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A closed form mechanistic model is developed for cutting forces in helical peripheral milling

(endmilling) of ductile metallic alloys. This paper presents an alternative derivation, using the frontal

chip area, to describe two series of cutting force expressions—one using a Heaviside unit step function

and the other using a Fourier series expansion. A specific advantage of the present work is highlighted

by deriving analytical expressions for sensitivity coefficients required to analytically propagate the

uncertainty in the cutting-force model parameters. Another advantage is that even very small radial

immersions can be used to derive cutting coefficients reliably, along with their variances. The

aforementioned analytical investigations are applied to a series of experimental cutting tests to

estimate the force-model cutting coefficients. Experimental investigations include the study of a tool

having radial runout. Finally, confidence intervals are placed on predicted forces which experimentally

verify the validity of the proposed force model.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Machining with helical endmills is one of the most widely used
processes in the manufacture of prismatic parts. Predictive
models of cutting forces in endmilling are required for various
purposes including the estimation of power consumed, and the
prediction of stability and surface placement. Applications based
on real time cutting force sensing, including tool wear and tool
breakage monitoring, have the potential to use predictive models.

A mechanistic model presented by Sabberwal [15] related the
tangential force to the chip area with the cutting coefficient being
the constant of proportionality. The coefficient was called the
specific pressure, and was experimentally demonstrated to be
independent of the helix angle for a few work materials. In a
review paper, Ehman et al. [6] discussed various formulations of
cutting force models available in the literature. Tlusty [21] has
described the milling process in great detail, including the
modeling of cutting forces. Tlusty and MacNeil [22] were the
first to present a closed form analytical solution for two
ll rights reserved.

yya), schuejk@ufl.edu

uderdale, FL 33301, USA.
components of the force, in the plane of cutter rotation, for
helical peripheral milling. Four separate sets of equation were
used to describe each force component. Altintas and Spence [2]
presented another two dimensional solution in which different
expressions were used depending on the position of the cutter in
one rotation. A two dimensional, Fourier series based solution of
Schmitz and Mann [18] includes the effect of the helix angle by
dividing the cutter into thin axial disks and summing the effects
to obtain the total force. A three dimensional integral model was
developed by Mann et al. [13] using an equivalent complex
Fourier series representation of forces to facilitate symbolic
manipulation. Abrari and Elbestawi [1] published a three dimen-
sional closed form solution where the forces were expressed as a
linear combination of a set of basis functions, but the linearized
cutting coefficients were replaced with a matrix which incorpo-
rated the helix angle. Engin and Altintas [7] have offered a general
solution for a mechanistic model in a set of integral expressions.
The integrations have to be carried out by the user for any specific
endmilling process.

The three dimensional force model presented in this paper
differs from prior work in several ways. Each force component has
a single, closed form expression which is valid for the entire cutter
rotation, but the simple structure of linearized cutting coefficients
is retained. Any arbitrary value of radial immersion, and hence
very small immersions, can be used to experimentally determine
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the cutting coefficients. A particular feature of the model is that
the axial projected chip area is related to the axial force
component, unlike the general practice of relating the rake face
chip area (Fig. 1). This ensures that the axial force component
automatically vanishes as the helix angle goes to zero in a straight
fluted cutter. It is not necessary to force the axial cutting
coefficient to go to zero for straight fluted cutters.

In mechanistic force models, the experimentally determined
coefficients have uncertainties and so do force measurements and
cutter runout measurements. When these measured values
of coefficients and runout are used as inputs in force prediction,
the uncertainties propagate through the model. The uncertainty
analysis performed here is the first such attempt in force
modeling for helical peripheral milling. The sensitivity analysis,
used to track the uncertainty propagation, remains compact
because the components of force have single expressions valid for
the entire cutter rotation.

Two different versions of the force model are presented. One is
based on a step function approach, whereas the other is a Fourier
series model. In the Heaviside unit step function based model an
exact representation of the force is obtained, and this model is
useful for most applications. However, the derivatives of the
forces, with respect to the cutter rotation angle, are discontin-
uous. In a rare application when symbolic expressions for such
derivatives may be necessary, the user may prefer the alternative
formulation which is based on Fourier trigonometric series.
Truncated series sums provide sufficiently accurate forces, and
have the advantage that derivatives of the forces, with respect to
cutter rotation angle, are continuous.

This paper is organized as follows. First, the basic, idealized
model is summarized, which includes the force model, method of
experimental cutting coefficient extraction, and the cutting
coefficient model for the contributions of a single tooth. Next,
the multiple tooth formulation is described including the effects
of differential pitch and radial runout. Then the cutting coeffi-
work piece
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chip
area
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uncut
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Fig. 1. Terminology: l¼ helix angle, D¼endmill diameter, a¼commanded

(nominal) axial depth of cut, ar¼radial depth of cut, fT¼ feed per tooth, and

O¼ spindle speed. The instantaneous axial depth of cut, b, and the nominal chip

thickness, h, vary with cutter rotation. The rake face chip area (gray region, not

labeled) is not used in the model. A two fluted, right handed endmill is illustrated

in up-milling configuration.
cients are experimentally extracted and associated variances are
calculated. Uncertainties are then propagated through the model
to obtain confidence intervals on the predicted forces. Finally, the
force predictions are experimentally verified and the results are
discussed.
2. Analytical description of chip geometry

This section defines the terminology used to describe a
peripheral milling process along with the complexities of
obtaining the chip shape for a helical endmill. The aim is to
capture the shape and size of the chip as the cutter rotates, since
knowledge of the frontal and axial projections of the tool chip
interface area can yield the force components after multiplying by
the respective cutting coefficients.

The geometry of helical peripheral milling is illustrated in
Fig. 1 which shows the helix angle, l, and the diameter, D, which
describe the tool geometry. The commanded (nominal) axial
depth of cut, a, the radial depth of cut, ar, the feed per tooth, fT,
and the spindle speed, O, are fixed parameters set by the
machinist. The instantaneous axial depth of cut, b, varies with
cutter rotation because of the helical flute. Note that b is also the
frontal (projected) chip width and, in this paper, b is simply called
the chip width. The nominal chip thickness, h, is defined in the
plane of cutter rotation, and it is measured in the radial direction.
Inspection of Fig. 1 shows that the chip thickness varies as the
cutter rotates. The percentage radial immersion, RI is defined as

%RI9
ar

D
� 100 ð1Þ

Cutter-workpiece engagement configurations depend on the
relative direction of cutter rotation and the feed direction,
combined with the numerical value of the RI. In Fig. 1 the sense
of cutter rotation is such that the cutting speed at the entry of the
cut is directed opposite to the direction of the feed, and the RI is
less than 50%. This results in an up-milling configuration, where
the cut begins with zero chip thickness. If the direction of feed
were reversed, the resulting configuration would be down-
milling, where the cut ends with a zero chip thickness. RI values
exceeding 50% result in mixed-mode configurations. The 100% RI

results in slotting cuts.
Fig. 1 also illustrates the concept of frontal and axial chip areas.

In the force model described here, the frontal chip area is related
to the force components in the plane of rotation and the axial chip
area is related to the axial force component acting along the axis
of cutter rotation. In contrast to the typical approach, the rake
face chip area (see the gray region in Fig. 1) is not used in the
model.

