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Abstract 
This paper evaluates uncertainty contributors for frequency response function (FRF) measurements obtained 
through impact testing. The FRF is an important estimator for the structural dynamics of tool-holder-spindle-
machine assemblies and is used as input to analyses of milling dynamics. Therefore, it is of interest to 
determine the confidence in the measurement results. In this work, we present a bivariate uncertainty analysis 
that considers statistical variations, imperfect calibration coefficients for the hammer and transducer, 
misalignment between the intended and actual force direction during impact, and mass loading (when using 
an accelerometer). An ellipsoid-shaped confidence region (at each frequency) is defined in the complex 
plane. 
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1 INTRODUCTION 
In this paper we identify and combine primary uncertainty 
contributors for tool point frequency response function 
(FRF) measurements completed using impact testing. By 
impacting the free end of the tool-holder-spindle-machine 
assembly with an instrumented hammer, a wide range of 
frequencies can be excited simultaneously. The resulting 
response is typically recorded using a low mass 
accelerometer, although non-contact transducers are also 
sometimes applied. The time domain responses are 
(Fourier) transformed into the frequency domain and the 
complex ratio of the vibration response to the input force 
is calculated to determine the assembly FRF. We focus 
on impact testing because it is the most common method 
used to quickly identify the tool point FRF required for 
milling process dynamics analyses. 
The paper is organized as follows. First, a statistical 
analysis of multiple impacts is completed where the 
bivariate nature of the complex data is respected. Next, 
the transducer calibration coefficient uncertainty is 
considered. Then, the errors caused by incorrect force 
direction and accelerometer mass loading are explored. 
Finally, the overall uncertainty is identified. The reader 
may note that this paper does not address sampling, 
filtering, or windowing issues and assumes that the 
voltages output by the transducers represent accurate 
estimates of the tool point dynamics, except for the 
uncertainty sources identified here. 

STATISTICAL ANALYSIS 
In this section we explore the statistical variation of 
multiple, single impact FRFs obtained from tests 
performed on a 19 mm diameter carbide rod inserted in a 
shrink fit tool holder (clamped in an HSK-63A spindle). 
Because the FRF is a complex-valued (or bivariate) 
function, an ellipsoidal uncertainty region with a 95% 
confidence level is identified at each frequency, rather 
than the more traditional single-dimensional confidence 
interval. The ellipsoidal region is defined by [1]: 

( ) ( )1
,( )

( 1)T
p n p

n px V x F
n p αµ µ−

; −
−

− − ≤
−

,   (1) 

where, x  is the vector of frequency-dependent mean 
values of the real and imaginary components of the 

sample FRFs, µ  is the outer points of the confidence 
region that define the ellipsoidal boundary, V is the 
covariance matrix, n is the number of samples, ; ,( )p n pFα −  
is the statistic of the F distribution with p and n-p degrees 
of freedom, the probability 1 α α− ( −1) , (α = 0.05 for 95% 
confidence) is the level of significance, and p is the 
number of variates (p = 2 for our analysis). Also, Eq. 1 
assumes normal distributions.  
As shown in Eq. 1, the covariance matrix, which includes 
the standard variances of the real and imaginary FRF 
components as well as the estimated covariance between 
them, plays an important role in obtaining the ellipsoid 
uncertainty region. The following steps follow the analysis 
detailed in [2] for constructing the covariance matrix.  
The standard uncertainties of the real and imaginary 
components are determined from Eqs. 2 and 3, where 

(FRF)Re  and (FRF)Im  are the means of n test samples 
at each frequency. The estimated covariance between 
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The covariance matrix is constructed by setting the on-
diagonal terms of the (2 x 2) matrix equal to the standard 
variances of the real and imaginary components and the 
off-diagonal terms equal to the covariance.  
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Note that each of the results in Eqs. 1-5 are frequency-
dependent; a new value is defined for each frequency 
within the measurement range of interest. Figure 1 shows 
the mean FRF and the ellipsoidal uncertainty regions for 
100 single impact tests carried out on the representative 
tool; the data is displayed in the complex plane. The 
reader may note that this is the voltage data only. The 
calibration coefficients are applied and their uncertainties 
treated in the next section. The small elliptical uncertainty 
regions indicate the measurements are highly repeatable. 

