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Abstract

In order to achieve increased material removal rates in high-speed machining, stable cutting conditions may be selected based on the

system dynamics. In this paper, we apply Receptance Coupling Substructure Analysis to develop models for a stacked flexure setup and a

spindle-holder–tool assembly in order to investigate the ‘dynamic absorber effect’ that can improve the system dynamic stiffness and,

therefore, increase the critical stability limit in machining. The dynamic absorber effect results from an interaction between modes associated

with the individual substructures, e.g. the spindle-holder and tool in the spindle-holder–tool assembly. Experimental results are provided for:

(1) a two degree-of-freedom stacked flexure assembly; and (2) a machining center. These results can be considered in the selection of

assembly parameters, such as tool overhang length, as well as in the design of spindle, holder, and tool components in order to improve

dynamic stiffness and, consequently, material removal rates.

q 2004 Published by Elsevier Ltd.
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1. Introduction

The use of high-speed machining (HSM) has increased

in recent years, especially in the aerospace industry [1].

Using HSM, increased material removal rates (MRR) are

achieved through a combination of large axial depths of

cut and high spindle speeds (provided adequate power is

available). One limitation on the allowable axial depth is

regenerative chatter, which has been investigated in a

number of studies [2–16]. One method of pre-process

chatter prediction and avoidance is the well-known

stability lobe diagram. Stability lobe diagrams identify

stable and unstable cutting zones (separated by stability

‘lobes’) as a function of the chip width (or axial depth in

peripheral end milling), b, and spindle speed. However,

the machining models used to produce these diagrams,

whether analytic or time-domain, require knowledge of

the tool point dynamics. The dynamic response is

typically obtained using impact testing, where an

instrumented hammer is used to excite the tool at its

free end (i.e. the tool point) and the resulting vibration is
0890-6955/$ - see front matter q 2004 Published by Elsevier Ltd.

doi:10.1016/j.ijmachtools.2004.09.005

* Corresponding author. Tel.: C1 352 392 8909; fax: C1 352 392 1071.

E-mail address: tschmitz@ufl.edu (T.L. Schmitz).
measured using an appropriate transducer, typically a low

mass accelerometer mounted at the tool point. The

complex ratio of the frequency domain vibration and

force signals is used as input to the stability analysis. It

should be noted that the measured frequency response

function (FRF) is specific to the selected substructures.

Therefore, if the assembly is altered, a new measurement

must be performed.

The equation for the limiting axial depth of cut, blim, at

each spindle speed is shown in Eq. (1), where Ks is the

specific cutting energy coefficient, m* is the average number

of teeth in the cut (i.e. the radial immersion, expressed in

deg or rad, divided by the spacing of the cutter teeth in

corresponding units), and Re[G11(u)]Oriented represents the

negative portion(s) of the real part of the oriented tool point

FRF [17]. As seen in Eq. (1), blim can be increased by

increasing the value of Re[G11(u)]Oriented (note that only the

negative portion of the real part of the oriented FRF is

considered in the calculation, so ‘increasing’ this value

means we are making it less negative), which leads to higher

MRR. The asymptotic critical stability limit, blim,crit, gives

the maximum axial depth for which the process is stable at

all spindle speeds. This axial depth depends on the most

negative (or minimum) value of Re[G11(u)]Oriented as shown
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in Eq. (2).

blim Z
K1

2Ks Re½G11ðuÞ�Orientedm�
(1)

blim;crit Z
K1

2Ks minðRe½G11ðuÞ�OrientedÞm
�

(2)

