared to traditional methods 
like the linear regression which give a 
deterministic value. By combining prior 
knowledge and experimental results, Bayesian 
inference reduces the number of experiments 
required for uncertainty quantification. Using 
Bayesian updating, a single test can give a 
distribution for force coefficients. The posterior 
distribution samples provide the covariance of 
the joint distribution as well. Experimental milling 
results showed that the linear regression 
approach did not give consistent results at 50% 
RI due to a poor quality of fit in the x direction 
mean forces, whereas Bayesian updating 
yielded consistent results at both radial 
immersions tested. Also, since Bayesian 
updating does not rely on a least squares fit, 
mean force data at different feed per tooth 
values is not required. 
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