
A
m

C
U

a

A
R
R
A
A

K
M
C
S
P
S

1

d
i
a
s
s

•

•

h
i
[
s

h
0

Precision Engineering 46 (2016) 73–80

Contents lists available at ScienceDirect

Precision  Engineering

jo ur nal ho me  p age: www.elsev ier .com/ locate /prec is ion

 coupled  dynamics,  multiple  degree  of  freedom  process  damping
odel,  Part  2:  Milling

hristopher  T.  Tyler,  John  R.  Troutman,  Tony  L.  Schmitz ∗

niversity of North Carolina at Charlotte, Charlotte, NC, United States

 r  t  i  c  l  e  i  n  f  o

rticle history:
eceived 1 May  2015
eceived in revised form 10 February 2016
ccepted 21 March 2016
vailable online 11 May  2016

a  b  s  t  r  a  c  t

Self-excited  vibration,  or chatter,  is an  important  consideration  in  machining  operations  due  to  its  direct
influence  on  part  quality,  tool  life, and  machining  cost.  At low  machining  speeds,  a  phenomenon  referred
to  as  process  damping  enables  stable  cutting  at higher  depths  of  cut  than  predicted  with  traditional
analytical  models.  This  paper  describes  an  analytical  stability  model  for milling  operations  which  includes
a  process  damping  force  that depends  on  the  surface  normal  velocity,  depth  of cut,  cutting  speed,  and  an
eywords:
achining

hatter
tability
rocess damping

empirical  process  damping  coefficient.  Model  validation  is completed  using  time  domain  simulation  and
milling experiments.  The  results  indicate  that the  multiple  degree  of freedom  model  is able  to  predict
the  stability  boundary  using  a  single  process  damping  coefficient.

©  2016 Elsevier  Inc.  All  rights  reserved.
imulation

. Introduction

Process damping is a phenomenon that enables increased
epths at cut at low cutting speeds in machining operations. When

ts effect is added to the analytical stability lobe diagram, a valu-
ble predictive capability is afforded to process planners for a priori
election of machining parameters. It enables process planners to
elect stable {spindle speed, depth of cut} combinations for both:

hard-to-machine materials, that are restricted to low cutting
speeds due to prohibitive tool wear, and, therefore, cannot cap-
italize on the increased depths of cut observed in traditional
stability lobe diagrams at higher spindle speeds; and
high machinability materials that are able to take advantage of the
increased depths of cut at the “best spindle speeds”, which occur
at rotating frequencies which are substantial integer fractions
of the natural frequency that corresponds to the most flexible
structural mode of vibration.

Nearly 50 years of experimental and theoretical investigations
ave yielded a phenomenological understanding of process damp-
ng. Pioneering work was completed by Wallace and Andrew
1], Sisson and Kegg [2], Peters et al. [3], and Tlusty [4]. These
tudies identified process damping as energy dissipation due to

∗ Corresponding author. Tel.: +1 17046875086.
E-mail address: tony.schmitz@uncc.edu (T.L. Schmitz).

ttp://dx.doi.org/10.1016/j.precisioneng.2016.03.018
141-6359/© 2016 Elsevier Inc. All rights reserved.
interference between the cutting tool relief, or clearance, face
and the machined surface during the inherent relative vibration
between the tool and workpiece. It was  hypothesized that process
damping increases at low cutting speeds because the number of
undulations on the machined surface between revolutions (tur-
ning) or teeth (milling) increases, which also increases the slope
of the wavy surface. This leads to increased interference and, con-
sequently, increased energy dissipation.

Follow-on work has included a plowing force model based on
interference between the tool’s relief face and workpiece surface
[5], application of the plowing force model to milling [6–9], a mech-
anistic description of the shearing and plowing force contributions
to process damping [10], and a first-order Fourier transform rep-
resentation of the tool-workpiece interference [11,12]. In [13,14],
a numerical simulation of a nonlinear process damping stabil-
ity model was  presented, while [15] provided an experimental
investigation of a nonlinear process damping model. Experimen-
tal identifications of a process damping model were presented in
[16,17]. This study builds on the analyses presented in [18–20].