In this paper, we describe a method to increase blim,crit by

increasing the minimum value of the negative real part of

the tool point FRF. This is achieved by matching the

fundamental frequency of the cantilevered tool to a natural

frequency of the spindle-holder, where the corresponding

modification of the assembly dynamics is analogous to the

change in assembly response observed when implementing

a damped dynamic absorber. Receptance Coupling Sub-

structure Analysis (RCSA) [18–20] is used to: (1) create a

model for two single degree-of-freedom (SDOF) flexures

stacked in series; and (2) develop a spindle-holder–tool

assembly model. The ‘dynamic absorber effect’, first

observed by Davies et al. [21] and Smith et al. [22] for

long slender endmills, is initially demonstrated using

stacked monolithic flexures and predictions using the

RCSA model are verified. Next, the dynamic absorber

effect is shown on a high-speed machining center. The

RCSA model is again developed and compared to

measurement results.
2. Background and notation

Many examples of the use of substructure analysis to

predict the dynamic response of complicated assemblies

using measurements and/or models of the individual

substructures are available in the literature. In these studies,

the substructures have been represented by spatial mass,

stiffness, and damping data; modal data; or receptances

[23–29]. The latter representation is preferred in situations

where the assembly receptances are the desired analysis

output, as is the case in this research.

The receptance matrix, Gjk(u), for the assembly shown in

Fig. 1 can be expressed as shown in Eq. (3), where u is the

frequency, Xj and Qj are the assembly displacement and

rotation at coordinate j, and Fk and Mk are the force and

moment applied to the assembly at coordinate k. If

coordinate j is coincident with coordinate k, the

receptance is referred to as a direct receptance; otherwise,
Fig. 1. Receptance coupling model showing the connection of substructures

A and B through linear and rotational springs and dampers.
it is a cross-receptance. For the purposes of this paper, the

nomenclature Gjk(u) is used to describe the receptances that

are produced when two substructures are coupled to produce

an assembly.

GjkðuÞ Z

Xj

Fk

Xj

Mk
Qj

Fk

Qj

Mk

2
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(3)

The substructure receptances, Rjk(u), are defined in Eq.

(4), where xj and qj are the substructure displacement and

rotation at coordinate j, and fk and mk are the force and

moment applied to the substructure at coordinate k [30].

RjkðuÞ Z

xj

fk

xj

mk
qj

fk

qj

mk

2
64

3
75 Z

hjk ljk

njk pjk

	 

(4)

Based on the coordinates defined in Fig. 1, the equations

to determine the assembly direct receptance, Gaa(u), is

expressed in Eq. (5) as a function of the substructure

receptances and linear and rotational stiffness, kx and kq, and

viscous damping, cx and cq, terms, which represent the non-

rigid connection between substructures [18–20,31].

GaaðuÞ Z

Xa

Fa

Xa

Ma
Qa

Fa

Qa

Ma

2
664

3
775

Z RaaðuÞKRabðuÞ½RbbðuÞCRccðuÞ

CKK1�K1RbaðuÞ (5)

where

K Z
kx C icxu 0

0 kq C icqu

" #

Bishop and Johnson [23] presented closed-form recep-

tance functions for the analysis of flexural vibrations of

uniform Euler–Bernoulli beams with free, fixed, sliding, and

pinned boundary conditions. In this work we apply the

Bishop and Johnson expressions for free–free beam

receptances to model the holder and tool substructures. As

a convenience to the reader, the relevant Bishop and

Johnson formulas are included in Appendix A.
3. Flexure investigation
3.1. Model development

The lumped parameter model for the stacked flexure

assembly is shown in Fig. 2 (the actual assembly is also

pictured). The base flexure, substructure A, is modeled as a

SDOF substructure, defined as a mass, m3, connected to



Fig. 2. Lumped parameter stacked flexure model and photograph of 2DOF

flexure assembly.
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ground through a spring, k3, and a viscous damper, c3. The

top flexure, substructure B, is modeled with free–free

boundary conditions; it consists of a mass, m1, connected to

a massless coordinate, x2, through a spring, k1, and viscous

damper, c1. The dynamic response of assembly C to a force,

F1 applied at coordinate X1 (which represents the uppermost

point on the top flexure) is computed using RCSA. It is

assumed that the substructure rotational receptances, ljk, njk,

and pjk, are negligible (by design for flexures) and that the

substructures are rigidly connected (i.e. KK1Z0).

