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a b s t r a c t

In addition to the precise kinematic motions of the machine tools and spindles, machining accurate parts
necessitates controlling the dynamic behavior of the tool tip with respect to the workpiece. High-fidelity
models of tool-tip dynamics can be used to select operating parameters that improve the accuracy by
reducing the effect of vibrations. To effectively model the tool-tip dynamics for arbitrary tool-and-holder
combinations using the receptance coupling substructure analysis (RCSA) technique, highly accurate
and numerically efficient models of the tool–holder dynamics are needed. In this paper, we present
a tool–holder model that incorporates a spectral-Tchebychev technique with the Timoshenko beam
equation to obtain a completely parameterized solution. Comparison of the tool–holder model to a
three-dimensional finite elements solution shows that the dynamic behavior is captured with sufficient
accuracy. The tool–holder model is then coupled with the experimentally determined spindle–machine
dynamics through RCSA to realize a model of the tool-tip dynamics. The coupled model is validated

through experiments for three different tool overhang lengths. The presented technique can be used to
predict the tool-tip dynamics for different tool-and-holder combinations and for optimization studies
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. Introduction

It is well-established in literature that the dynamic behavior
f the tool–holder–spindle–machine assembly, as reflected at the
ool tip, plays a significant role in determining the precision of

achining processes [1–6]. The process efficiency can also be lim-
ted due to the dynamic motions of the tool tip. These limitations
nclude unstable cutting conditions (chatter) caused by regener-
tion of waviness, or the over-cutting of the surface left by one
ooth of the vibrating cutter by subsequent teeth. It has been shown
hat the limiting axial depth of cut is directly dependent on the
ool-point dynamic response [7–12]. Similarly, even under stable
utting conditions, forced vibrations of the flexible tool can lead to
rrors in the location of the machined surface [1,2,4,5,13,14]. Again,
he magnitude of these errors depends on the tool-point dynamic
esponse. In both cases, if the dynamic response is known, models

an be applied to select preferred cutting conditions (spindle speed,
epths of cut, and feed rate) for increased stability and reduced
urface location error. Therefore, a method to predict the assembly
requency response using a minimum number of measurements
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s desired, particularly in situations where a number of different
ool–holder–spindle–machine combinations are available.

To illustrate the importance of considering surface location error
during stable machining), Canning et al. [15] completed a study to
uantify the relative contributions of geometric, thermal, contour-
ng, and cutting force errors to machined part dimensional errors on

high-speed computer numerically controlled machining center.
easurements were performed to independently evaluate the: (1)

uasi-static geometric errors using the laser ball bar [16]; (2) varia-
ions in geometric errors due to thermal effects; (3) spindle thermal
rowth errors using a capacitance gage nest; (4) two-dimensional
ontouring errors using a grid plate encoder; and (5) surface loca-
ion error, or SLE. The results are provided in Fig. 1 for a selected
ool–holder combination, where the individual contribution lev-
ls (worst case) were: 6 �m for spindle thermal growth; 17 �m
or geometric/contouring; and 70 �m for SLE. Clearly, the spindle
peed-dependent SLE is an important error contributor. This high-
ights the usefulness of an accurate model capable of predicting
he tool-point dynamic behavior so that spindle speeds that exhibit

mall surface location error can be selected a priori through milling
rocess models.

The interaction between the machine, spindle, tool–holder, and
ool dynamics influence the overall dynamic behavior of the sys-
em. To predict the assembly behavior in the presence of changing

http://www.sciencedirect.com/science/journal/01416359
http://www.elsevier.com/locate/precision
mailto:ozdoganlar@cmu.edu
dx.doi.org/10.1016/j.precisioneng.2008.03.003
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models are less effective. In this work, the tool–holder assembly
is modeled using the Timoshenko beam equations to incorporate
the shear effects.

Although obtaining the Timoshenko beam equations is straight-
forward, solving these equations poses considerable challenges.
ig. 1. Percent contribution of error sources to workpiece accuracy from Canning et
l. [15] study.

ystem components (i.e., different tool–holders, endmills, etc.),
receptance coupling substructure analysis (RCSA) method was

eveloped by Schmitz et al. [17–21]. This method enabled pre-
iction of the dynamic behavior at the tool tip by combining the
pindle–machine dynamics and tool–holder dynamics in the fre-
uency domain. Since accurate models of the dynamics of the
pindle–machine portion (including its energy dissipation behav-
or) are not generally available, impact testing was used to describe
ts dynamic behavior in the form of complex receptances.