Fig. 2 defines entry and exit angles. Let the angular orientation
of any point on the cutting edge be designated y. The leading
point of the tooth enters the cut at the entry angle, yst , and exits
the cut at the exit angle, yex. For a given radial immersion, values
of yst and yex are obtained using geometrical calculations. These
two angles are fixed positions in space with respect to the cutter.

The angular position of the leading point of the p th tooth,
taken from an arbitrary reference, is designated yp, and is
illustrated in Fig. 2. This is the independent variable for the force
model proposed in this paper. In steady state, stable machining,
the cutting forces are cyclic over a period of one complete
revolution of the cutter. The term ‘‘instantaneous’’ will be taken to
refer to the current angular position of the p th tooth, yp.

The angular position, y, of any general point inside the tool-
chip contact zone, is a function of yp. Let the angular positions of
the leading and trailing points of the tool chip contact zone be
designated yL and yT respectively. To visualize the relationships
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between the variables, it is convenient to study the development
of the cylindrical surface of the endmill and the uncut chip as
shown in Fig. 2. As the cutter rotates, the tool chip contact zone
evolves as shown in Fig. 3. Two different types of cutting may
occur, designated Type I and Type II, after Tlusty and MacNeil
[22], which are established based on the following conditions:

Type I cutting : a tanlr ðD=2Þðyex�ystÞ ð2Þ

Type II cutting : a tanl4 ðD=2Þðyex�ystÞ ð3Þ

Each type of cutting is divided into three phases, called A,B and
C, after Tlusty and MacNeil [22], as shown in Fig. 3. The solution
presented here treats all these phases as a single one. A single
expression for b covers all the phases. Algebra takes care of the
conditions governed by Eqs. (2) and (3).

In Section 2.1 the basis is established to express the chip width
and chip thickness as functions of yp with the help of intermediate
variables yL and yT . Analytic expressions are derived for yL, yT , b,
and h, as functions of yp. Based on those expressions, the chip
areas are found as functions of yp when building the force model.
By inspection of Fig. 3, it is possible to deduce the variations of yL

and yT for an individual tooth. The relationships are displayed in
Fig. 4 in which yL and yT are plotted as functions of yp. Similar
plots can also be made for the chip width, b.

2.1. Analytical expressions for yL, yT , and chip width, b

Compact expressions for yL, yT , and b, as functions of yp, may
be obtained based on two alternative formulations presented
here, the Heaviside unit step function formulation and the Fourier
trigonometric series formulation.

2.1.1. Heaviside unit step function formulation

Inspection of Fig. 4 reveals that, within the domain ypA ½0,2pÞ,
the functions yL, yT , and b are made up of finite line segments.
These may be conveniently expressed in terms of unit step
functions. In this paper, the following definition of the Heaviside
unit step function is adopted:

Hðyp�BÞ ¼
1, ypZB,

0, ypoB,

(
ypA ½0,2pÞ ð4Þ

where B is some fixed value of yP . This defines the function as
single valued everywhere in the domain.

The unit step function based expressions for yL and yT are
written by inspection of Fig. 4. The equations for the individual
straight line segments for yL are shown in the Appendix for
illustration. The equations of the straight line segments are
multiplied by a suitable difference of the step functions. The
resulting functional relationships are as follows:

yL ¼

ypfHðyp�ystÞ�Hðyp�yexÞg

þyex Hðyp�yexÞ�H yp�yex�
2atanl

D

� �� �2
64

3
75 ð5Þ

yT ¼

yst Hðyp�ystÞ�H yp�yst�
2atanl

D

� �� �

þ yp�
2atanl

D

� � H yp�yst�
2atanl

D

� �

�H yp�yex�
2atanl

D

� �
8>>><
>>>:

9>>>=
>>>;

2
666666664

3
777777775

ð6Þ
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Table 1
Construction of Fourier coefficients Lk, Mk, Tk, Rk, Bk and Ck.

Terms comprising the

Fourier sum

Coefficients of the terms in col.1 of this table

Lk Mk Tk Rk Bk Ck

sin½kðyst Þ�
�
yst

pk
�

1

pk2 �
yst

pk

0 0
�

Dcotl
2pk2

cos½kðyst Þ�
�

1

pk2

yst

pk

0 yst

pk
�

Dcotl
2pk2

0

sin½kðyexÞ� 0 1

pk2

0 0 0 Dcotl
2pk2

cos½kðyexÞ� 1

pk2

0 0 0 Dcotl
2pk2

0

sin k ystþ
2a tanl

D

� �� �
0 0 0

�
1

pk2

0 Dcotl
2pk2

cos k ystþ
2a tanl

D

� �� �
0

�
yex

pk
�

1

pk2

0 Dcotl
2pk2

0

sin k yexþ
2a tanl

D

� �� �
yex

pk

0 yex

pk

1

pk2

0
�

Dcotl
2pk2

cos k yexþ
2a tanl

D

� �� �
0 0 1

pk2 �
yex

pk
�

Dcotl
2pk2

0

dAf
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Fig. 5. The differential frontal projected chip area, dAf, is related to the differential

force components in the plane, dFt (tangential), and dFn (normal). The differential

projected axial chip area, dAa, is related to the differential axial force component,

dFa. The rake face chip area (the gray region, labeled with b and hm) is not used in

the model. A two fluted, right handed endmill is illustrated.
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For a constant helix endmill, with helix angle l and diameter D,
machining with a fixed value of the commanded axial depth of
cut, a, the chip width, b, may be obtained by inspection of Fig. 3

b¼ ½ðD=2Þcotl�ðyL�yT Þ ð7Þ

2.1.2. Fourier trigonometric series formulation

Since the patterns for yL, yT , and b repeat once every
revolution, yielding a fundamental angular period of 2p, it is
possible to write these functions in trigonometric series with
appropriate Fourier coefficients.

Trigonometric series expansions for angular position of the
leading and trailing points of the tool-chip contact may be written
as follows:

yL ¼ L0þ
X1
k ¼ 1

fLkcosðkypÞþMksinðkypÞg ð8Þ

yT ¼ T0þ
X1
k ¼ 1

fTkcosðkypÞþRksinðkypÞg ð9Þ

where L0, Lk, Mk and T0, Tk, Rk are the relevant Fourier coefficients.
Eq. (7) from the Heaviside formulation still holds. Therefore,

for the purpose of computation, a separate expression for b need
not be derived. However, in some applications, especially if the
intent is to study the variation of b alone,2 it is more economical
to compute just a single set of Fourier coefficients, instead of two
sets for yL and yT . Thus, b may be expressed in a trigonometric
series:

b¼ B0þ
X1
k ¼ 1

fBkcosðkypÞþCksinðkypÞg ð10Þ

where B0, Bk, Ck are the relevant Fourier coefficients.
The Fourier coefficients may be derived using standard

techniques by piecewise integrations over the period ypA ½0,2pÞ
based on the variations displayed in Fig. 4. The details are
relegated to the Appendix.