The substructure receptances are determined from the

lumped parameter equations of motion. For substructure A,

the motion is described by Eq. (6). Assuming a harmonic

input force f3(t)ZF3 eiut, the corresponding vibration is

x3(t)ZX3 eiwt and the direct receptance h33 can be defined as

shown in Eq. (7).

m3 €x3ðtÞCc3 _x3ðtÞCk3x3ðtÞ Z f3ðtÞ (6)

h33ðuÞ Z
x3ðuÞ

f3ðuÞ
Z

1

Ku2m3 C iuc3 Ck3

(7)

Complex matrix inversion is applied to determine h12,

h21, h11, and h22 for substructure B using the equations of

motion provided in Eq. (8). Again assuming a solution of the

form xj(t)ZXj eiut for fj(t)ZFj eiut, jZ1,2, Eq. (8) can be
written in matrix form as shown in Eq. (9)

m1 €x1ðtÞCc1 _x1ðtÞCk1x1ðtÞKc1 _x2ðtÞKk1x2ðtÞ Z f1ðtÞ

Kc1 _x1ðtÞKk1x1ðtÞCc1 _x2ðtÞCk1x2ðtÞ Z f2ðtÞ
(8)

Km1u2 C ic1u Ck1 Kiuc1 Kk1

Kiuc1 Kk1 iuc1 Ck1

" #
x1

x2

� �

Z
f1

f2

( )
or ½AðuÞ�fxg Z ff g (9)

The receptance matrix for substructure B, GB(u), is

obtained by inverting the matrix A(u) as shown in Eq. (10).

The direct and cross-receptances for substructure B are

provided in Eqs. (11)–(13).

GBðuÞ Z ½AðuÞ�K1 Z
H11 H12

H21 H22

" #
(10)

h22 Z
x2

f2

Z
u2m1 K iuc1 Kk1

u2ðium1c1 Cm1k1Þ
(11)

h11 Z
K1

u2m1

(12)

h12 Z
x1

f2

Z h21 Z
x2

f1
Z

K1

u2m1

(13)

Substitution of Eqs. (11)–(13) and Eq. (7) into Eqs. .(4)

and (5) with the appropriate coordinate modifications yields

the assembly receptance G11(u) for a force, F1, applied at

coordinate X1; see Eq. (14).

G11ðuÞ Z
K1

u2m1

K
K1

u2m1

� �
1

Km3u2 C iuc3 Ck3

� �	

C
m1u2 K iuc1 Kk1

u2ðium1c1 Cm1k1

� �
K1
K1

u2m1

� �
ð14Þ
3.2. Experimental results

The 2DOF flexure assembly shown in Fig. 2 was

produced by stacking two SDOF flexures. This created a

simple dynamic system to experimentally validate the

dynamic absorber effect. Three flexures were produced for

testing purposes: a top flexure, a large base flexure, and a

small base flexure. Flexure theory was used to select the

required geometry [32]. The critical geometrical par-

ameters for a notch-hinge flexure are shown in Fig. 3,

where s is the depth of the flexure, ax is the radius of the

circular notch-hinge, t is the thickness of the hinge between

notches, and L is the vertical distance between notch

centerlines. These dimensions for the three flexures are

provided in Table 1.

After manufacture, the modal parameters for the flexures

were determined by impact testing. For these



Fig. 3. Design variables for notch-hinge flexure.
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measurements, the flexures were adhered to ground with

cyanoacrylate (i.e. quick-bonding cement). An impact

hammer was used to excite the flexures at their free end

(over a bandwidth of approximately 2 kHz) and the response

was measured using a low-mass accelerometer. The results

are shown in Table 1, where un is the undamped natural

frequency.