The tool–holder portion, on the other hand, was modeled using
uler–Bernoulli (E–B) and Timoshenko beam models with constant
ross-sections [22–25]. At each discontinuity in the tool–holder
ylindrical geometry, a new free-free beam was defined. For tapered
ections (common to thermal shrink-fit tool–holders), the taper
as approximated as a number of constant diameter sections (the

traight beam assumption). The full collection of free-free beams
as then coupled using RCSA. This result was finally coupled to the

pindle–machine receptances. While reasonable agreement with
xperiments was obtained, the Euler–Bernoulli models suffer from
he well-known natural frequency errors for stubby (non-slender)
eams due to the neglected shear effects. Although the Timoshenko
eam model incorporates shear effects and predicts the natural fre-
uencies and mode shapes more accurately, its numerical solution
through finite elements method) was cumbersome to implement
n an otherwise analytical approach. Furthermore, it was necessary
o repeat the numerical solution for each change in the model (e.g.,
ool overhang length, tool diameter, and holder design). As such, an
mproved model of the tool–holder assembly with increased accu-
acy and numerical efficiency is needed for predicting the tool-tip
ynamics for different tool-and-holder combinations, particularly
or conducting optimization studies. The purpose of this paper is
o extend the prior RCSA tool-point frequency prediction efforts
17–21] through an improved tool–holder modeling technique. The
CSA method is composed of four fundamental steps: (1) a stan-
ard geometry artifact is inserted in the spindle and direct and
ross frequency response functions (FRFs) are recorded by impact
esting; (2) the portion of the standard artifact beyond the flange
s removed in simulation (inverse RCSA or decomposition) to iso-
ate the spindle–machine response; (3) a model of the desired
ool–holder is developed; and (4) the FRF of the model is coupled
o the spindle–machine FRF.

In this work, a new method for the tool–holder model (defined
n step (3) above) is described. This method uses Timoshenko beam
quations to model the complete tool–holder, including the actual
apered geometry. A novel spectral-Tchebychev technique is used
or simplified, numerically efficient solution of the boundary-value
roblem. This technique allows different tool–holder geometries to
e modeled without the need for re-derivation of the solution. The
ccuracy of different modeling techniques using Euler–Bernoulli
nd Timoshenko beam models is assessed by comparing the natu-
al frequencies and mode shapes to those from a three-dimensional

nite elements solution. The validity of approximating the tapered
eometry with equivalent straight beams is also evaluated. The
eveloped model is then coupled to the spindle–machine dynamics
hrough RCSA and the results are validated through experimenta-
ion for three different tool overhang lengths.
ering 33 (2009) 26–36 27

. Receptance coupling substructure analysis (RCSA)
ethod

A brief review of the three-component RCSA model from
18] is provided in this section. Consider the tool–holder and
pindle–machine assembly shown in Fig. 2. First, a standard arti-
act is inserted in the spindle (in place of the tool–holder) and a set
f modal tests are conducted. An inverse RCSA procedure is then
onducted to remove the effect of the standard artifact and thus to
solate the spindle–machine receptancesG33 [18]. Second, the free-
ree response of the tool–holder portion is obtained from a model.
he corresponding RCSA equation for the assembly receptances at
he tool-point is obtained by:

1) determining the free-free tool–holder direct receptances G11
and G22, and the cross receptances G12 and G21 at each end,
where

Gij =

⎡
⎣
xi
fj

xi
mj

�i
fj

�i
fj

⎤
⎦ (1)

describes the subassembly FRFs for displacements xi and rota-
tions �j in response to applied momentsmj and forces fj;

2) coupling these receptances to the direct receptances G33 at the
free end of the spindle–machine subassembly as[
H11 L11
N11 P11

]
= G11 − G12(G22 + G33)−1G21. (2)

In this equation, H11(ω) = (X1/F1) is the assembly FRF required
for milling stability and surface location error analysis, whereX1
is the lateral translation at assembly coordinate 1 and F1 is a har-
monic force applied at coordinate 1; L11(ω) = (X1/M1) describes
the displacement at coordinate 1 due to a unit moment M1
applied at coordinate 1; andN11(ω)(�1/F1) describes the angu-
lar motion�1 at coordinate 1 due to the force F1; and P11(ω) =
(�1/M1) describes the rotation at coordinate 1 due to the
moment applied at coordinate 1.

. Tool–holder model using the spectral-Tchebychev
echnique

Cutting tools and tool–holders used in milling operations
re generally characterized by non-slender geometries. For such
tubby structures, the shear effects on dynamic behavior become
ore prominent and the commonly used Euler–Bernoulli beam
Fig. 2. Three-component RCSA model—example coordinate definitions.
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ince an analytical solution of the associated eigenvalue prob-
em does not exist, normal-mode expansion (mode summation)
rocedure cannot be directly applied. This section introduces a
ew approach, the spectral-Tchebychev technique, for solving the
imoshenko beam equations including varying cross-sectional
eometry, such as the tapered section of a shrink-fit tool–holder.
o reduce the numerical inefficiencies arising from discontinuities,
he sections of the tool–holder assembly with different geomet-
ic and material properties are modeled individually [26]; and a
omponent-mode synthesis technique is applied to analytically
ombine those models. Lastly, the solution is transformed from
he time domain to frequency domain to allow its usage with
CSA.