Average Fourier coefficients in Eqs. (8)–(10) are

L0 ¼
1

2p
ðy2

ex�y
2
stÞ

2
þ

2a tanl
D

yex

" #
ð11Þ

T0 ¼
1

2p
ðy2

ex�y
2
stÞ

2
þ

2a tanl
D

yst

" #
ð12Þ

B0 ¼
aðyex�ystÞ

2p ð13Þ

Results of the calculations for Lk, Mk, Tk, Rk, Bk and Ck are listed
in Table 1. For instance, the coefficient, Lk, may be formed by
inspection of column 2 of Table 1 which shows that Lk has four
terms in the summation:

Lk ¼
1

p

�
yst

k
sinðkystÞ�

1

k2
cosðkystÞ

þ
1

k2
cosðkyexÞþ

yex

k
sin k yexþ

2a tanl
D

� �� �
2
6664

3
7775 ð14Þ

The same approach is used for Mk, Tk, Rk, Bk and Ck. The
trigonometric series formulation includes an infinite sum. In
practice, a partial Fourier summation may be applied, which
necessitates the truncation of the series.
2 Yang et al. [25] have offered an interesting study of depth-of-cut variations

in end milling. Xu et al. [24] have presented a study of depth-of-cut variations in

ball end milling.
2.2. Analytical expressions for chip thickness

Fig. 5 displays an instantaneous shape of the chip cross section.
The radial chip thickness is designated as h, and it can be seen that
this parameter varies for different angular orientations of the tool.
The true path of the milling tooth, in the plane, is trochoidal.
Martellotti’s [14] simplified circular tool path approximation is
used here because it is common practice and yields good results.
For any angular orientation, y, the chip thickness based on the
circular path approximation is

hðyÞ ¼ fT siny ð15Þ

where fT is the feed per tooth.
For a helical cutter, the (instantaneous) mean chip thickness,

hm (shown in Fig. 5) is a function of yp, and may be calculated as
follows:

hm ¼
1

yT�yL

Z yT

yL

fT sinydy ð16Þ

Upon simplification,

hm ¼ fT sin
yLþyT

2

� �
sinc

yT�yL

2

� �
9fTxh ð17Þ
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where the symbol xh is shorthand notation and the sampling
function (sine cardinal) is defined as

sincðBÞ9 sinðBÞ
B ð18Þ

For the complete tooth passage across the chip, the averaged
mean chip thickness, hm, is found by averaging hm over the span of
angular tool-chip contact ðyspanÞ:

hm ¼
1

yspan

Z yexþ2a tanl=D

yst

hmðypÞdyp ¼
fT

yspan

Z yexþ2a tanl=D

yst

xh dyp

ð19Þ

where

yspan9yexþ
2a tanl

D
�yst ð20Þ

In this section, the shape of the chip, characterized by the chip
width and chip thickness, has been analytically expressed as a
function of the angular position of the p th tooth, yp. These
expressions are used in characterizing the chip area in the force
model to be developed in the forthcoming section, and also used
in the cutting coefficient formulation which will follow.
development development of
3. Force model for helical peripheral milling

In this section a new model for cutting forces in helical
peripheral milling is developed. Since this is a mechanistic model,
the chip area must be related to the cutting forces. It is a rigid
model because the effects of tool or part deflections on the chip
area are ignored.

Fig. 5 shows the scheme which is chosen to relate the three
differential cutting force components to the respective areas. The
differential projected frontal chip area, dAf, is related to the
differential tangential force component, dFt, and the differential
normal force component, dFn. The differential projected axial chip
area, dAa, is related to the differential axial force component, dFa.
In contrast to the typical approach (e.g., [7]) the rake face chip
area (the gray region in Fig. 5) is not used in the model.
a

λ

θ

b

θpθLθT
θ

ζ = 0

ζ = b

ζ

of the helical
cutting edge fT sin θT 

fTsin θL

dζ

dAf

fT sin θ

ζ

Ω
�D

θp

θL

θT θ

feed

θ

θ

dθ

h = fT sinθ 

dA
a

D/2

chip

the uncut chip

Fig. 6. Differential elements of (a) the projected frontal chip area, dAf, and (b) the

projected axial chip area, dAa.
3.1. Force model for a single toothed cutter

Empirical relationships yield the tangential, normal, and axial
components of the differential elements of force for the mechan-
istic model

dFt

dFn

dFa

8><
>:

9>=
>;¼

dAf 0 0

0 dAf 0

0 0 dAa

0
B@

1
CA

Ktc

Knc

Kac

8><
>:

9>=
>; ð21Þ

where Ktc, Knc and Kac are linearized cutting coefficients which
may be obtained experimentally during the process model
calibration for any specific situation.

For practical purposes, such as measurement of the cutting
force components, it is convenient to calculate force components
in a fixed frame of reference. A rectangular Cartesian coordinate
system is chosen here with the positive x-axis oriented in the
direction of the feed. The z-axis is aligned with the axis of the
cutter. Thus, Fx is the feed force, Fy the transverse force, and Fz is
the axial thrust force. A left handed system is chosen. This choice
is arbitrary, following Tlusty [21, Chapter 9, Section 9.5.4, p. 549],
and has no physical significance.

The rotating (tangential and normal) components are related
to components in a fixed coordinate frame in the plane (x–y)
via a rotation matrix, while the axial component remains
decoupled:

dFx

dFy

dFz

8><
>:

9>=
>;¼

dFtxþdFnx

dFtyþdFny

dFa

8><
>:

9>=
>;¼

cosy siny 0

siny �cosy 0

0 0 1

0
B@

1
CA

dFt

dFn

dFa

8><
>:

9>=
>; ð22Þ

Substituting from Eq. (21) and integrating yields the total
forces:

Fx

Fy

Fz

8><
>:

9>=
>;¼

R
cosydAf

R
sinydAf 0R

sinydAf �
R

cosydAf 0

0 0
R

dAa

0
B@

1
CA

Ktc

Knc

Kac

8><
>:

9>=
>; ð23Þ

where the integrations are carried out over the appropriate limits.
These limits are explicitly shown in a subsequent step, after
applying certain transformations.

To compute the integrals
R

sinydAf and
R

cosydAf in Eq. (23), a
local coordinate, z, has been invoked in Fig. 6(a). By inspection of
the geometry:

dz¼
b

yT�yL

� �
dy ð24Þ

Again, from Fig. 6(a), the differential element of frontal chip
area, dAf, is

dAf ¼ h dz¼ fT sinydz ð25Þ

where the local chip thickness at y is obtained using the circular
path approximation, h¼ fT siny [Eq. (15)].

Eliminating dz using Eq. (24) yields dAf as a function of y:

dAf ¼
bf T

yT�yL

� �
sinydy ð26Þ

Based on Fig. 6(b), the differential element of the projected
axial chip area, dAa, is

dAa ¼ h
D

2
dy¼

Df T

2
sinydy ð27Þ
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The three integrals
R

sinydAf ,
R

cosydAf and
R

dAa may now be
computed:Z

sinydAf ¼
bf T

yT�yL

� �Z yT

yL

sin2 ydy ð28Þ

Z
cosydAf ¼

bf T

yT�yL

� �Z yT

yL

sinycosydy ð29Þ

Z
dAa ¼

Df T

2

Z yT

yL

sinydy ð30Þ

These three results may be substituted into Eq. (23) to obtain,
upon simplification:

Fx

Fy

Fz

8><
>:
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where

x1 ¼ sin
yTþyL

2

� �
cos

yTþyL

2

� �
cos

yT�yL

2

� �
sinc

yT�yL

2

� �
ð32Þ

x2 ¼
1
2½1�cosðyTþyLÞ sinc ðyT�yLÞ� ð33Þ

and

x3 ¼ sin
yTþyL

2

� �
sin

yT�yL

2

� �
ð34Þ

where the sampling function (sinc) has been defined earlier in Eq.
(18).