Modal testing was then performed on the coupled

flexures to verify the dynamic absorber effect that takes

place when the fundamental cantilevered natural frequen-

cies of the base and top flexures are matched. For all

testing, ground was defined as a tombstone with a large

mass and stiffness and all connections were made with

cyanoacrylate. Fig. 4 displays the displacement-to-force

receptances for the large base flexure (connected to

ground), the top flexure (connected to ground), and the

combined flexures (with the large base flexure connected

to ground and the top flexure adhered to the top of the

base flexure). From Fig. 4, it can be seen that the natural

frequencies of the cantilevered base and top flexures

were 408 and 296 Hz, respectively. Even though the

natural frequencies are not matched in this case, a 38.5%

increase in the minimum real value of the assembly

response compared to the top flexure alone is observed.

In other words, the addition of a flexible element to the

system (i.e. ground was replaced by the base flexure)

increased the dynamic stiffness, even in the absence of a

direct match between the cantilevered SDOF natural

frequencies.
Table 1

Flexure design parameters and results

s (mm) L (mm) ax (mm)

Large base flexure

Modal testing results 90.0 34.76 9.53

Modal testing results with added mass 90.0 34.76 9.53

Small base flexure

Modal testing results 50.8 38.85 4.76

Modal testing results with added mass 50.8 38.85 4.76

Top flexure

Modal testing results 50.8 38.85 4.76
Next, additional weight was added to the large base

flexure so that the cantilevered natural frequency was

reduced to approach the top flexure natural frequency. Fig. 5

shows the FRFs of the modified large base flexure

(connected to ground), the top flexure (connected to

ground), and the combined flexures (with the modified

base flexure connected to ground and the top flexure

attached to the top of the modified base flexure). It can be

seen that the natural frequency of the base flexure is now

302 Hz, while the top flexure natural frequency is again

296 Hz. The modes of the individual flexures are now close

and interact more strongly. In this case, the minimum value

of the assembly FRF real part is 69% larger than the

minimum real value of the FRF for the top flexure alone.

When matching the natural frequencies of the substructures,

the two modes of the combined system split around the

original natural frequency and the minimum value of the

assembly’s negative real response is increased significantly

(i.e. made less negative). The base flexure has acted as a

‘dynamic absorber’ to decrease the assembly response as

reflected at the top flexure.

To verify the stacked flexure RCSA model, the model

parameters from Table 1 were substituted into G11(u),

provided in Eq. (14). Fig. 6 displays measured and predicted

G11(u) results for the stacked flexure system using the large

base with added mass. Additional measurements and

predictions were completed for the small base flexure and

large base flexure with no mass added. Comparable

agreement was observed. Discrepancies between actual

and predicted results can be attributed to the decision to

neglect rotational DOF and the presence of flexibility/

damping in the connection between flexures (assumed

rigid).

Next, the model parameters were varied to predict

G11(u) for other cases. Of particular interest was the

assembly response when the natural frequencies of the base

and top flexures remain matched, as shown in Eq. (15), but

the ratio between the base and top flexure mass and spring

values was increased by a multiplier value, MV, as shown in

Eq. (16).

un;base Z

ffiffiffiffiffiffiffiffiffiffiffi
kbase

mbase

s
Z un;top Z

ffiffiffiffiffiffiffiffiffi
ktop

mtop

s
(15)
t (mm) m (kg) k (N/m) c (kg/s) un (Hz)

3.18 1.43 9.41!106 46.9 408.3

3.18 2.46 8.85!106 70.6 301.9

1.59 0.108 6.34!105 4.18 385.0

1.59 0.155 5.68!105 2.23 304.7

1.59 0.145 5.04!105 1.17 296.3



Fig. 6. Measured and predicted G11(u) for large base flexure and top flexure

with matched natural frequencies.

Fig. 4. Combined flexure response, initial cantilevered modes separated.
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MV Z
kbase

ktop

Z
mbase

mtop

(16)

Fig. 7 displays the real parts of assembly FRFs for the

stacked flexure model. It is seen that when MV is equal to 1

(i.e. the base and top flexures are identical), the system has

two modes that split around the individual flexure natural

frequency (selected to be 300 Hz). As MV increases, the

two modes of the coupled flexure system approach each

other and, when MV is large enough, the combined response

approaches a SDOF system. The minimum value of the

negative real part of the assembly FRF increases with MV
Fig. 5. Combined flexure response, initial cantilevered modes together.
until the two modes begin to converge to a SDOF and the

value of the negative real part begins to decrease again. In

other words, the minimum global value of the negative real

part of the assembly FRF is not obtained by increasing the

mass and stiffness of the base flexure ad infinitum.