.1. Tchebychev polynomials and Tchebychev expansion

Tchebychev polynomials are a set of recursive orthogonal poly-
omials that can be described as

¯k(x) = cos(k cos−1(x)) for k = 0 . . .∞, (3)

here k is an integer. Although defined for all x values, Tcheby-
hev polynomials are a stable representation only on the (−1,1)
nterval. In this interval, they form a complete set, which means
hat any function y(x) can be represented by a series expansion
sing Tchebychev polynomials. Since in beam problems the physi-
al dimension along the length of the beam is on the interval (0, L),
mapping (scaling) between (0, L) to (−1,1) is first applied to shift

he domain of the polynomials. The scaled Tchebychev polynomials
ill be denoted as Tk(x). First six Tchebychev polynomials are plot-

ed in Fig. 3. Consider a function y(x) in the domain 0 ≤ x ≤ 1. This
unction can be expressed using a Tchebychev series expansion as

(x) =
∞∑
akTk−1(x). (4)
k=1

ince for any square-integrable function, the Tchebychev expansion
onverges exponentially [27], an N-term representation can rep-
esent the function with sufficient accuracy. Therefore, a function

b∫

Fig. 3. Plots and polynomial representations of first
ering 33 (2009) 26–36

(x, t) can be represented in the Tchebychev space with an N-vector
{ak}.

It can be shown that the Tchebychev coefficients a can be deter-
ined from

= �F y, (5)

here y is obtained by sampling the continuous function y(x) at
ertain intervals, and�F is the forward transformation matrix. This
elationship can also be expressed as

= �B a, (6)

here �B = � −1
F is the backward transformation matrix.

Another important property of the Tchebychev expansions
s that the derivatives of the Tchebychev polynomials can be
xpressed as a linear combination of lower-order Tchebychev poly-
omials. Therefore, if the Tchebychev expansion of n th derivative
f y(x) is given as

(n)(x) =
N∑
k=1

a(n)
k
Tk−1(x), (7)

hen a relationship between an and a can be written as

n = Dn a, (8)

here D is the derivative matrix. Using the forward and backward
ransformations, this expression can be represented in the physical
sampled) domain as

(n) = Qn y, where Qn = �B D
n �F, (9)

nd Qn is referred to as the n th derivative matrix. If the N-term
chebychev expansion describes the function y(x) exactly, than
(n)(x) obtained from Eq. (9) will be exact.
Similarly, the inner product of two functions that are expressed
y Tchebychev expansion can be written as

x=1

x=0

y(x) z(x) dx = yT V z, (10)

six Tchebyshev polynomials between (−1,1).
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here V is the inner product matrix and the superscript ‘T’ indicates
ranspose. If the N-term expansion of functions y and z are exact,
hen this inner product is calculated exactly.

It should be noted that the matrices D and V are known. In addi-
ion, for a specific sampling scheme, �F and �B can be determined.
he forward and backward transformation matrices assume sim-
ler forms if the sampling is performed at the Gauss–Lobatto points
27].

.2. The spectral-Tchebychev technique for the Timoshenko beam
odel

A non-dimensional form of the Timoshenko beam equations can
e written as

′′ − ′ − � ÿ = �f (x, t), 0< x < 1, (11)

1
�
 ′′ + (y′ − ) − 	

�
 ̈ = 


�
� (x, t), 0< x < 1, (12)

here y(x, t) is the flexural displacement, (x, y) is the slope, f (x, t)
s the applied force, and � (x, t) is the applied moment. The con-
tants used in this equation can be given as

= mL2ω2

k′GA
, 	 = Jω2L2

EI
, � = −L

k′GA
,

� = k′GAL2

EI
, 
 = −L2

EI
, (13)

here m is the mass per unit length, L is the length of the beam,
is the reference frequency for nondimensionalizing the time, k′

s the shear factor, G is the shear modulus, A is the cross-sectional
rea, J is the polar moment of inertia, E is Young’s modulus, and I is
he area moment of inertia in bending.

The generic boundary conditions, which are assumed to be lin-
ar for the following derivation, are given as

yijy+ B ij = ˛(t), for i = 0,1 and j = 1,2, (14)

here By and B� are differential operators for displacement and
lope, respectively, ˛(t) is the time-dependent right-hand side of
he boundary conditions, and i represents the two boundaries
ends) of the beam. For each end, two boundary conditions (j = 1,2)

ust be satisfied.
The spectral-Tchebychev method that will be used to solve the

imoshenko beam equations is based on describing the flexural
isplacement and slope using Tchebychev series expansion as

(x, t) =
N∑
k=1

ak(t)Tk−1(x),  (x, t) =
N∑
k=1

bk(t)Tk−1(x), (15)

here ak and bk are the k th coefficients of the Tchebychev expan-
ion, and Tk(x) is the k th (scaled) Tchebychev polynomial. Using
chebychev expansion, the sampled version of the boundary value
roblem can be given as

2y− Q1 − �ÿ = �f , (16)

1
�
Q2 + (Q1y− ) − 	

�
 ̈ = 


�
�, (17)

ubjected to boundary conditions

eT
1(B̄yjy+ B̄ j ) = ˛0j, j = 1,2,

eT
N(B̄yjy+ B̄ j ) = ˛1j, j = 1,2,
here Qn is defined in Eq. (9), f is the spatially discretized version
f f (x, t), and B̄ is the (matrix) boundary operator in the Tchebychev
pace corresponding to the differential boundary operator Bij . Here
t was assumed that the same number of polynomials (N) were

�

S

P

ering 33 (2009) 26–36 29

sed to express both y and  . The subscript p of ep prescribes the
ocation of the boundary, where p = 1 indicates x = 0 and p = N
ndicates x = 1. The p th element of the vector ep is unity, and all
ther elements are zeros.