In this paper, an analytical stability analysis is presented that
enables multiple degree of freedom (DOF) structural dynamics to
be considered, while describing the process damping force in the
surface normal direction as function of the depth of cut, the cutting
speed, the tool velocity, and a single empirical coefficient. Because

the process damping force is based on the surface normal veloc-
ity, which, in general, includes contributions from both orthogonal
dynamics directions, a coupled dynamic system is obtained. The
analytical solution for milling is presented in the following sections.

dx.doi.org/10.1016/j.precisioneng.2016.03.018
http://www.sciencedirect.com/science/journal/01416359
http://www.elsevier.com/locate/precision
http://crossmark.crossref.org/dialog/?doi=10.1016/j.precisioneng.2016.03.018&domain=pdf
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ig. 1. Milling model for: (a) up milling (a 25% radial immersion cut is shown for
llustrative purposes); (b) down milling (a 50% radial immersion cut is shown). The
ector n defines the average surface normal direction and x is the feed direction.

alidation of the algorithm using time domain simulation and
xperiments is provided.

. Stability algorithm

.1. Single DOF in two directions

The milling model is depicted in Fig. 1, where x is the feed direc-
ion (the positive direction indicates the workpiece motion for a
xed tool position). The structural dynamics are measured in the

 and y directions and may  be described using lumped parameter
ass, viscous damping, and stiffness values. The dynamics along

he tool axis are not considered in this study. In this section, a single
ode of vibration is assumed in the x and y directions.
As displayed in Fig. 1, the cutting force, Fc, is inclined relative to

he surface normal, n, by the angle ˇ. The surface normal is shown to
e oriented at the average angle of a tooth in the cut, �ave, which is
he mean of the cut starting, �s, and exit, �e, angles. These angles are
efined by the milling operation (up/conventional or down/climb
illing) and the radial depth of cut. The variable component of the

utting force is described by Eq. (1), where Ks is the specific cutting
orce coefficient that relates the cutting force to the chip area, b is
he commanded axial depth of cut, N0 is the vibration amplitude in
he n direction from the previous revolution, and N is the current
ibration amplitude. The difference between N0 and N identifies the
ariable chip thickness due to the vibration from one revolution
o the next and provides the basis for regenerative chatter. The

ean component of the cutting force is excluded because it does
ot influence stability for the linear analysis presented here.

c = Ksb(N0 − N) (1)

he assumption for Eq. (1) is that there is no phase shift between the
ariable force and the chip thickness. This is indicated by the real
alues of b and Ks. However, it has been shown that a phase shift can
ccur at low cutting speeds. This phenomenon is captured by the
nclusion of the process damping force, Fd, defined in Eq. (2) [17],

here C is the process damping coefficient, V is the cutting speed,
nd ṅ is the tool velocity in the n direction. The process damping
orce is oriented in the n direction and opposes the cutting force (as
rojected in the n direction). In other words, it is a viscous damping
orce; therefore, the process damping force is used to modify the
tructural damping and obtain an analytical stability solution.

d = −C
b

V
ṅ (2)

o proceed with the solution, the cutting and process damping
orces are projected into the x and y directions as shown in Eqs. (3)
nd (4), where �ud = 90 − �ave for up milling and �ud = �ave − 90
or down milling.
x = Fc cos (  ̌ + �ave − 90) − C
b

V
ṅ cos (�ud)

= Fcx − C
b

V
ṅ cos (�ud) (3)
eering 46 (2016) 73–80

Fy = Fc cos (180 − �ave − ˇ) − C
b

V
ṅ cos (180 − �ave)

= Fcy − C
b

V
ṅ cos (180 − �ave) (4)

The time domain equations of motion for the two directions
are provided in Eqs. (5) and (6), where mi, ci, and ki, i = x, y, are
the mass, viscous damping coefficient, and stiffness for the single
DOF structural dynamics. In these equations, one overdot indicates
one time derivative (velocity) and two  overdots indicate two  time
derivatives (acceleration).

mxẍ + cxẋ + kxx = Fcx − C
b

V
ṅ cos (�ud) (5)

myÿ + cyẏ + kyy = Fcy − C
b

V
ṅ cos (180 − �ave) (6)

The n direction velocity can be written as a function of the velocities
in the x and y directions as shown in Eq. (7). Substitution of Eq.
(7) into Eqs. (5) and (6) yields Eqs. (8) and (9). Even though the
structural dynamics are uncoupled (orthogonal), the equations of
motion for the two  directions are now coupled through the ẋ and ẏ
velocity terms.