The results of the flexure testing and modeling can be

extended to the case of the coupled spindle-holder and tool

in high-speed machining operations. The fundamental

cantilevered tool mode can be considered analogous to the

top flexure mode and each spindle-holder mode is analogous

to the base flexure mode. As shown in the flexure results, if

the fundamental cantilevered tool mode can be matched to a

spindle-holder mode, the minimum value of the negative

real part of the FRF for the coupled spindle-holder–tool

system, as measured at the tool point, can be increased. The

dynamic absorber effect that occurs due to the interaction

between the modes increases the tool point negative real

minimum value relative to the response that would occur if

the tool was cantilevered directly to ground (i.e. an infinitely
Fig. 7. Coupled flexure FRF real parts for various multiplier values.
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stiff spindle-holder). By taking advantage of the dynamic

absorber effect, the value for blim,crit (see Eq. (2)), can

therefore be increased. The tool natural frequency can be

varied through tool overhang and/or diameter adjustment,

changes in tool material (modulus and density), or

manipulation of the connection between the tool and holder.

A second conclusion that can be drawn from this testing

is that the largest multiplier value, or greatest mass and

stiffness of the base flexure, does not necessarily lead to

maximized dynamic stiffness for the coupled flexure system

(as reflected at the free end of the top flexure). In terms of a

spindle-holder–tool assembly, it can be surmised that during

the design of spindles for certain tool geometry ranges, if the

interaction between tool and spindle-holder modes is taken

into consideration, the stiffest, largest mass spindle may not

be the optimum selection for stable machining.
4. Spindle-holder–tool investigation
4.1. Model development

Fig. 8 shows the RCSA model for the spindle-holder–

tool assembly. Coordinate X1 is defined as the assembly tool

point and coordinates x1, x2, x3, x4, and x5 are the component

coordinates. F1 is the harmonic force applied to the

assembly at coordinate X1, and f1, f2, f3, f4, and f5, are the

component forces. The component moments are m2, m3, m4,

and m5, and the component rotational displacements are q2,

q3, q4, and q5. The connection between the tool and inserted

shank (i.e. the section of tool inside of holder) includes both

linear and rotational springs and viscous dampers, while the

connection between the inserted shank and spindle-holder is

considered rigid.
Fig. 8. RCSA model for spindle-holder–tool assembly.
The first step in determining the assembly tool point

response is to rigidly couple the spindle-holder to the

inserted shank to determine the receptances at coordinate 3,

creating assembly BC (see Fig. 8). To determine G33,BC(u),

the receptances from Eq. (5) are modified by substituting

coordinate 3 for a, coordinate 4 for b, and coordinate 5 for c

as shown in Eq. (17). As noted, the term KK1 from Eq. (5) is

equal to zero for a rigid connection.

G33;BCðuÞ Z R33 KR34ðR44 CR55Þ
K1R43 (17)

To determine the inserted shank receptances in Eq. (17)

(i.e. right-hand side terms with a subscript of 3 or 4), the

inserted shank is assumed to be a free–free beam and the

receptances are produced analytically (see Appendix A).

However, it is assumed that the entire mass is concentrated

at coordinate 5 to simplify the coupling procedure. There-

fore, the length of the beam is set to an arbitrarily small

length of 1 mm and the density is adjusted to provide the

appropriate mass. Although this assumption may impose

errors in the model, it is a reasonable approximation for

most situations.

To populate the spindle-holder receptance matrix, R55,

the displacement-to-force receptance, h55, is first measured

at the end of the spindle-holder. To determine l55, n55, and

p55, the h55 FRF is first fit with modal parameters, mq,i, cq,i,

and kq,i, for each mode, i, using a peak picking method [33].