In the above equations, the variables yL, yT and b are functions
of yp. The functional expressions for yL, yT and b have been
derived in the earlier section. Eq. (31) represents the force
components on a single tooth, as a function of yp, in closed form.

3.2. Modeling for multiple teeth

In a multiple toothed cutter, the components of the total force
are a summation of the force components of the individual teeth

FX

FY

FZ
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>;¼

XN

i ¼ 1

Fxðyp�wi ,fTi
Þ

XN

i ¼ 1

Fyðyp�wi ,fTi
Þ

XN

i ¼ 1

Fzðyp�wi ,fTi
Þ
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>>>>>>>>>>>;
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where FX, FY and FZ are the components of the total force, wi is the
pitch angle of the i th tooth w.r.t. the p th tooth, fTi

is the feed/
tooth associated with the i th tooth, N is the number of teeth in
the cutter, and p is the arbitrary ð1rprNÞ, being just a reference.

For uniformly spaced teeth, wi has a constant value. For
differential tooth spacing the tooth pitch angles, wi, are directly
obtained from the specifications of the endmill. The effective
feeds per tooth, fTi

, are found by dividing the feed per revolution
in proportion with the angular tooth spacings of successive teeth.

Runout affects the feeds, fTi
[9]. For simplicity, consider a two

fluted cutter. Let fT1
and fT2

be the effective feeds per tooth
experienced by the two teeth, and fT be the nominal (commanded)
feed per tooth. Let the total indicated reading (TIR), upon
mounting the endmill in the holder on the spindle, be a measure
of the relative runout between the two teeth, designated r. The
following relations hold (convention fT1

4 fT2
)

fT1
þ fT2
¼ 2fT ð36Þ

fT1
�fT2
¼ j2rj ð37Þ
Solving Eqs. (36) and (37) simultaneously

fT1
¼ fTþjrj ð38Þ

and

fT2
¼ fT�jrj ð39Þ

For a cutter with more than two teeth, the expressions for
effective feed can be derived using similar arguments.
3.3. Cutting coefficient identification

Cutting coefficients are empirical and are generally
determined experimentally. Martellotti [14] proposed that the
average undeformed chip thickness could be related to the
components of the cutting force. Sawin [17], Salomon [16], and
Sabberwal [15] showed that the cutting coefficient varies with the
chip thickness.

The coefficients also depend on other process parameters such
as cutting speed [19] and tool geometry [8]. For simplicity, the
cutting speed, axial depth of cut, and tool geometry are kept fixed
in the experiments reported in this paper. Hence, the results
reported here hold only for the specific type of tool geometry
used, the stated cutting speed, and the axial depth of cut used in
the experiments.

Based on [15], the coefficients may be expressed as exponen-
tial functions of the averaged mean chip thickness, hm, having the
general form K ¼ eGðhmÞ

C. Thus, the following set of relations may
be written:

ln Ktc

ln Knc
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where Gtc,nc,ac and Ctc,nc,ac are cutting constants. The values of
these constants depend on the combination of tool material and
work material, the specific cutting geometry, as well as cutting
conditions, such as the type of cutting fluid being used.

The cutting coefficients described above can be experimentally
extracted based on a small set of cutting tests. The coefficients
Ktc,nc,ac corresponding to a given feed per tooth, fT, may be
calculated based on average cutting force components for a
chosen set of cutting conditions. For these same conditions,
the averaged mean chip thickness, hm, may be computed using
Eq. (19). The exercise is repeated for a set of different values
of fT. Thus, a mapping is established, generating a functional
dependence of Ktc,nc,ac on hm. These data may be used to obtain
appropriate fits to find the cutting constants in Eq. (40).

For a single helical tooth, the components of the cutting
force may be averaged over one cutter revolution. The averaged
components of the cutting force, F x, F y, and F z, may be expressed
as
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Using shorthand notation:

F x

F y

F z
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where

I19
Z 2p

0
bx1 dyp, I29

Z 2p

0
bx2 dyp, I39

Z 2p

0
x3 dyp ð43Þ

Solving for the coefficients yields
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where F x,y,z are to be obtained based on experiments, and the
integrals need to be evaluated for the corresponding experimental
conditions. The integrands in Eq. (43) have closed form expres-
sions fusing Eqs. (32)–(34) and Eqs. ð5Þ2ð7Þ or ð8Þ2ð10Þg.

The cutting coefficients identified above are averaged coeffi-
cients, having been derived based on the averaged forces, F x,y,z,
and expressed as functions of the averaged mean chip thickness,
hm. A set of experiments may be conducted for any fixed value of
radial immersion at different feed rates, yielding values of Ktc,nc,ac

for a range of hm. Values of cutting constants can then be obtained
using Eq. (40).

It has been noted earlier that the cutting coefficients are not
true constants but depend on process parameters. Only the
cutting constants are truly invariant. As the tooth progresses
through the cut, the instantaneous value of the mean chip
thickness, hm, evolves. So, it is expected that the cutting
coefficients also change because they are dependent on the
instantaneous hm [10]. The functional relation governing this
dependence has to be deduced.

Since the cutting constants are invariants, it is plausible that
the relationship between the instantaneous cutting coefficients
and the instantaneous hm has the form K ¼ eGhC

m , for fixed values
of cutting speed, axial depth of cut, and other fixed cutting
conditions such as the type of cutting fluid being used. The values
of the cutting constants, Gtc,nc,ac and Ctc,nc,ac , may be found using
the average forces as outlined above. The underlying assumption
is that the values of the cutting constants identified in this
manner can be used to calculate the instantaneous cutting
coefficients. The validity of this assumption will be tested by
comparison of experimental force signals with predicted forces
based on the instantaneous cutting coefficients.

The instantaneous cutting coefficients are functions of yp, and
may be expressed through the intermediate variables yL and yT

using Eq. (17):

Ktc ¼ eGtc ðhmÞ
Ctc ¼ eGtc ðfTxhÞ

Ctc ¼ eGtc fT sin
yLþyT

2

� �
sinc

yT�yL

2

� �� �Ctc

ð45Þ

Knc ¼ eGnc ðhmÞ
Cnc ¼ eGnc ðfTxhÞ

Cnc ¼ eGnc fTsin
yLþyT

2

� �
sinc

yT�yL

2

� �� �Cnc

ð46Þ

Kac ¼ eGac ðhmÞ
Cac ¼ eGac ðfTxhÞ

Cac ¼ eGac fT sin
yLþyT

2

� �
sinc

yT�yL

2

� �� �Cac

ð47Þ

where the sampling function (sinc) is defined in Eq. (18). The
reader should note that the same symbols, Ktc,nc,ac, are used to
denote the average as well as instantaneous cutting coefficients.
In extracting the cutting constants, the average coefficients are
used. Once the cutting constants are available, instantaneous
coefficients are used to make force predictions. The context makes
it clear which coefficient is to be applied.
In this subsection, a procedure has been developed for the
identification of cutting coefficients. The formulation is indifferent
to whether the cutting coefficients are a function of helix angle.
The expressions are readily computed for any value of radial
immersion. Hence, low immersion tests can be used to determine
the cutting coefficients. For any given combination of workpiece
material, tool material, tool geometry, and cutting conditions such
as use of cutting fluid, the cutting coefficients may be experi-
mentally derived. The coefficients are variable as they are a
function of chip thickness. So, cutting constants have been
invoked which are true invariants.