ṅ = ẋ  cos (�ud) + ẏ cos (180 − �ave) (7)

mxẍ + cxẋ + kxx = Fcx − C
b

V
cos (�ud)(ẋ cos (�ud)

+ ẏ  cos(180 − �ave)) (8)

myÿ + cyẏ + kyy = Fcy − C
b

V
cos (180 − �ave)(ẋ cos (�ud)

+ ẏ cos (180 − �ave)) (9)

By assuming solutions of the form x(t) = Xeiωt and y(t) = Yeiωt for
harmonic motion, Eqs. (8) and (9) can be rewritten in the frequency
domain (ω is frequency). The results are provided in Eqs. (10) and
(11), where the X and Y terms have been grouped on the left hand
side of both equations and the eiωt term has been dropped from
both sides.(

−mxω2 + iω
(

cx + C
b

V
(cos (�ud))2

)
+ kx

)
X

+ iω
(

C
b

V
cos (�ud) cos (180 − �ave)

)
Y = Fcx (10)

(
−myω2 + iω

(
cy + C

b

V
(cos (180 − �ave))2

)
+ ky

)
Y

+ iω
(

C
b

V
cos (�ud) cos (180 − �ave)

)
X = Fcy (11)

These equations are arranged in matrix form as shown in Eq.
(12), where:

• a11 =
(
−mxω2 + iω

(
cx + C b

V (cos (�ud))2) + kx

)
• a12 = iω

(
C b

V cos (�ud) cos (180 − �ave)
)

• a21 = a12
• a22 =

(
−myω2 + iω

(
cy + C b

V (cos (180 − �ave))2) + ky

)
.

[
a11 a12

][
X

] [
Fcx

]

a21 a22 Y

=
Fcy

(12)

Using complex matrix inversion on a frequency-by-frequency basis,
the direct and cross frequency response functions (FRFs) for the
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Fig. 2. Comparison of analytical stability limit and time domain simulation results
C.T. Tyler et al. / Precision

oupled dynamic system are obtained as shown in Eq. (13). The
irect FRFs are located in the on-diagonal positions and the cross
RFs are located in the off-diagonal positions; the cross FRFs are
qual because the inverted matrix is symmetric.

X

Y

]
=

[
a11 a12

a21 a22

]−1 [
Fcx

Fcy

]
=

⎡
⎢⎣

X

Fcx

X

Fcy

Y

Fcx

Y

Fcy

⎤
⎥⎦

[
Fcx

Fcy

]
(13)

This work builds on the analytical stability solution presented
y Tlusty [21]. As shown in Fig. 1, he assumed an average angle of
he tooth in the cut and, therefore, an average cutting force direc-
ion. This produced an autonomous, or time invariant, system. He
hen made use of directional orientation factors, �x and �y, to first
roject this force into the x and y directions and, second, project
hese results into the surface normal, n (in the direction of �ave). The
imiting axial depth of cut, blim, and spindle speed, ˝,  are defined
s a function of frequency using Eqs. (14) and (16), where Re(Gor) is
he negative real part of the oriented FRF, N∗

t is the average number
f teeth in the cut (see Eq. (16), where the angles are expressed in
eg), fc is the valid chatter frequencies (i.e., those frequencies where
e(Gor) is negative), Nt is the number of cutter teeth, N = 0, 1, 2, . . .

s the integer number of waves between teeth (i.e., the lobe num-
er), and ε = 2� − 2tan−1(Re(Gor)/Im(Gor)) is the phase between the
urrent vibration and the previous tooth. The spindle speed and
imiting axial depth are plotted against one another to represent
he stability boundary in traditional stability lobe diagrams.

lim = −1
2KsRe(Gor)N∗

t
(14)

fc
˝Nt

= N + ε

2�
(15)

∗
t = �e − �s

360/Nt
(16)

Tlusty’s approach is extended here to develop an oriented FRF
hat incorporates both the direct and cross FRFs from Eq. (13). The
riented FRF is defined using Eq. (17), where �ij, i, j = x, y, are the
irectional orientation factors:

�xx = cos (  ̌ + �ave − 90) cos (�ud) projects F into x to cause x
vibration through the direct FRF X/Fcx and then projects this
result into n
�xy = cos (180 −  ̌ + �ave) cos (�ud) projects F into y to cause x
vibration through the cross FRF X/Fcy and then projects this result
into n
�yx = cos (  ̌ + �ave − 90) cos (180 − �ave) projects F into x to
cause y vibration through the cross FRF Y/Fcx and then projects
this result into n
�yy = cos (180 −  ̌ + �ave) cos (180 − �ave) projects F into y to
cause y vibration through the direct FRF Y/Fcy and then projects
this result into n.