The fit curve is defined according to Eq. (18), where n is the

total number of modes in the h55 response selected for fitting.

h55;fit Z
Xn

iZ1

1

kq;i Kmq;iu
2 C icq;iu

(18)

It is next assumed that each mode of h55,fit can be

approximately represented as a clamped-free Euler–Ber-

noulli beam with a cylindrical cross-section; the best-fit

modal parameters are then converted to represent the

geometric properties of this ‘artificial’ cantilever. Clearly,

this approximation is not accurate in all situations, but in the

absence of other measurement information it provides a

reasonable starting point. The expressions for natural

frequency, unC,i, dimensionless damping ratio, zC,i, and

stiffness, kC,i are shown in Eqs. (19)–(21), respectively,

where the subscript C refers to the spindle-holder sub-

structure.

unC;i Z

ffiffiffiffiffiffiffiffi
kq;i

mq;i

s
(19)

xC;i Z
cq;iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2mq;ikq;i

p (20)

kC;i Z 4kq;i (21)

The next step is to determine the diameter, dC,i, of the

artificial cantilever for each fit mode. The equation for

the natural frequency of the first mode of a cantilevered



Fig. 9. Spindle-holder FRF with modal fit superimposed.
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beam is shown in Eq. (22), where lF is a constant equal

to 1.87510407, LC,i is the beam length, Es is the modulus

of elasticity (steel assumed), IC,i is the second area

moment of inertia, and mC,i is the mass per length of the

beam [34].

unC;i Z
l2

F

L2
C;i

ffiffiffiffiffiffiffiffiffiffiffi
EsIC;i

mC;i

s
(22)

Eq. (23) gives IC,i and the expression for mC,i is

provided in Eq. (24). Eq. (25) gives LC,i, where rs is the

density of steel.

IC;i Z
pd4

C;i

64
(23)

mC;i Z
kC;i

u2
nC;i

(24)

LC;i Z
4mC;i

pd2
C;irs

(25)

Inserting Eqs. (23)–(25) into Eq. (22) and solving for

dC,i yields Eq. (26). Once dC,i is determined, LC,i can be

found using Eq. (25). Eq. (27) is then used to determine

the structural damping factor, hC,i.

dC;i Z
642m4

C;iu
2
nC;i

l4
FEsp

4r3
s

� �0:1

(26)

hC;i Z 2xC;i (27)

After the cantilevered beam parameters are deter-

mined, the rotational receptances at coordinate 5 can be

determined analytically [23]. Eq. (28) provides the beam

constant lC,i, where EC,i is the complex modulus of

elasticity, defined in Eq. (29), and u is the frequency.

The receptance calculations are shown in Eq. (30).

l4
C;i Z

16u2rs

EC;id
2
C;i

(28)

EC;i Z Esð1 C ihC;iÞ (29)

L55;BC Z
Xn

iZ1

F1C;i

EC;iIC;il
2
C;iF4C;i

(30)

N55;BC Z L55;BC

P55;BC Z
Xn

iZ1

F6C;i

EC;iIC;ilC;iF4C;i

where

F1C;i Z sin lC;iLC;i sinh lC;iLC;i

F4C;i Z cos lC;iLC;i cosh lC;iLC;i C1
F5C;i Z cos lC;iLC;i sinh lC;iLC;i Ksin lC;iLC;i cosh lC;iLC;i

F6C;i Z cos lC;iLC;i sinh lC;iLC;i Csin lC;iLC;i cosh lC;iLC;i

All the terms are now available to determine

G33,BC(u) in Eq. (17). This result is then coupled to an

analytical model of the overhung portion of the free–free

tool (substructure A in Fig. 8), which is developed

according to the equations in Appendix A. The assembly

expression is provided in Eq. (31). Performing the matrix

operations in Eq. (31) and extracting the first row, first

column term yields the direct tool point FRF,

GABC,11(u), for a harmonic force, F1, applied at

assembly coordinate, X1.