Cutting coefficients, Ktc,nc,ac (alternatively, the cutting con-
stants, Gtc,nc,ac ,Ctc,nc,ac), and the effective feed, fT, for an individual
tooth, are the input parameters for the force model [Eq. (31)]
which are subject to variation, due to the fact that they have to be
experimentally measured or otherwise estimated. These variances
may be quantified and propagated through the force model to
place confidence intervals on predicted forces.
4. Uncertainty analysis for predicted forces

Uncertainties in input parameters are evaluated using either a
Type A or a Type B analysis [20]. Type A analysis involves a
statistical evaluation of the data. Type B analysis is evaluation by
any other means. The sources of uncertainty in cutting coeffi-
cients or cutting constants arise out of uncertainties in the
measurement of average forces or uncertainties in estimation of
instantaneous forces. The random effects can be captured in the
form of variances and covariances of cutting constants using a
Type A analysis. The systematic effects can be captured in the
form of variances in cutting coefficients using a Type B analysis
(denoted as Type B1 in this paper). The uncertainties in effective
feed arise out of uncertainties in the measurement of runout.
Single measurements exclude random effects. The systematic
effects can be captured using a Type B analysis (denoted Type B2
in this paper).

In this paper the combined uncertainty of force components
owing to the random effects on cutting constants is designated
ucA. The combined uncertainty of force components owing to the
systematic effects of the force measuring instrumentation is
designated ucB1

, and that due to the runout measuring instrument
is designated ucB2

.
According to [20, pp. 7–8], when a measurand Y is not

measured directly, but is computed from N other quantities
X1,X2,y, XN using a functional relation:

Y ¼ gðX1,X2, . . . ,XNÞ ð48Þ

then an estimate of the measurand, or output quantity Y, denoted
by the lowercase y, is found using input estimates x1, x2, y, xN for
the N input quantities X1, X2, y,XN using the functional relation-
ship:

y¼ gðx1,x2, . . . ,xNÞ ð49Þ

The combined standard uncertainty of the measurement result
y, denoted by uc(y) is taken to represent the estimated standard
deviation of y, and is the positive square root of the estimated
variance uc

2(y) given by

u2
c ðyÞ ¼

XN

i ¼ 1

@g

@xi

� �2

u2ðxiÞþ2
XN�1

i ¼ 1

XN

j ¼ iþ1

@g

@xi

@g

@xj
uðxi,xjÞ ð50Þ

Combined standard uncertainties of predicted cutting forces
may be derived using the above equation in which the functional
relation ‘‘g’’ is given by Eq. (31), which defines the function
governing the force components. The partial derivatives of g, with
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respect to the variables which have uncertainties attached to
them, are the respective sensitivity coefficients.

4.1. Propagation of Type A uncertainties

The sensitivities with respect to the cutting constants are
found by using Eq. (31) together with Eq. (40):
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where the cutting coefficients are parameterized in the cutting
constants according to Eq. (40).

These sensitivities are expressed in terms of the cutting
coefficients in the above equation because the expressions remain
compact when written in this manner. They are functions of the
angular position of the pth tooth, yp.

The variances of cutting constants due to random effects,
available from the Type A evaluation, may be propagated to the
predicted forces using Eq. (31) and the sensitivities expressed in
Eq. (51) to yield the combined uncertainties ucA

ðfx,y,zÞ of predicted
forces for a single tooth by applying Eq. (50):

u2
cA
ðfxÞ

u2
cA
ðfyÞ

u2
cA
ðfzÞ

8>><
>>:

9>>=
>>;¼

s2
11 s2

12 s2
13 s2

14 0 0

s2
21 s2

22 s2
23 s2

24 0 0

0 0 0 0 s2
35 s2

36

0
B@

1
CA

u2ðgtcÞ

u2ðctcÞ

u2ðgncÞ

u2ðcncÞ

u2ðgacÞ

u2ðcacÞ

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

estimated variances

þ2

s11s12 s11s13 s11s14 s12s13 s12s14 s13s14 0

s21s22 s21s23 s21s24 s22s23 s22s24 s23s24 0

0 0 0 0 0 0 s35s36

0
B@

1
CA

�

uðgtc ,ctcÞ

uðgtc ,gncÞ

uðgtc ,cncÞ

uðctc ,gncÞ

uðctc ,cncÞ

uðgnc ,ctcÞ

uðgac ,cacÞ

8>>>>>>>>>>><
>>>>>>>>>>>:

9>>>>>>>>>>>=
>>>>>>>>>>>;|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

estimated covariances

ð52Þ

where lowercase gtc,nc,ac and ctc,nc,ac are input estimates for the
values of input quantities Gtc,nc,ac and Ctc,nc,ac , respectively, and sij

are the sensitivity coefficients evaluated at the estimated
parameters gtc,nc,ac and ctc,nc,ac .

4.2. Propagation of Type B1 uncertainties

The variances of instantaneous cutting coefficients (obtained
using a Type B1 evaluation) are functions of yp because the
instantaneous forces, and the sensitivities of cutting coefficients
to the instantaneous forces, are functions of yp. The relation
between instantaneous cutting coefficients and instantaneous
cutting force components may be obtained by inverting the
cutting force Eq. (31) to yield
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Eq. (53) yields the following sensitivity coefficients for
use in propagation of the uncertainty in instantaneous force
measurements to the uncertainties in instantaneous cutting
coefficients:
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Using the above sensitivities in Eq. (50), the variances of
cutting coefficients, due to the systematic effects, are
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where u2(fx,y,z) are the variances of instantaneous force compo-
nents. The values of u(fx,y,z) in Eq. (55) are set at 1.207% of the
nominal values of the instantaneous force components based on
estimates provided by the force measuring instrument manufac-
turer [4] who is certified to ISO 9001 and ISO 17025 (for
calibration). According to the manufacturer’s certificate, the total
uncertainty of force measurement using multicomponent dynam-
ometers having piezoelectric charge devices, is calculated asffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2ðforce rangeÞþu2ðchargeÞ
p

. For forces of 0y60,000 lbf, the
uncertainty is 0.5%, and for charge of 0y50,000 pC, uncertainty

is 0.5%, which yields
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð0:5Þ2þð0:5Þ2

q
C0:707%. For the charge

amplifier in the measuring chain, the typical uncertainty in these
ranges is o0:5% and should be added to the 0.707%. Thus, the
worst case uncertainty is stated at 0.707+0.5¼1.207%. For the
sake of simplicity, any possible correlation between Ktc and Knc

from measurement channel cross talk is neglected, i.e., u(ktc,knc) is
set to zero. Thus the variances in cutting coefficients have been
obtained using a Type B1 evaluation.