The solution of Eqs. (16) and (17) will be obtained by using the
eighted-residuals method. In this approach the residues associ-

ted with Eqs. (16) and (17) are defined as

y = Q2y− Q1 − �ÿ− �f , (18)

 = 1
�
Q2 + (Q1y− ) − 	

�
 ̈ − 


�
�. (19)

t is then required that the inner product of the residues with arbi-
rary weighting functions � vanishes, viz.,

L

0

�y(x)�y(x) dx = 0,

∫ L

0

� (x)� (x) dx = 0. (20)

rom Eq. (10), these inner products can be written in the Tchebychev
pace as

L

0

�y(x)�y(x) dx = �T
y
V�y,

∫ L

0

� (x)� (x) dx = �T
 
V� . (21)

ubstituting �y and � , we obtain

T
y
[V((Q2y− Q1 ) − �ÿ− �f )] = 0, (22)

T
 

[
V

(
1
�
Q2 + (Q1y− ) − 	

�
 ̈ − 


�
�

)]
= 0. (23)

efining,

=
[
y
 

]
, � =

[
�
y

�
 

]
, Vs =

[
V 0
0 V

]
, F =

[
f
�

]
,(24)

he boundary-value problem can be written as

TVs(Msq̈+ Ksq− BsF)0, (25)

here

s =
[−�˘ 0

0
−	
�
˘

]
, Ks =

[
Q2 −Q1

Q1
1
�
Q2 −˘

]
,

Bs =
[
�˘ 0

0



�
˘

]
, (26)

nd ˘ indicates the identity matrix. An effective way of imposing
he boundary condition is to express y using projection matrices
basis recombination) as

= P z + R˛, (27)

here, for M boundary conditions, P and R are 2N × (2N −M) and
N ×M projection matrices, respectively, and z is an (2N −M) vec-
or. Numerically, the P and R matrices are determined through
ingular-value decomposition.

A special case of the weighted residuals method (commonly
eferred to as Galerkin’s method) can be realized by requiring the
eighting functions � to be from the admissible functions, i.e.,

hose that satisfy the geometric (homogeneous) boundary condi-
ions. Considering the projection matrices above, such weighting
unctions can be expressed as � = P�̄. Thus, Eq. (25) becomes
¯ T
PTVs(Ms(P z̈ + R ¨̨ ) + Ks(P z + R˛) − BsF) = 0. (28)

ince these equations must be satisfied for arbitrary �̄,

TVsMsP z̈ + PTVsKsP z = PTVsBs F − PTVsMsR ¨̨ − PTVsKsR˛. (29)
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his equation is in the general form of

z̈ + Kz = F, (30)

hich can be numerically integrated using the state-space
pproach.

It is important to note here that for a self-adjoint system such
s that in Eqs. (11) and (12), the system matrices obtained through
he spectral-Tchebychev technique are symmetric. The symmetry
s critical for numerical stability of the solution.

.3. Spatially varying parameters

In the preceding derivation, the parameters were considered
s constants with respect to the spatial variable x. However, some
arameters such as m (and thus � in Eq. (11)) and I vary spatially
long various sections of the tool–holder assembly. The applica-
ion of the spectral-Tchebychev technique must be generalized to
andle such geometry variations.

For instance, consider� in Eq. (11) to vary spatially, i.e.,� = �(x).
he component �(x) ÿ of Eq. (18) will be evaluated in the inner
roduct (Eq. (21)) as

L

0

�y(x)�(x) ÿ(x) dx = �T
y
V� ÿ, (31)

here V� is a symmetric matrix that includes the spatial variation
ssociated with �. Accordingly, Eqs. (22) and (25) are rewritten as
T
y
[V(Q2y− Q1 ) − V� ÿ− �V f ] = 0, (32)

T(Ms�q̈+ VsKsq− VsBsF) = 0, (33)

espectively, where

s� =
[−V� 0

0
−	
�
˘

]
. (34)

hese changes are reflected in the ÿ and ¨̨ components of Eq. (29)
s

TMs�P z̈ and PTMs�R ¨̨ , (35)

espectively.

.4. Component mode synthesis
Discontinuities in geometric and material parameters can con-
iderably reduce the numerical efficiency of spectral solutions. To
nsure the numerical efficiency and accuracy of the tool–holder
odel in the presence of discontinuities, the tool–holder geome-

ry will be divided into individual continuous sections as shown

Fig. 4. Sections of the tool–holder assembly.

m
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t
d
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t

ering 33 (2009) 26–36

n Fig. 4. The complete model will be realized by connecting the
ections through a component mode synthesis technique.