or = �xx
X

Fcx

+ �xy
X

Fcy

+ �yx
Y

Fcx

+ �yy
Y

Fcy

(17)

The direct and cross FRFs included in Eq. (17)
ncorporate the process damping contribution by mod-
fying the structural damping through the terms:
ω(cx + C(b/V)(cos(�ud))2), iω(C(b/V) cos (�ud) cos (180 − �ave)),
nd iω(cy + C(b/V)(cos (180 − �ave))2) as shown in Eq. (12). The

rocess damping contribution depends on the b/V ratio in each
ase, where V = (�d/60)  ̋ (d is the tool diameter and  ̋ is expressed
n rpm). Therefore, the b and  ̋ vectors must be known in order
o modify the damping. This establishes a converging stability
for milling model with a single DOF in the x and y directions. Stable {spindle speed,
chip width}  combinations are identified by circles and unstable combinations are
represented by squares.

solution. The following steps are completed for each lobe number,
N:

1. the analytical stability boundary is calculated with no process
damping to identify initial b and  ̋ vectors

2. these vectors are used to determine the process damping con-
tribution

3. the stability analysis is repeated with the new damping terms to
determine updated b and  ̋ vectors

4. the process is repeated until the stability boundary converges.

As shown in [18–20], the solution converges rapidly (20 itera-
tions or less is typically sufficient).

To demonstrate the algorithm, consider the model in Fig. 1 with
�s = 0, �e = 90◦,  ̌ = 70◦, Ks = 2000 N/mm2, C = 200 N/mm,  Nt = 4, and
d = 19 mm for a 50% radial immersion up milling operation. The
structural dynamics are symmetric in x and y with a stiffness of
9 × 106 N/m, a natural frequency of 900 Hz, and a viscous damping
ratio of 0.03 (3%). The corresponding stability limit with process
damping effects is displayed in Fig. 2. To validate the predicted
stability limit, Eqs. (5) and (6) were solved by Euler (numerical)
integration in a time domain simulation [22]. Stable {spindle speed,
chip width}  combinations are identified by circles and unstable
combinations are represented by squares in Fig. 2. Good agreement
is observed.

2.2. Two DOF in two  directions

The coupled dynamics solution is now extended to two DOF in
the x and y directions. From an FRF measurement in each direc-
tion, the modal parameters can be extracted (by peak picking, for
example) which represent uncoupled single DOF  systems in the
modal coordinates q1 and q2 for the x direction and p1 and p2 for
the y direction [22]. This modal representation requires that pro-
portional damping holds, but this is a reasonably approximation
for the lightly damped tool point dynamics typically observed in
practice.
Eq. (5), which provides the equation of motion for the x direc-
tion with a single DOF, is rewritten in Eq. (18) to describe motion
in the first modal DOF, q1. The n direction velocity is again ṅ =
ẋ cos (�ud) + ẏ cos (180 − �ave), but ẋ is now the sum of the modal
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elocities, ẋ = q̇1 + q̇2 and ẏ = ṗ1 + ṗ2. Substitution yields Eq. (19).
qs. (20) and (21) give the results for q2 motion (the second modal
OF) in the x direction.

q1 q̈1 + cq1 q̇1 + kq1 q1 = Fcx − C
b

V
ṅ cos (�ud) (18)

q1 q̈1 + cq1 q̇1 + kq1 q1 = Fcx − C
b

V
cos (�ud)(cos (�ud)(q̇1 + q̇2)

+ cos (180 − �ave)(ṗ1 + ṗ2)) (19)

q2 q̈2 + cq2 q̇2 + kq2 q2 = Fcx − C
b

V
ṅ cos (�ud) (20)

q2 q̈2 + cq2 q̇2 + kq2 q2 = Fcx − C
b

V
cos (�ud)(cos (�ud)(q̇1 + q̇2)

+ cos (180 − �ave)(ṗ1 + ṗ2)) (21)

qs. (19) and (21) are converted to the frequency domain by again
ssuming harmonic motion so that qj(t) = Qjeiωt and pj(t) = Pjeiωt,

 = 1, 2. Eq. (22) represents motion in Q1 and Eq. (23) describes
otion in Q2. Even though the modal degrees of freedom are uncou-

led by definition, the two equations of motion for the x direction
ow include both Q1 and Q2 due to process damping. Similar to
he single DOF model in the previous section, the equations also
nclude contributions from the y direction dynamics (P1 and P2). As

ith turning, the equations of motion are coupled in both modal
oordinates and the two orthogonal directions [23].