The sensitivities of cutting forces, with respect to the cutting
coefficients, are found using Eq. (31):
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The variances of cutting coefficients due to measurement
uncertainties are available from Eq. (55) based on the Type B1
evaluation. These uncertainties may be propagated to the
predicted forces using Eq. (31) and the sensitivities expressed in
Eq. (56) to yield the combined uncertainties ucB1

ðfx,y,zÞ of predicted
forces for a single tooth by applying Eq. (50):
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Fig. 7. Experimental set-up showing the helical endmill held in a polygonal chuck,

the laser tachometer, and the workpiece mounted on the dynamometer (left).

Measurement of runout using a dial indicator is also shown (right).

Table 2
Experimental cutting conditions: dry cutting of aluminum alloy 6061-T6 using a

TiB2 coated solid carbide endmill (Kennametal catalog No. HPF45A750S2150)

having two equispaced teeth mounted in a polygonal chuck (Schunk catalog No.

203794).

Endmill

diameter

(mm)

Helix angle

(deg.)

Cutting speed

(m/min)

No. of

teeth

Axial

depth of

cut (mm)

19.05 45 250 2 4
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where measurement channel cross talk is neglected, i.e., u(ktc,knc)
is set to zero.

4.3. Propagation of Type B2 uncertainties

Eqs. (38) and (39) yield the following sensitivity coefficients
for use in propagation of the uncertainty in relative runout to the
uncertainties in effective feeds for individual teeth for a two
fluted endmill:

@fT1

@r ¼ 1 and
@fT2

@r ¼�1 ð58Þ

and similar expressions may be written for an endmill with more
teeth.

Let u2ðrÞ be the estimated variance in the measured value of
relative radial runout of successive teeth. The sensitivities in Eq.
(58) may be used in Eq. (50) to estimate the variances of the
effective feeds for each individual tooth:

u2ðfT1
Þ ¼

@fT1

@r

� �2

u2ðrÞ ¼ u2ðrÞ ð59Þ

u2ðfT2
Þ ¼

@fT2

@r

� �2

u2ðrÞ ¼ u2ðrÞ ð60Þ

where u2ðrÞ has to be estimated.
The sensitivities of cutting force components with respect to

the effective feeds are found using Eq. (31):
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The uncertainties in the effective feed rates of the i th tooth, as
expressed in Eqs. (59) and (60), may be propagated to the
predicted forces using Eq. (31) and the sensitivities expressed in
Eq. (61) to yield the combined uncertainties ucB2

ðfx,y,zÞ of the forces
for the i th tooth:
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In the preceding discussion, an analytical method of quantify-
ing the variances in the model input parameters has been
outlined. During the process of experimental determination of
the input parameters, their variances and covariances, are to be
estimated. A suitable method of calculating the expanded
uncertainty, for a desired confidence interval on the predicted
forces, has to be established. These aspects are addressed in the
next section.
3 All commercial products are identified for the sake of completeness. This

does not constitute endorsement of any of these products.
5. Experimental verification of the force model

To verify the predictive capability of the model, the input
parameters, namely the cutting coefficients, and radial runout,
were determined experimentally. Experimental measurements
are subject to uncertainty. The uncertainties in model input
parameters were determined and their propagation through the
force model was quantified. The analytical cutting force
model was then used to predict cutting forces, for various
combinations of radial immersion and feed, with 95% confidence
intervals placed on force predictions. The predicted force signals
were verified against experimental data to validate the model.
A 2-fluted, 451 helix, equispaced tooth endmill was used.
Fig. 7 shows the experimental set-up. The machine was a
Mikron3 UCP Vario 5-axis machining center. The specifications of
the endmill and toolholder are given in the caption of Table 2.
Spindle adaption was hollow shank, taper and face contact HSK-
63A. Upon clamping the tool in the spindle, the static radial
runout was measured by indicating the endmills with a dial gage
having a least count of 2:5mm (0.0001 in). A three component
Kistler dynamometer, model 9257B, was used to measure the
three components of the force. Data were acquired using a
National Instruments 12-bit data acquisition card at a sampling
frequency of 60 kHz. A Tetrahertz Technologies laser tachometer
was used to record a synchronizing phasor signal to help estimate
the point of entry into the cut for one of the flutes in the endmill.
5.1. Partial radial immersion experiments

Cutting coefficients were extracted for dry machining the
aluminum alloy 6061-T6. A 25% radial immersion experiment was
used. This was to demonstrate one of the advantages of this
analytical model which is that a full immersion experiment is not
required to extract cutting coefficients.

The fixed conditions of the experiments are given in Table 2.
The averaged mean chip thickness can be varied by changing the
feed based on Eq. (19). Values of cutting coefficients were
recorded for each level of the averaged mean chip thickness,
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and linear regression was used to establish relationships between
them. Using these cutting coefficients, force predictions were
made with 95% confidence intervals for down milling, up milling,
and mixed mode (over 50% radial immersion), and experimentally
verified for different values of feed.
ln
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Linear regression fit unsuitable (R2 = 0.223);
Constant mean value of Kac fitted

ln [hm]−

Adj. R2 = 0.981

Fig. 8. Linear regression fitting of average cutting coefficients, as a function of the

averaged mean chip thickness, for dry milling of 6061-T6 aluminum alloy, using an

equispaced tooth, 2-fluted, 451 helix, TiB2 coated, solid carbide endmill having a

nominal radial runout of 10mm. Experimental points are denoted by ‘‘ � ’’ .

Table 3
Estimated mean cutting constants for cutting conditions of Table 2.

Gtc Ctc Gnc Cnc Gac Cac

5.928 �0.4634 4.799 �0.6666 6.060 0.000
5.2. Experimental extraction of cutting coefficients

Eqs. (31), (41), and (44) indicate that the cutting coefficients in
the plane (Ktc and Knc) are possibly correlated. The axial coefficient
is independent. So, the covariances associated with Ktc and Knc

need to be considered, i.e., it is a multiresponse, multivariate
problem. In extracting the axial coefficient, the variance asso-
ciated with Kac suffices, i.e., it is a univariate problem.

Experiments were conducted at nine different feed rates,
within the range 0.025–0.250 mm/tooth, the time traces of force
components were recorded, and average force values, (f x,f y,f z),
were computed. The experimental estimates of the average
cutting force components are represented using the correspond-
ing lower case letters to distinguish sample measures from
population measures. At each feed rate, the experiment was
repeated five times. Forces were averaged over one rotation, on a
per tooth basis. To reduce the variability, the average was taken
for 50 successive rotations. Values of Ktc, Knc, and Kac, correspond-
ing to each feed rate, were derived using Eq. (44). Thus, nine sets
of five data points each were collected for fitting a linear model
according to Eq. (40). Two parameters (slope and intercept) were
fitted to 45 points, yielding 43 degrees of freedom for each
regression.
Table 4
Symmetric variance–covariance matrix of cutting constants for the cutting

conditions listed in Table 2.

