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INTRODUCTION 
Many years of machining simulation and 
measurement research have led to a comprehensive 
understanding of milling process dynamics. As early 
as 1946 Arnold studied chatter in steel machining [1]. 
Doi and Kato described self-excited vibrations using 
time-delay differential equations in 1956 [2]. During 
this time, the notion of “regeneration of waviness” was 
promoted as the feedback mechanism (time-delay 
term), where the previously cut surface combined 
with the instantaneous vibration state dictates the 
current chip thickness, force level, and corresponding 
vibration response [3-5]. This work resulted in 
analytical algorithms that were used to produce the 
now well-known stability lobe diagram that separates 
the spindle speed-chip width domain into regions of 
stable and unstable behavior. 

Time domain simulation offers a powerful tool for 
exploring milling behavior and has been applied to 
identify instability [6]. For example, Zhao and 
Balachandran implemented a time domain simulation 
which incorporated loss of tool-workpiece contact and 
regeneration to study milling [7]. They identified 
secondary Hopf bifurcation and suggested that 
“period-doubling bifurcations are believed to occur” 
for low radial immersions. They included bifurcation 
diagrams for limited axial depth of cut ranges at two 
spindle speeds to demonstrate the two bifurcation 
types. 

The semi-discretization, time finite element 
analysis, and multi-frequency methods were also 
developed to produce milling stability charts that 
demonstrate both instabilities [8]. In [9], it was shown 
using the semi-discretization method that the period-
2 bifurcation exhibits closed, lens-like, curves within 
the secondary Hopf lobes, except for the highest 
speed stability lobe. The same group reported further 
experimental evidence of quasi-periodic (secondary 
Hopf), period-2, period-3, period-4, and combined 
quasi-periodic and period-2 chatter, depending on the 
spindle speed-axial depth values for a two degree of 
freedom dynamic system [9].  

In this paper, period-n bifurcations are 
experimentally identified for n = 2, 3, 6, 7, and 15. 
Additionally, the sensitivity of the bifurcation behavior 

to system dynamics, including both natural frequency 
and damping, is explored. A comparison of numerical 
simulation predictions and experiments is presented. 
 
POINCARÉ MAPS 
In this study, Poincaré maps were developed using 
both experiments and simulations. For the 
experiments, the displacement and velocity of a 
flexible workpiece were recorded and then sampled 
once per tooth period. In simulation, the displacement 
and velocity were predicted, but the same sampling 
strategy was applied. By plotting the displacement 
versus velocity, the phase space trajectory can be 
observed in both cases. The once per tooth period 
samples are then superimposed and used to 
interrogate the milling process behavior. For stable 
cuts, the motion is periodic with the tooth period, so 
the sampled points repeat and a single grouping of 
points is observed. When secondary Hopf instability 
occurs, the motion is quasi-periodic with tool rotation 
because the chatter frequency is (generally) 
incommensurate with the tooth passing frequency. In 
this case, the once per tooth sampled points do not 
repeat and they form an elliptical distribution. For 
period-2 instability, on the other hand, the motion 
repeats only once every other cycle (i.e., it is a sub-
harmonic of the forcing frequency). In this case, the 
once per tooth sampled points alternate between two 
solutions. For period-n instability, the sampled points 
appear at n locations. 
 
TIME-DOMAIN SIMULATION 
Time-domain simulation entails the numerical 
solution of the governing equations of motion for 
milling in small time steps [10]. It is well-suited to 
incorporating all the intricacies of milling dynamics, 
including the nonlinearity that occurs if the tooth 
leaves the cut due to large amplitude vibrations and 
complicated tool geometries (including runout, or 
different radii, of the cutter teeth, non-proportional 
teeth spacing, and variable helix).  

Using the time-domain simulation approach, the 
forces and displacements may be calculated. These 
results are then once-per-tooth sampled to generate 
the Poincaré maps. 



Figure 1. Milling experimental setup with laser 
vibrometer (LV), piezo-accelerometer (PA), laser 
tachometer (LT), and capacitance probe (CP). 
 
Table 1. Cutting conditions and flexure dynamics for 
experiments. 

 Cutting conditions 

Period-n Spindle  
speed (rpm) 

Axial 
depth, b 

(mm) 

Radial  
depth 
(mm) 

2 3486 2.0 1 

3 3800 4.5 5 

6 3200 18.0 1 

6 3250 15.5 1 

7 3200 14.5 1 

15 3200 14.0 1 

 Flexure dynamics 

Period-n Stiffness 
(N/m) 

Natural  
frequency 

(Hz) 

Damping  
ratio (%) 

2 9.0×105 83.0 2.00 

3 5.6×106 163.0 1.08 

6 5.6×106 202.6 0.28 

6 5.6×106 205.8 0.28 

7 5.6×106 204.1 0.28 

15 5.6×106 204.8 0.28 
 
RESULTS 
A single degree of freedom (SDOF) flexure was used 
to define the system dynamics. Modal impact testing 
verified that the cutting tool dynamic stiffness (1055 
Hz natural frequency, 0.045 viscous damping ratio, 
and 4.2×107 N/m stiffness) was much higher than the 

SDOF flexure. The flexure setup also simplified the 
measurement instrumentation. The flexure motions 
were measured using both a laser vibrometer and a 
low mass accelerometer. In order to enable once per 
tooth sampling of the vibration signals, a laser 
tachometer was used. A small section of reflective 
tape was attached to the tool and the corresponding 
laser tachometer signal used to perform the once per 
tooth sampling. 
 The cutting tool was a 20 mm diameter, single flute 
carbide square endmill. Modal impact testing verified 
that the cutting tool stiffness was much higher than 
the SDOF flexure. Each cut of the 6061-T6 aluminum 
workpiece was performed using a feed per tooth of 
0.10 mm/tooth. 