For each section, the boundary-value problem is formulated
sing a separate set of Tchebychev polynomials, resulting in dif-

erent deflection vectors (q), inner product matrices (Vs), and
erivative matrices (Qn). Considering the compatibility conditions
equivalency of displacements, slopes, forces and moments) at
ommon section boundaries, the global boundary conditions and
lobal mass, stiffness and forcing matrices are then obtained. Using
he global boundary conditions matrix, the projection matrices are
ritten as

G
= PG zG + RG ˛G, (36)

here q
G

is the global deflections and slopes including those of
ach sections, PG and RG are the global projection matrices, and
G is the global (combined) non-homogenous part of the boundary
onditions (such as external forces).

Following the same procedure as before, and composing the
lobal mass and stiffness matrices, the system equation (corre-
ponding to Eq. (29)) is written as

T
GMGPG z̈ + PT

GKGPG z = PT
GBG F − PT

GMGRG ¨̨ − PT
GKGRG ˛. (37)

.5. Frequency-domain solution

In order to couple the model-based solution of the tool–holder
ynamics with the experimentally determined spindle–machine
ynamics through the RCSA technique, the dynamics of the
ool–holder assembly must be represented in the frequency
omain. The frequency-domain solution (i.e., the FRF) of the
ool–holder dynamics will be obtained from the time-domain dis-
retized differential equation presented in Eq. (37).

Since the RCSA technique requires the receptances only at the
ection ends, in deriving the FRF from the model the distributed
orce F in Eq. (37) will be set to zero. Instead, a unit force (and

oment) will be considered at the section boundaries through
non-zero ˛ utilizing force (and moment) boundary conditions.

aking the Laplace transform of both sides of Eq. (37) with F = 0
ields,

mzs
2 + kz)Z(s) = −(m˛s2 + k˛)˛(s), (38)

here Z(s) and˛(s) are the Laplace domain variables corresponding
(t) and ˛(t), and

z = PT
GMGPG, kz = PT

GKGPG, m˛ = PT
GMGRG,

k˛ = PT
GKGRG. (39)

riting Q (s) = P Z(s) + R˛(s) from Eq. (27) and substituting this
nto Eq. (38), after manipulation, we obtain

(s) = [−P(mzs2 + kz)−1
(m˛s2 + k˛) + R]˛(s). (40)

herefore, the transfer matrix can be written as

(s) = [−P(mzs2 + kz)−1
(m˛s2 + k˛) + R].

he frequency response matrix can then be obtained by substitut-
ng s = jω into this equation as

(jω) = −P[mz(jω)2 + kz]
−1

[m˛(jω)2 + k˛] + R. (41)

he frequency response matrix in Eq. (41) includes FRFs between

he boundaries of each sections of the tool–holder. The required
irect and cross receptances from the two ends of the tool–holder
G11, G12, G21, and G22 in Eq. 2) can be extracted from Eq. (41)
y selecting rows and columns associated with each end of the
ool–holder.
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where rE and rT are the mode shapes from the E–B and Timo-
shenko solutions, respectively, and L is the length of the tool–holder
assembly. The difference between the first four mode shapes
ig. 5. The geometric dimensions (in mm) of tool–holder used during modeling and
xperimental validation.

. Comparison of tool–holder modeling techniques

In this section, the accuracy of different modeling techniques are
ssessed. The purpose of this assessment is to provide a guideline
n striking the tradeoff between solution accuracy and the compu-
ational burden associated with the solution.

.1. Euler–Bernoulli, Timoshenko, and FEM solutions

Due to its simplicity, the Euler–Bernoulli beam equation is com-
only used to model beams, such as those of the individual sections

f the tool–holder in Fig. 4. It is well known, however, that as
he length-to-diameter ratio reduces, the shear effects become
ncreasingly more important, and the Euler–Bernoulli solution
ecome progressively less accurate. In those cases, the Timoshenko
eam equation that incorporates the shear effects is applied. How-
ver, the Timoshenko beam solution adds considerable complexity
ince a closed-form solution of the associated eigenvalue prob-
em does not exist and, thus, the normal-mode summation cannot
e directly used. The spectral-Tchebychev technique described
reviously can be applied to solve the Euler–Bernoulli and Tim-
shenko beam equations in the presence of varying geometric
arameters.