Gtc Ctc Gnc Cnc

Gtc 0.00037172 0.00011714 0.00017171 0.00005411

Ctc 0.00003885 0.00005411 0.00001795

Gnc 0.00184500 0.00058139

Cnc 0.00019285
5.3. Estimation of cutting constants and variance of radial runout

The cutting constants Gtc,nc and Ctc,nc of Eq. (40) may be
obtained using multiresponse linear regression, whereas the
cutting constants Gac and Cac can be obtained using simple
linear regression. Kurdi [12] has solved a multiresponse regres-
sion problem which has a similar mathematical structure, using
the theory presented by Zellner [26]. The method fits a linear
regression model and enables the evaluation of the variance–
covariance matrix between the responses, and the variance–
covariance matrix of the random error in the regression model,
which permits the extraction of the variance–covariance matrix of
the cutting constants (details in the Appendix). The fitted
regression lines are displayed in Fig. 8. Based on the regression,
the estimated cutting constants Gtc,nc and Ctc,nc are calculated and
their mean values are given in Table 3. A linear fit was not found
suitable for the axial cutting constants fsmall values of R2 in linear
regressiong. The mean value of Kac was fitted.

The variance covariance matrix of the cutting constants Gtc,nc

and Ctc,nc , obtained using the method of Zellner [26], is given in
Table 4. The diagonal elements are the variances, and the off
diagonal elements are the respective covariances. The variance of
the independent cutting constant Gac was found to be
0.00678924.4

The uncertainty associated with runout measurement is
captured using a Type B evaluation as discussed in [20]. The dial
indicator used in runout measurement resolves to 0.0025 mm.
The cosine error of the lever type indicator is neglected in this
analysis. Based on a rectangular (uniform) distribution of the half
4 The large number of significant figures are carried so as not to be affected by

round off errors [5].
interval, the variance of radial runout measurement is

u2ðrÞ ¼ 0:0025ffiffiffi
3
p

� �2

ð63Þ

5.4. Expanded uncertainty

The Type A evaluation of the variances and covariances of the
cutting constants was carried out under the assumption of a
normal distribution for the measurements and their combined
uncertainties. A sufficiently large number of experiments were
conducted to yield 43 degrees of freedom for each regression. This
indicates that the degrees of freedom for the standard uncertain-
ties of the cutting constants are large enough to justify the choice
of the usual coverage factor of 2 for the expanded uncertainty for
a 95% confidence interval based on the Student’s t-distribution
[20], i.e., kA ¼ 2.

The Type B evaluation of the standard uncertainties of
dynamometer force measurements was carried out based on the
manufacturer’s certificate under the assumption of a normal
distribution for the measurements and their combined uncertain-
ties. It is assumed that the manufacturer’s estimate is based on a
sufficiently large number of observations to justify the choice of
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the usual coverage factor of 2 for the expanded uncertainty for a
95% confidence interval based on the Student’s t-distribution, i.e.,
kB1 ¼ 2.

The Type B evaluation of the standard uncertainties of single
measurement estimates of radial runout, using an instrument
with a finite resolution, was carried out under the assumption of a
uniform distribution for the measurements and their combined
uncertainties. The rectangular distribution yields a coverage
factor kB2 ¼ 1:65 for a 95% confidence interval.

In the problem at hand, the sources of uncertainty are
evaluated by Type A and Type B methods, but their relative
magnitudes are not fixed. Turzeniecka [23] has suggested an
approximate method to find the expanded uncertainty in such
situations. The expanded uncertainty may be computed as the
root sum of squares (RSS) of the component expanded uncertain-
ties:

Uðf Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

Au2
cA
ðf Þþk2

B1u2
cB1
ðf Þþk2

B2u2
cB2
ðf Þ

q
ð64Þ

The predicted forces are

Predicted forces¼ Fx,y,z7Uðfx,y,zÞ

where Fx,y,z are calculated based on Eq. (31).
0 180 360 540 720
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0

400
F z

 (N
)

Experimental verification
Axial force

θp (deg)

Fig. 9. Predicted vs. experimental force signals: equispaced, 2-fluted, 451 helix

cutter; feed 0.100 mm/tooth, 10% radial immersion, down milling. Nominal runout

10mm. Other conditions as in Table 2.
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5.5. Force prediction results

Force predictions were made for several combinations of
parameters as given in Table 5. The results are displayed in
Figs. 9–12. Noteworthy is the fact that magnitudes of the forces, as
well as the patterns are predicted accurately. The skewness of the
experimental forces in high immersion experiments is also
successfully captured. Furthermore, in general, the experimental
force patterns were found to lie within the 95% confidence interval
bounds even though the dynamics of the force measurement
chain, which includes the dynamometer, cable, and amplifier, play
a role in introducing high frequency wiggles in force
measurements which colors the experimental force signals [3].
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Fig. 10. Predicted vs. experimental force signals: equispaced, 2-fluted, 451 helix

cutter; feed 0.050 mm/tooth, 50% radial immersion, down milling. Nominal runout

10mm. Other conditions as in Table 2.
5.6. Additional experimental force prediction results

For the sake of compactness, only one set of representative
experimental results are reported here. Additional experimental
force prediction results are available in [3] where a much larger
parameter space (radial immersion, up and down milling
configuration) is explored. The reader may be specifically
interested in looking at force prediction results using a version
of this model based on average cutting coefficients. That model
has been validated on two different workpiece materials includ-
ing the 6061-T6 aluminum alloy as well as a plain carbon steel.
Validation also includes the use of two different toolholders
(spring collet chuck and elastomeric polygonal chuck), two
different tool materials (uncoated carbide and coated carbide),
and three different tool geometries (451 helix, 301 helix, and zero
helix). In addition, the model has been validated using a
differential pitch cutter.
Table 5
Summary of experimental conditions used to verify force predictions with instantaneo

Results displayed in Feed (mm/tooth) Radial

Fig. 9 0.100 10

Fig. 10 0.050 50

Fig. 11 0.050 75

Fig. 12 0.100 100
6. Concluding remarks

The fully analytical force model, having a single equation
covering the entire domain of angular rotation, is able to predict
forces under the practical situations involving radial runout. Only
representative results are shown in this paper. For extensive
experimental results, including the effects of differential pitch, the
reader is referred to [3].

The advantages of the model in cutting coefficient extraction
were demonstrated. It was shown that cutting coefficients may be
us Ktc,nc,ac, and conditions of Table 2 held fixed.

immersion (%) Up/down milling or mixed mode (450% RI)

Down milling

Down milling

Mixed, cut ends with h¼0

Slotting
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Fig. 11. Predicted vs. experimental force signals: equispaced, 2-fluted, 451 helix

cutter; feed 0.050 mm/tooth, 75% radial immersion, cut ends with h¼0. Nominal

runout 10mm. Other conditions as in Table 2.
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Fig. 12. Predicted vs. experimental force signals: equispaced, 2-fluted, 451 helix

cutter; feed 0.100 mm/tooth, 100% radial immersion slotting. Nominal runout

10mm. Other conditions as in Table 2.

5 In the derivations, the subscript, p, is dropped from yp for the sake of

simplicity.
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reliably extracted with a low radial immersion experiment. This
results in considerable material savings in the cutting coefficient
determination experiment, and proves useful when expensive
materials are to be machined. This also permits experimental
extraction of cutting coefficients for large axial depths of cut on
machines in which spindle power limitations may not permit
slotting cuts at such depths.