−mq1 ω2 + iω
(

cq1 + C
b

V
(cos (�ud))2

)
+ kq1

)
Q1

+ iω
(

C
b

V
(cos (�ud))2

)
Q2

+ iω
(

C
b

V
(cos (�ud)) cos (180 − �ave)

)
(P1 + P2) = Fcx (22)

−mq2 ω2 + iω
(

cq2 + C
b

V
(cos (�ud))2

)
+ kq2

)
Q2

+ iω
(

C
b

V
(cos (�ud))2

)
Q1

+ iω
(

C
b

V
cos (�ud) cos (180 − �ave)

)
(P1 + P2) = Fcx (23)

Following the same approach, the frequency domain equations
or the y direction are presented in Eqs. (24) and (25), where Eq.
24) describes motion in P1 and Eq. (25) describes motion in P2.

−mp1 ω2 + iω
(

cp1 + C
b

V
(cos (180 − �ave))2

)
+ kp1

)
P1

+ iω
(

C
b

V
(cos (180 − �ave))2

)
P2

+ iω
(

C
b

V
cos (�ud) cos (180 − �ave)

)
(Q1 + Q2) = Fcy (24)

−mp2 ω2 + iω
(

cp2 + C
b

(cos (180 − �ave))2
)

+ kp2

)
P2
V

+ iω
(

C
b

V
(cos (180 − �ave))2

)
P1

+ iω
(

C
b

V
cos (180 − �ave) cos (�ud)

)
(Q1 + Q2) = Fc2 (25)
eering 46 (2016) 73–80

Eqs. (22)–(25) are arranged in matrix form as shown in Eq. (26),
where:

• a11 =
(
−mq1 ω2 + iω

(
cq1 + C b

V (cos (�ud))2) + kq1

)
• a12 = iω

(
C b

V (cos (�ud))2)
• a13 = iω

(
C b

V cos (�ud) cos (180 − �ave)
)

• a14 = iω
(

C b
V cos (�ud) cos (180 − �ave)

)
• a21 = a12
• a22 =

(
−mq2 ω2 + iω

(
cq2 + C b

V (cos (�ud))2) + kq2

)
• a23 = iω

(
C b

V cos (�ud) cos (180 − �ave)
)

• a24 = iω
(

C b
V cos (�ud) cos (180 − �ave)

)
• a31 = a13
• a32 = a23
• a33 =

(
−mp1 ω2 + iω

(
cp1 + C b

V (cos (180 − �ave))2) + kp1

)
• a34 = iω

(
C b

V cos (�ud) cos (180 − �ave)
)

• a41 = a14
• a42 = a24
• a43 = a34
• a44 =

(
−mp2 ω2 + iω

(
cp2 + C b

V (cos (180 − �ave))2) + kp2

)
.

⎡
⎢⎢⎢⎣

a11 a12

a21 a22

a13 a14

a23 a24
a31 a32

a41 a42

a33 a34

a43 a44

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

Q1

Q2
P1

P2

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

Fcx

Fcx

Fcy

Fcy

⎤
⎥⎥⎥⎦ (26)

Using complex matrix inversion on a frequency-by-frequency basis,
the direct and cross frequency response functions (FRFs) for the
coupled dynamic system are obtained as shown in Eq. (27).⎡
⎢⎢⎢⎢⎣

Q1

Q2

P1

P2

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a43 a43 a44

⎤
⎥⎥⎥⎥⎦

−1 ⎡
⎢⎢⎢⎢⎣

Fcx

Fcx

Fcy

Fcy

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Q1,1

Fcx

Q1,2

Fcx

Q1,3

Fcy

Q1,4

Fcy

Q2,1

Fcx

Q2,2

Fcx

Q2,3

Fcy

Q2,4

Fcy

P1,1

Fcx

P1,2

Fcx

P1,3

Fcy

P1,4

Fcy

P2,1

Fcx

Q2,2

Fcx

P2,3

Fcy

P2,4

Fcy

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

Fcx

Fcx

Fcy

Fcy

⎤
⎥⎥⎥⎥⎦ (27)

The direct FRFs in the x and y directions are defined by Eqs. (28) and
(29), respectively; the cross FRFs are provided in Eqs. (30) and (31).
The oriented FRF is again calculated using Eq. (17); the directional
orientation factors are the same.