In this section, comparison between the use of Euler–Bernoulli
nd Timoshenko beam equation in solving the tool–holder assem-
ly dynamics is presented. The geometric dimensions of the
ool–holder used during this comparison are given in Fig. 5. Table 1
rovides the material properties for the steel holder and carbide
ool. The solutions are compared to those from a three-dimensional
nite elements model (FEM) solution obtained using Solid 187
etrahedral structural solid elements in ANSYS® Version 10. The
omparisons were made in terms of the natural frequencies and
ode shapes for both free-free and fixed-free boundary condi-

ions.
The FEM model of the tool–holder assembly is shown in Fig. 6.

convergence study was completed for the FEM solution by incre-
entally increasing the mesh density and comparing the first five

atural frequencies. The appropriate mesh density was selected
hen the change in natural frequencies was reduced to below
.25%, resulting in 55,245 elements.
A similar convergence study was required for the spectral-

chebychev solution. For each of the Euler–Bernoulli and
imoshenko-based solutions, the number of polynomials used for
ach sections of the tool–holder assembly was increased from eight,

able 1
aterial properties of the tool (carbide) and the holder (steel)

Steel Carbide

oung’s modulus, E (GPa) 200 550
ensity, 
 (kg/m3) 7850 14500
oisson’s ratio, � 0.29 0.22
ering 33 (2009) 26–36 31

nd the relative differences (�) between each of the first five natural
requencies were calculated as

N (%) = |ωN −ωN − 1|
ωN

× 100,

hereωN is the natural frequency calculated while using N polyno-
ials for each section. The relative difference reached a value of less

han 1 × 10−10 when the polynomial number was increased to 14.
ccordingly, 14 polynomials were selected to model each section
f the tool–holder assembly.

Fig. 7(a) provides the magnitude of the driving-point frequency
esponse functions (receptances) of the tool–holder assembly
odel from the tool tip using the Euler–Bernoulli and Timoshenko

eam models for free-free boundary conditions. The natural fre-
uencies obtained from the FEM solution are also indicated with
ashed vertical lines. Fig. 7(b) gives the same plots for the fixed-free
oundary conditions. The beam solutions were obtained using the
pectral-Tchebychev technique described above, and modal damp-
ng ratios less than 0.1% were considered. Table 2 lists the resulting
atural frequencies for the first four bending modes. The difference
etween the FEM solution and each of the E–B and Timoshenko
olutions are given in parenthesis as a percentage. Fig. 8 gives the
ode shapes of E–B and Timoshenko solutions for both free-free

nd fixed-free boundary conditions.
It is seen from Fig. 7(a) and (b) and Table 2 that the Timo-

henko beam model produces natural frequencies that are very
lose to those from the FEM model. For the free-free boundary con-
ition, the largest error of the Timoshenko beam model is 6.3%,
hich is seen for the first mode. This error is attributed to the

act that some of the sections of the tool–holder assembly (such
s Sections 3 and 4) are too stubby to be modeled as beams. The
aximum error reduces to 3.7% for the case of the fixed-free bound-

ry conditions. Since the fixed-free model reflects the behavior of
he tool–holder within the tool-tip dynamics response [18] more
losely, the tool–holder model can be considered sufficiently accu-
ate.

Fig. 7(a) and (b), Table 2, and Fig. 8 show that the E–B solution
esults in large errors in natural frequencies and mode shapes, espe-
ially at higher modes. The difference between the mode shapes of
he E–B and Timoshenko solutions are quantified by calculating a
orm as

r (%) =
∫ L

0
|rE(x) − rT(x)| dx∫ × 100, (42)
Fig. 6. The three-dimensional finite elements model of the tool–holder.
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Fig. 7. Comparison of the tool–holder dynamics with E–B and Timoshenko beam models for (a) free-free boundary conditions and (b) for fixed-free boundary conditions.
The natural frequencies from the FEM solution are indicated with dashed lines.

Table 2
The differences between the Euler–Bernoulli (E–B)/Timoshenko beam solutions and the FEM solution for the first four bending frequencies (in Hz) for the free-free and
fixed-free boundary conditions

Free-free Fixed-free

FEM E–B Timoshenko FEM E–B Timoshenko

Mode 1 3,457 3,900 (12.8%) 3,674 (6.3%) 1,187 1,242 (4.6%) 1,201
(1.2%)

Mode 2 10,688 12,700 (18.8%) 10,692 (0.1%) 3,825 4,394 (14.9%) 3,967
(3.7%)

Mode 3 16,727 23,049 (37.8%) 17,001 (1.6%) 10,357 12,995 (25.5%) 10,297
(0.6%)

M 4 (1.6%
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ode 4 24,670 39,895 (61.7%) 25,07

ere seen to be 3.8%, 10.5%, 27.2%, and 43.4%, respectively,
or the free-free boundary conditions, and 2.9%, 7.3%, 20.3%,
nd 36.6%, respectively, for the fixed-free boundary conditions.
he inaccuracy of the E–B solution would also increase with
educed length-to-diameter ratios. Fig. 9 gives the percent dif-
erence (taking the Timoshenko beam solution as the reference)
etween the E–B and Timoshenko beam solutions for varying

ength-to-diameter ratio of the tool without changing the other

ections of the tool–holder assembly. As expected, when the
ength-to-diameter ratio of the tool increases, the two solutions
pproach one another. The differences do not approach zero due
o the effect from the other sections of the tool–holder assem-
ly.

o
a
d
s
t

ig. 8. The first four mode shapes of the tool–holder assembly with E–B (dashed) and T
xed-free boundary conditions. The encircled numbers correspond to the sections of the
) 16,106 23,243 (44.3%) 16,405
(1.9%)