Another advantage of the model was demonstrated which is that
the helix angle effects, if any, are automatically taken care of while
extracting cutting coefficients. It is not necessary to invoke the fact
that cutting coefficients are independent of helix angles, and then
use the theoretical expressions for a slotting cut with a zero helix.

An uncertainty analysis has been performed. It has been shown
how the expanded uncertainty may be computed for the case
where both, the Type A and Type B uncertainties exist. This makes
it possible to place 95% confidence intervals on predicted forces
for any practical situation. The mathematical structure of the
force model permits the analytical derivation of sensitivity
coefficients which were used in the uncertainty analysis. The
availability of single equations for the entire domain keeps the
analytical calculations compact. This is one example of the
usefulness of this force model in applications.

The uncertainty analysis was carried out considering the effects
of possible correlation between the cutting constants in the plane.
This yields tight confidence intervals. If the user so chooses, an
abridged method can be used where the correlation is ignored, i.e.,
the covariances are not considered in calculating the propagation
of uncertainties in the cutting constants. Nominal values of cutting
constants and their variances can be quickly assessed using single
equation regression. The ability to provide a defensible uncertainty
statement to accompany cutting force predictions is beneficial in
practice. It enables the user of the force model to decide the
usefulness of the predictions in any specific application.

One limitation of the model stems from the fact that the geometry
of the chip formed should correspond to that postulated here. This
geometry is characteristic of chips obtained in the milling of ductile
metallic alloys. The authors have experimentally validated the model
using an aluminum alloy as outlined in this paper. A version of the
model using average cutting coefficients has been validated using a
plain carbon steel and an aluminum alloy as detailed in [3].

The mechanism of machining of ductile metallic alloys involves
cutting (shearing at interatomic planes) and plowing actions.
Shearing is the dominant mode of power consumption in general
applications. For micromachining, especially when the order of
magnitude of the feed is the same as the edge rounding radius of the
sharp cutting edges, the plowing action can consume comparable
amounts of power. Plowing is better modeled as being proportional
to the length of the cutting edge in contact with the chip. The related
lumped parameter coefficients are called edge coefficients, but are
ignored in the model presented in this paper. Hence, the model
outlined here should not be used directly in micromachining
applications, nor for feed rates which are so low as to be of order
of magnitude similar to the edge radii of the sharp cutting edges. An
augmented version of this model would be necessary. The
formulation of the required augmentation is outlined in [3].
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Appendix A

A.1. Line segments describing yL, yT , and b

For the sake of illustration, the line segment describing yL is
shown below. The variation of yL in Type I and Type II cutting is
the same as is readily observed by inspection of Fig. 4. The
functional relationship between yL and y,5 is

yL ¼ 0, 0ryoyst

y, yst oyryex

yex, yexryryexþ
2a tanl

D

0, yexþ
2a tanl

D
oyo2p

9>>>>>>>=
>>>>>>>;

ð65Þ

Expressions for yT and b may be similarly obtained.
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A.2. Derivation of Fourier coefficients

Fourier coefficients L0, Lk, Mk, T0, Tk, Rk, B0, Bk, and Ck, may be
derived by inspection of Fig. 4, writing out the functional relation-
ships valid for the fundamental period, ypA ½0,2pÞ, and integrating
appropriately using standard Fourier series procedures [11].

As an example, the Fourier coefficients, Lk, is derived below.
Other coefficients are derived in a similar manner.

Lk ¼
1

p

Z 2p

0
yLcosydy¼

1

p

Z yex

yst

ycosydyþ
Z yexþ2a tanl=D

yex

yexcosydy

" #

Simplification yields Eq. (14).

A.3. Estimation of cutting constants

Following the method of Zellner [26], the multiresponse model
for the simultaneous estimation of the cutting constants Gtc,nc and
Ctc,nc of Eq. (40), may be written as

Ki ¼Hibiþei i¼ tc,nc ð66Þ

where n is the number of experimental data sets, Ki is a n� 1
vector of the (logarithms of the) cutting coefficient responses, bi is
a 2� 1 vector of unknown constant parameters (the cutting
constants), ei is a random error vector associated with the i th
response, and

Htc ¼Hnc ¼ ½ 1
n�1

lnhm
n�1
� ð67Þ

where flnhmg is the vector of (the logarithms of) the averaged
mean chip thickness at which the responses are observed.

In matrix notation, Eq. (66) may be rewritten with H appearing
in block diagonal form

lnKtc
n�1

lnKnc
n�1

8><
>:

9>=
>;|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

K

¼

Htc
n�2 0

0 Hnc
n�2

0
B@

1
CA

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
H

Gtc

Ctc

Gnc

Cnc

8>>><
>>>:

9>>>=
>>>;|fflfflfflfflffl{zfflfflfflfflffl}

b

þ

etc
n�1

enc
n�1

8<
:

9=
;|fflfflfflffl{zfflfflfflffl}

e

ð68Þ

Zellner [26] has given an example which shows the method of
estimating the multiple response parameters (the two-stage Aitken
estimators), and obtaining the variance–covariance matrix (the
moment matrix) of these estimators. The example is symbolically
reproduced here with suitable changes in notation. Rewriting
Eq. (68) in a simplified manner, the system to be estimated is

Kt

Kn

( )
¼

Ht 0

0 Hn

 !
bt

bn

( )
þ

et

en

( )
ð69Þ

First, the single-equation least squares estimates are obtained
in the usual way. These estimates are

b̂t ¼
b̂t0

b̂t1

8<
:

9=
;¼ Gtc

Ctc

( )
and b̂n ¼

b̂n0

b̂n1

8<
:

9=
;¼ Gnc

Cnc

( )

To obtain the disturbance covariance matrix, it is convenient to
write

½Kt Kn� ¼ ½Ht Hn�
b̂t 0

0 b̂n

0
@

1
Aþ½ût ûn� or K ¼HBþÛ

Then

Û
T
Û ¼ ðK�HBÞT ðK�HBÞ ¼ KT K�BT HT HB

¼
KT

t Kt KT
t Kn

KT
n Kt KT

n Kn

 !
�

b̂
T

t HT
t Htb̂t b̂

T

t HT
t Hnb̂n

b̂
T

nHT
nHtb̂t b̂

T

nHT
nHnb̂n

0
@

1
A

¼ ðn�2Þfsmm0 g
where smm0 is an estimate of the (unknown) expectation value
smm0 ¼ Eðumum0 Þ, and m,m0 ¼ t,n. This last matrix may be inverted to
obtain ðn�2Þ�1

fsmm
0

g. Knowing smm
0

enables one to obtain the
following symmetric moment matrix of the two-stage Aitken
estimators:

VðbÞ ¼
sttHT

t Ht stnHT
t Hn

sntHT
nHt snnHT

nHn

 !�1

ð70Þ

whose diagonal elements are the estimated coefficient estimator
variances, and off-diagonal elements are estimated covariances.

The two-stage Aitken coefficient estimates are

b¼ VðbÞ
sttHT

t KtþstnHT
t Kn

sntHT
nKtþsnnHT

nKn

( )
ð71Þ

For the experiments analyzed in this paper, Ht¼Hn, and the two-
stage Aitken estimators are the same as the single equation least
squares estimators, but the variance–covariance matrix, VðbÞ, is
not diagonal, i.e., the covariances are non-zero.
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