Figure 1: Nyquist plot of the mean FRF with ellipsoidal 
uncertainty regions (95% confidence level). 

CALIBRATION COEFFICIENT UNCERTAINTY 
In order to convert the measured voltages to appropriate 
engineering units, the calibration coefficients must be 
applied. In this section, we combine the inherent 
uncertainty in these values with the statistical 
measurement variation shown in the previous section. 
The FRF is expressed in terms of the calibration 
coefficients, Cx and Cf, for the accelerometer (or other 
transducer) and hammer and the corresponding voltages, 
Vx and Vf, by: 

x x

f f

C VFRF
C V

= .      (6) 

For the accelerometer and hammer applied in this study, 
the manufacturers provided ranges of ±1% for Cx and 
±2.7% for Cf. The standard uncertainties were estimated 
from these ranges by selecting an appropriate 
distribution. We assumed a uniform distribution with 100% 
confidence that the actual value falls within the specified 
range for both coefficients [3]. 
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Uncertainty in the calibration coefficients was included 
using a bivariate form of the Gaussian error propagation 
law [4]; a brief review of this method is now provided. 
Consider an arbitrary measurement function: 

( ) ( )1 2, ,..., my f X f x x x= =                  (9) 

that describes the relationship between a complex-valued 
quantity of interest, the measurand y, and m influence 
quantities. The function f is comprised of two scalar 
functions,  and , that evaluate the real and imaginary 

parts, respectively (i.e., 
1f 2f

( ) ( )1 2y f X f X= + ). The 
uncertainty in the values assigned to the input quantities 
x1 to xm is given by the (2m x 2m) matrix: 
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where the on-diagonal terms represent the standard 
variance of the associated inputs and the off-diagonal 
terms represent the covariance. Also, the first subscript 
for each term indicates the real (1) or imaginary (2) part of 
the selected input quantity. The uncertainty in y is 
expressed using a (2 x 2) covariance matrix: 

( ) ( ) ( ) ( )TV y J y V X J y= ,                (11) 

where  is the (2 x 2m) Jacobian matrix of the scalar 
parts of f  with respect to the scalar elements of X: 
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In [4], a convenient approach to obtaining  is 
introduced. The Jacobian matrix is described using a (2 x 
2) block structure that can be associated with the 
derivatives of f  with respect to individual bivariate inputs: 
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These blocks represent the bivariate sensitivity 
coefficients for the analysis. They can be related directly 
to the complex partial derivatives of f  by a matrix 
representation for complex numbers. For any complex 
number z a jb≡ + , the mapping: 

( )
a b

M z
b a

−⎡ ⎤
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⎣ ⎦

                 (15) 

generates a (2 x 2) matrix representation for z. Such 
matrices behave as complex numbers under the usual 
matrix operations and, provided the complex function 

 is analytic in the region of interest, the Cauchy-
Riemann relations apply to its partial derivatives so that:  
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Using Eqs. 15 and 16, the full Jacobian matrix is: 
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For the calibration coefficients, three uncertain input 
variables were considered in Eq. 6. Here, we have set the 
frequency domain voltage ratio Vx/Vf equal to Vr: 



( , , )r x fy FRF f V C C= = .                (18) 

The first step was to construct the input covariance 
matrix, where the upper left (2 x 2) terms depend on the 
statistical evaluation of the measured Vr and no 
correlation was considered between the real-valued 
accelerometer and hammer calibration coefficients. 
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Next, the Jacobian matrix was determined using Eq. 20. 
The output covariance matrix was then computed using 
Eq. 11. Finally, the ellipsoidal uncertainty region was 
defined using Eq. 1; see Fig. 2. It is observed that the 
relative influence of calibration coefficients is much larger 
than the statistical measurement variation and is, in fact, 
the largest contributor for the case presented here. 
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Figure 2: Ellipsoidal uncertainty region including the 
statistical variation and calibration coefficients. 