.2. Straight beam approximation

A simplification to the tool–holder model can be attained by
pproximating the tapered sections of the tool–holder assembly
ith straight beams of equivalent diameters. To assess the accuracy

f such an approximation, Sections 2–4 in Fig. 4 are approximated
s straight beams with an average diameter, which is calculated as
he arithmetic average of the diameters of the beginning and end

f the taper. Using the spectral-Tchebychev technique presented
bove, and considering each section as a Timoshenko beam, the
ynamics of the tool–holder assembly was then modeled. It was
een that the difference between the natural frequencies for the
apered model and the equivalent straight model were very close,

imoshenko beam models for (a)–(d) free-free boundary conditions and (e)–(f) for
assembly.
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ig. 9. The percent difference between the natural frequencies of the E–B and Tim
ree-free and (b) fixed-free boundary conditions (different y-scales).

esulting in less than 1% error for the first three modes for both the
ree-free and fixed-free boundary conditions.

To interpret this observation, the natural frequencies of a
apered and an equivalent straight beam are compared for increas-
ng diameter ratios (ratio of the diameters of the beginning and
nd sections), while keeping the length of the tapered section
3.33 times the larger diameter) and material properties (steel, see
able 1) constant. In both cases, the beams are modeled using the
imoshenko beam equations, and the spectral-Tchebychev tech-
ique was used for the solution. Fig. 10 gives the percent difference
etween the natural frequencies of the equivalent straight and
apered beams (taking the tapered beam as a reference) for both
ree-free and fixed-free boundary conditions. As expected, the
ifference is very small in the vicinity of diameter ratio of 1. How-
ver, a the diameter ratio increases, the error from the straight
eam assumption rapidly raises. Since the diameter ratios for the
ool–holder sections were close to 1 (1.05, 1.07, and 1.12, respec-
ively, for the Sections 3–5), and since only a small portion of the
ool–holder was tapered, the error from the straight beam approx-
mation was negligible.

. Experimental validation

In this section we provide comparisons of tool-point FRF pre-
ictions and measurements for three carbide tool blank-tapered

hrink fit tool holder combinations clamped in a rolling element
earing, high-speed spindle (HSK-63A holder–spindle interface).
s noted in Section 2, there are two primary tasks required for

he RCSA procedure. The tool–holder is first modeled as a free-free
eam as described in Section 3. This model is then coupled to the

a
F
q

ig. 10. The percent difference between the natural frequencies of a tapered and an equiva
-scales).
ko solutions with varying length-to-diameter ratio of the tool (Section 6) for (a)

pindle–machine receptances using the approach shown in Eq. 2.
In order to determine the spindle–machine receptances (e.g.,

33 in Eq. (2)) a (cylindrical) standard artifact is inserted in
he spindle and direct and cross translational FRFs are mea-
ured on the artifact. These translational FRFs are then used
o calculate the rotational receptances at the free end of the
rtifact–spindle–machine assembly. Given this information, the
pindle–machine receptances are obtained by the inverse RCSA
rocedure [18] where the portion of the standard holder beyond
he flange is removed in simulation using a rearrangement of Eq.
2) to isolate the spindle–machine receptances (given the recep-
ances of the artifact–spindle–machine and a free-free model of
he artifact).

When using this procedure, variations in the artifact direct
nd cross FRF measurements propagate to the tool-point FRF pre-
ictions. Although a rigorous uncertainty analysis for the RCSA
rocedure has not been completed, repeated artifact measure-
ents were conducted to identify the influence of the FRF data

pread on the predictions. For these tests, a laser vibrometer
as used to record the direct and cross artifact–spindle–machine

esponse to hammer impacts. Four total data sets were recorded;
ach data set was composed of 10 groups of 10 repetitions and the
rtifact was removed from the spindle and replaced prior to collect-
ng the next data set. The removal and replacement of the artifact
as completed to incorporate potential dynamic non-repeatability

rom the HSK-63A clamping procedure.

Fig. 11 shows the mean and frequency-dependent standard devi-

tion (�) of the real and imaginary parts for the artifact direct
RFs from the first data set (2� intervals are shown at each fre-
uency). A number of spindle modes are observed, including the

lent straight beam for (a) free-free and (b) fixed-free boundary conditions (different



34 S. Filiz et al. / Precision Engineering 33 (2009) 26–36

F
F

r
m
F
m
s
r
t
o
w
a
t
c
t
c
C
a
l
n

f
s
t
v
s
a
a
t

Fig. 13. Means of four data set artifact direct FRFs. Limited frequency range shows
differences between selected spindle mode due to removal and re-clamping.
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ig. 11. Mean and 2� standard deviation intervals for first data set artifact direct
RFs.

igid body modes at 74 Hz and 135 Hz. The clamped-free vibration
odes of the artifact are well outside the bandwidth of interest.