Figure 2(a). Poincaré map for simulated period-2 
bifurcation. 

Figure 2(b). Poincaré map for experimental period-2 
bifurcation. 
 
 Cutting tests were completed using the Fig. 1 
setup. The measured flexure dynamics and cutting 
conditions are listed in Table 1. Results for period-2, 
3, 6, 7, and 15 bifurcations are displayed in Figs. 2-7. 
In each figure, (a) shows the simulated behavior and 
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(b) shows the experimental result. Good agreement 
is observed in each case. 

Figure 3(a). Poincaré map for simulated period-3 
bifurcation. 

 
Figure 3(b). Poincaré map for experimental period-3 
bifurcation. 

 
Figure 4(a). Poincaré map for simulated period-6 
bifurcation. 

 
Figure 4(b). Poincaré map for experimental period-6 
bifurcation. 
 

 
Figure 5(a). Poincaré map for second simulated 
period-6 bifurcation. 

 
Figure 5(b). Poincaré map for second experimental 
period-6 bifurcation. 
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Figure 6(a). Poincaré map for simulated period-7 
bifurcation. 

 
Figure 6(b). Poincaré map for experimental period-7 
bifurcation. 
 

 
Figure 7(a). Poincaré map for simulated period-15 
bifurcation. 

 
Figure 7(b). Poincaré map for experimental period-15 
bifurcation. 

 
Figure 8(a). Variation in bifurcation behavior with 
changes in natural frequency for simulated period-6 
bifurcation. 

Figure 8(b). Variation in bifurcation behavior with 
changes in natural frequency for experimental period-
6 bifurcation. 
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 Experiments were also completed to demonstrate 
the sensitivity of the period-n bifurcation behavior to 
changes in natural frequency. During cutting, material 
is removed from the workpiece which lowers the 
workpiece mass and, subsequently, increases the 
flexure’s natural frequency. Since the mass of the 
chips is much smaller than the workpiece, these 
changes result in small changes in natural frequency. 
The changes in system dynamics for the experiments 
presented in Figs. 8-11 are provided in Table 2. The 
higher period-n bifurcations exhibited sufficient 
sensitivity to flexure natural frequency that, within a 
single cut, both period-n bifurcation and quasi-
periodic behavior were observed. 
 
Table 2. Changes in flexure natural frequency due to 
mass removal. 

 Flexure dynamics 

Period
-n 

Start 
natural 

freq.(Hz) 

End 
natural 
freq. 
(Hz) 

Natural 
freq. 

change 
(Hz) 

Mass 
loss 
(g) 

6 202.4 202.7 0.3 4.8 
6 205.7 205.9 0.2 4.1 
7 204.1 204.3 0.2 3.9 

15 204.7 204.9 0.2 3.7 
 Cutting conditions 

Period
-n 

Spindle  
speed (rpm) 

Axial 
depth, b 

(mm) 

Radial  
depth 
(mm) 

6 3200 18.0 1 

6 3250 15.5 1 

7 3200 14.5 1 

15 3200 14.0 1 
 
 Figures 8-11 show the flexure’s feed (x) direction 
velocity (dx/dt) versus time. The continuous signal is 
displayed as a solid line, while the circles are the 
once-per-tooth sampled points. In each figure, (a) 
shows the simulated behavior and (b) shows the 
experimental behavior. Good agreement is observed. 
The time-domain simulation was altered to account 
for the changing natural frequency due to mass loss. 
After each time step, the change in mass was 
calculated based on the volume of the removed chip 
and the density of the workpiece material. This 
change in mass was then used to update the flexure’s 
natural frequency for the next time step. 
 A summary of the behavior seen in Figs. 8-11 is 
provided here. 

1. Figure 8 exhibits period-6 behavior from 4 to 11 
s, followed by quasi-periodic behavior until the 
end of the cut. 

2. Figure 9 shows period-6 behavior from 4 to 13 s 
and then quasi-periodic behavior is observed until 
the end of the cut. 

3. Figure 10 displays quasi-periodic behavior from 
the beginning of the cut until 11 s and then period-
7 behavior from 11 to 15 s. 

4. Figure 11 exhibits quasi-periodic behavior from 
the beginning of the cut until 8 s, period-15 
behavior from 8 to 13 s, and then quasi-periodic 
behavior until the end of the cut 

 
Figure 9(a). Variation in bifurcation behavior with 
changes in natural frequency for second simulated 
period-6 bifurcation. 
 

 
Figure 9(b). Variation in bifurcation behavior with 
changes in natural frequency for second experimental 
period-6 bifurcation. 
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Figure 10(a). Variation in bifurcation behavior with 
changes in natural frequency for simulated period-7 
bifurcation. 

 
Figure 10(b). Variation in bifurcation behavior with 
changes in natural frequency for experimental period-
7 bifurcation. 

Figure 11(a). Variation in bifurcation behavior with 
changes in natural frequency for simulated period-15 
bifurcation. 

 
Figure 11(b). Variation in bifurcation behavior with 
changes in natural frequency for experimental period-
15 bifurcation. 
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