X

Fcx

= Q1,1

Fcx

+ Q1,2

Fcx

+ Q2,1

Fcx

+ Q2,2

Fcx

(28)

Y

Fcy

= P1,3

Fcy

+ P1,4

Fcy

+ P2,3

Fcy

+ P2,4

Fcy

(29)

y

Fcx

= P1,1

Fcx

+ P1,2

Fcx

+ P2,1

Fcx

+ P2,2

Fcx

(30)

X

Fcy

= Q1,3

Fcy

+ Q1,4

Fcy

+ Q2,3

Fcy

+ Q2,4

Fcy

(31)
The model may  be extended to additional DOFs in each direction.
For three DOFs in each direction, for example, Eq. (26) becomes a
6 × 6 symmetric matrix. The direct and cross FRFs are then a sum
of six, rather than four, terms from the inverted matrix.
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Fig. 3. Comparison of analytical stability limit and time domain simulation results
for milling model with two DOF in the x and y directions.
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Fig. 5. Experimental setup for multiple DOF milling stability tests. An accelerometer
was  used to monitor the flexure vibration during machining.

Table 1
Modal parameters for workpiece/flexure setups.

Direction Viscous damping ratio (%) Modal stiffness
(×107 N/m)

Natural
frequency (Hz)

Single DOF milling setup
y 1.56 3.85 1532
x  0.47 0.890 815

Multiple DOF milling setup
y  1.82 4.208 1678
x  0.37 0.814 515

0.14 2.871 1408
ig. 4. Experimental setup for single DOF milling stability tests. An accelerometer
as  used to monitor the flexure vibration during machining.

To demonstrate the algorithm, consider the model in Fig. 1
ith �s = 0, �e = 90◦,  ̌ = 70◦, Ks = 2000 N/mm2, C = 200 N/mm,  Nt = 4,

nd d = 19 mm for a 50% radial immersion up milling operation.
he structural dynamics are symmetric with a modal stiffness of

 × 106 N/m, a natural frequency of 700 Hz, and a viscous modal
amping ratio of 0.03 (3%) for the first mode and a modal stiffness
f 9 × 106 N/m, a natural frequency of 900 Hz, and a viscous modal
amping ratio of 0.03 (3%) for the second mode. The corresponding
tability limit with process damping effects is displayed in Fig. 3. To
alidate the predicted stability limit, the modal equations of motion
ere solved by Euler (numerical) integration in a time domain sim-
lation [22]. Stable {spindle speed, chip width}  combinations are

dentified by circles and unstable combinations are represented by
quares in Fig. 3. Good agreement is observed.

. Experimental setup

To validate the multiple degree of freedom process damping
odel for milling, low-speed cutting tests were performed and
 process damping coefficient was calculated. Experiments were
erformed on a Haas TM-1 CNC milling machine. Two  custom-
esigned notch hinge flexures, pictured in Figs. 4 and 5, were
esigned. The flexure in Fig. 4 provided a single DOF in the feed
Fig. 6. Frequency response function for the single DOF workpiece/flexure system in
the  x (feed) and y directions.

direction, while Fig. 5 yielded two DOF. To negate the effects of tool
dynamics, tool corner radius effects, and interaction between the
tool end and the machined floor, a fin geometry was selected for
the workpiece. Using this configuration, analogous to the tube tur-
ning experiments presented in [23], the tool is much stiffer than
the workpiece/flexure system; because the flexure is intentionally
more compliant than the tool along the feed direction, the stability

analysis was performed using the modal parameters of the work-
piece/flexure system. Table 1 and Figs. 6 and 7 provide the modal
parameters and the frequency response function for the work-
piece/flexure systems along the x (feed) and y directions. These
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Fig. 8. Grid of stable (o) and unstable (x) test points with the final stability boundary
corresponding to C = 1.70 × 105 N/m for the single DOF setup.

Fig. 9. Stability boundary for the multiple DOF system (C = 1.80 × 105 N/m).

Fig. 10. Accelerometer time domain signals for stable (top left) and unstable (bot-
ig. 7. Frequency response function for the multiple DOF workpiece/flexure system
n  the x (feed) and y directions.

ere determined using impact testing, where an instrumented
ammer is used to excite the structure and the response is mea-
ured using a linear transducer (a low mass accelerometer in this
ase).