COSINE ERROR 
During impact tests, the force input direction is generally 
not perfectly aligned with the sensor direction. This leads 
to the well-known cosine error and subsequent bias. Any 
misalignment between the force and sensor directions 
causes the force which actually excites the system to be 
less than the force sensed by the hammer load cell. 
To evaluate typical force direction misalignment angles, 
tests were performed on a force dynamometer by three 
users in the three Cartesian directions. The misalignment 
angle, β , between the actual and intended direction for 
these tests was calculated from the dot product of the 
norms of the force along the selected axis and the 
resultant force; Eq. 21 depicts the x direction case. The 
mean angle for the three testers was 3.0 deg. 

1cos x h

x h

F F
F F

β − ⎛ ⎞⋅
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⎝ ⎠
                (21) 

Due to the angular misalignment, the FRF amplitude is 
under estimated (biased). The true FRF, FRFt, should be 
determined from the force component in the transducer 
direction, Ft. However, the measure FRF is actually 
computed using the force reported by the hammer load 
cell, Fh. The bias correction is realized using Eq. 23 [5], 
where u(β) is the standard uncertainty in the misalignment 
angle. Here we have assumed a standard uncertainty 
equal to the mean value of 3.0 deg. Figure 3 shows the 
measure and corrected FRF magnitudes. It is seen that 
the bias is quite small for this typical case. 
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Figure 3: Measure and corrected FRFs. It is seen that 
cosine error leads to an underestimated magnitude. 
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Detail A

Since the misalignment angle is not perfectly known, 
uncertainty propagation can be performed using the 
Gaussian uncertainty propagation law. The measurand 
was obtained by replacing Ft in the denominator of the 
FRFt equation with Fhcos(β). The bivariate error 
propagation was then carried out on two input variables: 
the measured FRF including calibration coefficient 
uncertainty and the misalignment angle. 

( ,t hFRF f FRF )β=                 (24) 

The same steps described in the previous section were 
again followed. First, the input covariance matrix was 
written as: 
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Next, the Jacobian matrix was described by Eq. 26. 
Finally, the output covariance matrix was computed using 
Eq. 11 and the ellipsoidal uncertainty region was defined 
using Eq. 1; see Fig. 4. By comparison to Fig. 2, it is seen 
that the uncertainty contribution is quite small. 
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Figure 4: Ellipsoidal uncertainty regions including cosine 
error, statistical variation, and calibration coefficients. 

MASS LOADING EFFECT 
Because the tool point dynamics are modified when the 
accelerometer is attached, the accelerometer mass must 
be considered. To correct the mass loading bias, we 
applied Eq. 27 [6], where ma is the accelerometer mass 
(0.93 mg with range of 1%), A± i indicates accelerance, 
or the complex ratio of acceleration to input force, and the 
c and m subscripts denote corrected and measured, 
respectively. Even though the bias is removed using this 
approach, uncertainty remains in the corrected result. 
Again, the ellipsoidal uncertainty region was established 
using the Gaussian uncertainty propagation law. To carry 
out the analysis, we converted the accelerance terms in 
Eq. 27 to receptances (complex displacement to force) 
using , where ω is the frequency (in rad/s) 
and R

2
iA ω R= − i

i is the receptance. See Eq. 28. 
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            (28) 

Note that the measured response in Eq. 28 is actually the 
corrected response from the cosine error analysis, which 
includes the uncertainties due to the statistical variation 
and calibration coefficients. The input variables to the 
propagation law were  (or , the corrected 
response from cosine error) and m

mR tFRF
a. The input covariance 

matrix was given by Eq. 30. The Jacobian matrix was 
computed and the same steps were again followed to 
identify the final frequency-by-frequency ellipsoidal 
uncertainty regions. See Fig. 5; the relative uncertainty 
contribution is again small. 
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Figure 5: Final uncertainty including statistical variation, 
calibration coefficients, cosine error, and mass loading. 

CONCLUSIONS 
In this work we evaluated uncertainty contributors for FRF 
measurements obtained using impact testing. We 
presented a bivariate uncertainty analysis that considered 
statistical variations, calibration coefficients, misalignment 
between the intended and actual force direction, and 
mass loading. An ellipsoidal confidence region at each 
frequency was defined in the complex plane. Additionally, 
the biases introduced by the hammer/vibration transducer 
misalignment and accelerometer mass loading were 
corrected. 
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