ig. 12(a) displays the ratio of � to the corresponding mean FRF
agnitude (expressed as a percentage) for the four individual data

ets. Higher values are seen in the region of the lightly damped
igid body modes and in the 1500–2000 Hz range. Additionally,
he local peaks between data sets are frequency shifted relative to
ne another and have different amplitudes. If the dynamic system
as not changing (from removal and re-clamping of the artifact)

nd the variation was due solely to impact testing inconsistency,
he noise level would be expected to diminish as more data was
ollected. However, Fig. 12(b) shows that this is not the case. Here,
he � to FRF magnitude ratio was calculated for all four data sets
ombined and is superimposed on the individual data set results.
learly, the noise level is not reduced. In fact, the ratio exceeds 100%
t 10 Hz (i.e., the standard deviation in all 40 sets of 10 averages is
arger than the mean FRF magnitude at this frequency; this point is
ot shown for scaling purposes).

To emphasize what we believe to be dynamic non-repeatability
rom one set to the next, Fig. 13 shows the mean of the four data
ets for the 1500–2000 Hz frequency range. We do not believe
he variations in this spindle mode are caused by hammer impact

ariations, vibrometer misalignment (note that the vibrometer and
pindle–machine were not moved between data sets), or data
cquisition/filtering/analysis (the same sampling frequency, filters,
nd sample length were used for each test). Rather, we believe
he variations to be the result of actual changes in the clamped

t
r
p

e

ig. 12. Ratio of standard deviation, �, to artifact FRF magnitude (%): (a) for four individ
ndividual data sets.
ig. 14. 77.2-mm overhang tool blank prediction results determined using four arti-
act data sets.

ssembly dynamics. While the differences are small, in the RCSA
rocedure the direct and cross artifact–spindle–machine recep-

ances are used to first identify the spindle–machine response. This
esult is then coupled to the tool–holder model to predict the tool-
oint dynamics.

To explore the influence of artifact FRF variations on this process,
ach of the four data sets was used to independently determine

ual data sets and (b) for all four data sets combined (heavy line) superimposed on
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Fig. 15. For the dominant mode of 77.2-mm overhang tool blank-holder (a) comparison be
with 2� intervals (five sets of 10 averages) superimposed on four predictions.

Fig. 16. Comparison between four predictions and measurement (heavy line) for
69.6-mm overhang tool blank-holder.
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for modeling tool–holder dynamics.
ig. 17. Comparison between four predictions and measurement (heavy line) 81.2-
m overhang tool blank-holder. The first data set overpredicts the amplitude.
he tool-point response using the same carbide tool blank-tapered
hrink fit holder model. The tool–holder dimensions are provided
n Fig. 5. The steel holder and carbide tool blank material properties
re given in Table 1. The prediction results for the 77.2 mm overhang

•

tween four predictions and measurement (heavy line) and (b) measurement mean

ool blank are provided in Fig. 14. A comparison between the pre-
ictions and measurement for the frequency range from 650 Hz to
50 Hz (to better view the dominant mode) is given in Fig. 15(a).
he agreement is good with the four predictions distributed about
he measurement result. To qualify this variation, we inserted and
emoved the tool–holder from the spindle between five subsequent
easurements (10 averages for each test). The overall measure-
ent mean and frequency-dependent standard deviation (2�) are

uperimposed on the predictions in Fig. 15(b). Although the 2�
ntervals do not overlap with the predictions at all frequencies, the
isagreement is quite reasonable for the a priori predictions.

As a final step, predictions and measurements were completed
or two additional tool overhang lengths while using the same
ool blank and shrink fit tool–holder. Figs. 16 and 17 display the
redictions from the four artifact–spindle–machine data sets for
ool overhang lengths of 69.6 mm and 81.2 mm, respectively,
uperimposed on the tool-point measurement. Good agreement
s observed, although the first artifact–spindle–machine data set
rediction overestimates the tool-point response amplitude for the
1.2 mm overhang case.

. Conclusion

An accurate and numerically efficient model of the tool–holder
ynamics is derived. The tool–holder model is coupled with the
xperimentally determined spindle–machine dynamics through
CSA to predict the tool-tip dynamics. The simple, fully parame-
erized form of the tool–holder model enables tool-tip dynamics
redictions for different tool-and-holder selections without the
eed for extensive experimentation. The model will also enable
ptimization of tool-tip dynamics by facilitating the selection of
ptimum tool–holder geometry and/or material. The specific con-
lusions obtained from this work are as follows:

Through comparison with an FEM solution, the tool–holder
model was shown to be accurate. The Timoshenko beam equation
was shown to be more applicable than Euler–Bernoulli solution
The straight beam approximation for modeling the tapered
sections of the tool–holder was investigated. Although the
approximation was applicable for the considered geometry, it
becomes invalid with increasing diameter ratio (taper slope).
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The coupled machine–spindle–tool–holder model was validated
through experimentation for three different tool lengths. The
variations seen in repeated experiments was concluded to arise
from the changes in the clamped assembly dynamics. The model
was seen to successfully capture the tool-tip dynamics within the
experimental variations.
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