For all cutting tests, the workpiece material was 6061-T6 alu-
inum. A 19 mm (0.75 in) diameter single-flute inserted endmill
as used with a TiN coated insert (Kennametal SPEB322); the insert
ad a 0◦ rake angle, an 11◦ relief angle, and no chip breaker.1 The fin
hickness was varied, corresponding to axial depths of cut, b, from

 mm to 8 mm.  Radial engagement was held constant for all tests
t 4.75 mm (25% of the tool diameter), while a constant feedrate of
.05 mm per tooth was maintained.

The specific cutting force for the workpiece/tool combination
as also determined. Using the same tool, a test coupon of iden-

ical material, cut from the same stock as the finned specimens,
as mounted to a cutting force dynamometer (Kistler 9257B). At

000 rpm and feedrates from 0.010 mm/tooth to 0.076 mm/tooth,
he specific cutting force was 1368 N/mm2 with a force angle of
0.7◦.

. Experimental results

Experiments were performed at selected low-speed test points.
t each point, the stability of the cut was determined by monitor-

ng the flexure vibration using an accelerometer (PCB 353B14). An
xperimental process damping coefficient, C, was estimated from a
esidual sum of squares (RSS) minimization of points which best
epresent the stability boundary. A process damping coefficient
alue of C = 1.70 × 105 N/m was obtained for the single DOF setup
nd a value of C = 1.80 × 105 N/m for the multiple DOF setup. The
table (o) and unstable (x) test points and stability boundary are
resented in Figs. 8 and 9, respectively.

Points A and B in Fig. 8 were selected to illustrate stable and
nstable cutting characteristics. Fig. 10 (top) shows the time and
requency domain accelerometer signal at point A, a stable cut at
000 rpm, b = 7 mm.  The time domain acceleration signal settles to

 small vibration amplitude after entering the cut. The frequency

ontent of the signal includes a small peak close to the system’s
atural frequency of 815 Hz. Fig. 10 (bottom) displays the time and

requency domain measurement signals at point B, an unstable cut

1 The edge radius was  not measured, but neither was  the commercial insert initial
dge geometry modified.
tom left) cutting parameters and the corresponding frequency domain stable (top
right) and unstable (bottom right) signals for the single DOF  system.

at 2750 rpm, b = 7 mm.  The time domain acceleration signal for this

unstable cut grows rapidly after entering the cut. The frequency
content of the unstable test cut includes a larger magnitude chat-
ter frequency, again, near the system’s natural frequency. Similar
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Fig. 11. Workpiece surface finish after a stable cut.
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Table 2
Process damping coefficients for the 11◦ relief angle tool geometry.

Material Process damping coefficient, C (N/m)

Low insert wear
(FWW < 0.100 �m)

Moderate insert wear
(0.150 �m < FWW  < 0.250 �m)

1018 steel 1.65 × 105 2.00 × 105

Ti 6Al–4V 1.70 × 105 1.80 × 105

304 SS 5.20 × 105 5.80 × 105

Inconel 718 1.20 × 105 1.05 × 105

Table 3
Process damping coefficients for the 15◦ relief angle tool geometry.

Material Process damping coefficient, C (N/m)

Low insert wear
(FWW < 0.100 �m)

Moderate insert wear
(0.150 �m < FWW  < 0.250 �m)

1018 steel 1.25 × 105 1.50 × 105

Ti 6Al–4V 1.20 × 105 1.40 × 105

304 SS 4.10 × 105 4.50 × 105

T
S

T
S

Fig. 12. Workpiece surface finish after an unstable cut.

nalyses were performed using the signals from the multiple DOF
ests.

In addition to vibration measurements, the surface of the work-
iece was analyzed visually after each test cut. Qualitatively, the
urface texture of a stable cut exhibited very few surface flaws;
ee Fig. 11. Inspection of the workpiece surface for an unstable
ut revealed irregular vibratory flaws due to the self-excited cutter
ibration; see Fig. 12.

Examining the results from the single and multiple DOF tests,
t is observed that there is relatively low variability in the pro-
ess damping coefficient values between the two  milling setups.
he process damping coefficient changed by less than 6% between

he single DOF and multiple DOF experiments. This suggests that
he same process damping coefficient can be used for a range of
ynamic systems.

able 4
pecific cutting force values for the 11◦ relief angle tool geometry.