GABCðuÞ Z R11 CR12ðR22 CR33;BC CKK1ÞK1R21 (31)

The final unknowns in Eq. (31) are the connection

stiffness and damping terms that populate the K matrix.

To find these values, a single assembly measurement at

the tool point is completed and the connection terms are

adjusted to provide a match between the predicted and

measured assembly responses. The RCSA model can

then be used to predict the assembly dynamics after

changes to the substructures (e.g. modification of the tool

overhang length).
4.2. Spindle-holder–tool experimental results

The goal of this testing was the comparison of two

responses: (1) the spindle-holder–tool dynamics as

reflected at the tool point when the fundamental

cantilever tool mode is matched to a spindle-holder

mode; and (2) the tool point response with the tool is

connected directly to ground through the same tool-

holder connection parameters.

The first step in the RCSA procedure was to measure the

displacement-to-force FRF at the free end of the spindle-

holder, perform a modal fit, and convert the modal



Table 2

Modal and artificial cantilever parameters for spindle-holder FRF

Mode mq (kg) cq (kg/s) kq (N/m) dC (m) LC (m) hC (–)

1 20.06 6192 4.87!108 0.180 0.404 0.063

2 20.68 9575 6.36!108 0.187 0.387 0.084

3 1.49 807.9 1.17!108 0.072 0.190 0.061

4 13.44 13,485 2.39!109 0.187 0.251 0.075

5 37.95 5856 8.32!109 0.290 0.295 0.010

6 7.69 5937 2.10!109 0.156 0.205 0.047

7 3.31 10,471 2.37!109 0.123 0.143 0.118

8 3.38 3661 4.43!109 0.132 0.127 0.030

9 8.60 3983 1.40!1010 0.196 0.147 0.012

10 2.32 1796 6.92!109 0.123 0.100 0.014
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parameters to geometric parameters of an artificial canti-

lever for each mode within the bandwidth of interest. The

FRF of the spindle-holder and the artificial cantilever

spindle-holder FRF are displayed in Fig. 9. The holder had a

thermal shrink fit tool connection and CAT 40 spindle

interface. The modal parameters and the artificial cantilever

parameters are provided in Table 2. For the artificial

cantilever fits, the modulus of elasticity of steel, Es, and the

density of steel, rs, were taken to be 2.0!1011 Pa and

7800 kg/m3, respectively.

The parameters from Table 2 were next used to generate

all four receptances for the spindle-holder free end. Once the

spindle-holder receptances were determined, the inserted

shank free-free receptances were computed. The tool

information is shown in Table 3, where the density was

determined by mass and volume measurements and the

modulus and structural damping factor were determined by

free–free modal testing. The receptances for the spindle-

holder-inserted shank at the end of the inserted shank were

then determined using Eq. (17).

The final step in determining the RCSA model was to

calculate the free–free receptances for the overhung portion

of the tool and couple these receptances to the spindle-

holder-inserted shank substructure; see Eq. (31). The

overhung tool receptances were determined by inserting
Table 3

Tool information

Tool material Carbide

Tool length (m) 0.140

Tool diameter (m) 0.019

Number of teeth 4

Overhang length (m) 0.100

Tool mass 0.471

Modulus of elasticity (N/m2) 5.39!1011

Density (kg/m3) 14,272

Structural damping factor 0.0015

Table 4

Connection parameters

kx (N/m) kq (N m/rad) cx (kg/s) cq (N m s/rad)

5!107 5!107 800 800
the tool parameters into the equations in Appendix A. The

connection parameters were determined by fitting the

predicted FRF to a spindle-holder–tool measurement

recorded at a known overhang length. The connection

parameters are given in Table 4 and a comparison between

the RCSA model and spindle-holder–tool measurement is

shown in Fig. 10.

To illustrate the dynamic absorber effect, the free–free

overhung tool was coupled to ground using the connection

parameters in Table 4. The result is shown in Fig. 11,

together with the spindle-holder and spindle-holder–tool

FRFs. It is seen that the spindle-holder and grounded

overhung tool each have a mode at approximately 1400 Hz.