Material Low insert wear (FWW < 0.100 �m)  

Ks (N/mm2)  ̌ (◦) 

1018 steel 2531.0 62.0 

Ti  6Al–4V 2107.0 66.0 

304  SS 3318.0 62.5 

Inconel  718 3515.0 61.1 

able 5
pecific cutting force values for the 15◦ relief angle tool geometry.

Material Low insert wear (FWW < 0.100 �m)  

Ks (N/mm2)  ̌ (◦) 

1018 steel 2359.1 63.5 

Ti  6Al–4V 2076.3 66.7 

304  SS 3427.2 63.1 

Inconel  718 3582.0 62.0 
Inconel 718 1.00 × 105 1.30 × 105

5. Generating a process coefficient database

With a technique in place to experimentally quantify the low-
speed stability behavior due to process damping and the ability to
portray the low-speed stability boundary using a single coefficient,
a database of the process modeling coefficients was established for
several representative hard-to-machine materials. AISI 1018 steel,
Ti 6Al–4V, AISI 304 stainless steel, and Inconel 718 were selected to
populate the database, based on their growing use in the medical,
aerospace, and energy manufacturing sectors.

The database includes the process damping model coefficient
and specific cutting force values. The process damping effect has
been shown to be influenced by tool geometry, e.g., relief angle and
tool wear [9,11]. Therefore, the coefficients are provided for two
relief angles (11◦ and 15◦) at both low and moderate wear states
of the cutting edge (identified using the flank wear width, FWW).
All process damping coefficients were collected using a single DOF
flexure setup. The specific cutting force values were measured using
a linear regression technique [22]. The cutting conditions were 50%
radial immersion up milling for the mild steel and 25% radial depth
of cut down milling for the others. This increased the allowable
depths of cut for the harder materials and eliminated chip weld-

ing to the machined surface. The database of process modeling
coefficients is presented in Tables 2–5.

Moderate insert wear (0.150 �m < FWW  < 0.250 �m)

Ks (N/mm2)  ̌ (◦)

2550.2 62.0
2131.2 60.1
3517.0 61.0
3617.0 60.6

Moderate insert wear (0.150 �m < FWW  < 0.250 �m)

Ks (N/mm2)  ̌ (◦)

2441.0 63.5
2247.2 56.3
3503.2 61.5
3653.0 63.0
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From Tables 2 and 3, it is observed that the process damping
orce coefficient increases with progressive wear and decreases
ith a larger relief angle; a larger C value indicates increased
rocess damping. Both trends support the general description
f process damping as interference between the relief face and
achined surface. Increased flank wear reduces the apparent relief

ngle local to the cutting edge. A smaller relief angle, whether by
esign or wear, encourages the interference phenomenon.

For the specific cutting force coefficient, Ks, no clear trend is
pparent for a change in the tool geometry. The largest difference
or relief angle variation is 6.8% (1018 steel). The largest differ-
nce due to the wear level is −8.2% (15◦ relief angle tool, 6Al–4V
itanium).

. Conclusions

An analytical stability model for multiple degree of freedom
illing was presented. This dynamic model includes contributions

rom the frequency response functions for the vibratory system,
s well as a process damping force which is a function of the
elocity in the surface normal direction, depth of cut, cutting
peed, and an empirically-determined process damping coefficient,
. The model was evaluated using time-domain simulation and
xperiments. Stability tests were performed using custom sin-
le DOF and multiple DOF parallelogram notch hinge flexures;
nned 6061-T6 aluminum workpieces were mounted to the flex-
res. The flexure/workpiece system vibration during cutting was
sed to determine the process stability at selected spindle speed
nd axial depth of cut combinations. Process damping coefficients
f C = 1.7 × 105 N/m and 1.8 × 105 N/m were calculated using RSS
inimization to best fit the stability boundary for single and mul-

iple DOF setups, respectively. The low variability between the
ifferent dynamic systems suggests that the same process damping
oefficient can be used for a range of flexible cutting systems.

The technique used to experimentally identify the process
amping coefficients was then used to populate a process coeffi-
ient database. This database includes specific cutting force and
rocess damping values for AISI 1018 steel, Ti 6Al–4V, AISI 304
tainless steel, and Inconel 718.

Hard-to-machine materials often dictate low cutting speeds
ue to tool wear restrictions. When sufficient machine power is

vailable, operation in the low-speed process damping regime can
ignificantly boost productivity. Knowledge of process damping
oefficients for a given material enables pre-process selection of
ptimum machining parameters.
eering 46 (2016) 73–80
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