When the two substructures are combined, the modes split

around the 1400 Hz frequency and produce a dynamically

stiffer two-mode system. The mode at approximately

700 Hz is a spindle-holder mode that has been shifted to a

slightly lower frequency and amplified by the addition of the

tool to the assembly.
Fig. 10. RCSA model for spindle-holder–tool assembly.



Fig. 11. Spindle-holder–tool dynamic absorber effect.

Table 5

Connection parameter

kx (N/m) kq (N m/rad) cx (kg/s) cq (N m s/rad)

2.1!107 1.4!106 130 35
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The spindle-holder–tool testing showed that the

dynamic absorber effect that occurs when the funda-

mental tool natural frequency is matched to a holder-

spindle natural frequency can increase the assembly

dynamic stiffness at the tool point. In this case, the

spindle-holder mode that interacted with the tool mode

was fairly flexible (i.e. a low MV value) so the assembly

modes are well-separated. It can also be shown that

higher MV values produce overlapping modes and

improved dynamic stiffness. In Fig. 12, it is seen that

increasing the overhang from 106.2 mm (9:1 length to

diameter ratio) to 118 mm (10:1) increases the dynamic

stiffness due to the dynamic absorber effect in the

presence of a high MV spindle mode. The connection

parameters for this case are given in Table 5.
Fig. 12. Example of dynamic absorber effect for 11.8 mm diameter tool in

stiff spindle. The tool is dynamically stiffer with the 118 mm overhang

(10:1) than with the 106.2 mm overhang (9:1) [19].
5. Conclusions

This paper described the dynamic absorber effect, where

interactions between substructure modes can lead to a

dynamically stiffer system. Experimental verification was

provided for a simple stacked flexure setup and more

complicated spindle-holder–tool assemblies. Receptance

Coupling Substructure Analysis (RCSA) models were

developed for these cases and were used to predict the

assembly responses. It was shown that by taking advantage

of the dynamic absorber effect the minimum negative real

value of the tool point frequency response function can be

made less negative; therefore, the critical stability limit can

be increased and higher material removal rates obtained.
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Appendix A. Free–free beam receptances

Bishop and Johnson [23] showed that the displacement

and rotation-to-force and moment receptances for uniform

Euler–Bernoulli beams could be represented by simple

closed-form expressions. For a cylindrical free-free beam

with coordinates j and k identified at each end, the

frequency-dependent direct and cross-receptances are

given by

hjj Z hkk Z
KF5

EIð1 C ihÞl3F3

;

hjk Z hkj Z
F8

EIð1 C ihÞl3F3

(A1)
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ljj ZKlkk Z
KF1

EIð1 C ihÞl2F3

;

ljk ZKlkj Z
F10

EIð1 C ihÞl2F3

(A2)

njj ZKnkk Z
KF1

EIð1 C ihÞl2F3

;

njk ZKnkj Z
KF10

EIð1 C ihÞl2F3

(A3)

pjj Z pkk Z
F6

EIð1 C ihÞlF3

;

pjk Z pkj Z
F7

EIð1 C ihÞlF3

(A4)

where E is the elastic modulus, I is the second area moment

of inertia, h is the structural damping factor (damping was

not included in Ref. [23], but has been added as part of this

analysis), and

l4 Z
u2m

EIð1 ChÞL
(A5)

F1 Z sin lL sinh lL; F3

Z cos lL cosh lL K1; F5

Z cos lL sinh lL Ksin lL coshlL; F6

Z cos lL sinh lL Csin lL cosh lL; F7

Z sin lL Csinh lL; F8

Z sin lL Ksinh lL; F10 Z cos lL Kcosh lL (A6)

In Eq. (A5), the cylindrical beam mass is given by

mZpd2
oLr=4, where do is the outer diameter, L is the

length, and r is the density; the cylinder’s second area

moment of inertia is IZpd4
o=64; and u is the frequency

(in rad/s).
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